
A Calculus of Definitions

March 18, 2008

The mathematicians will probably raise objections against that, because contemporary math-
ematics is thoroughly extensional and hence no clear notions of intensions have been developed.
But it is nevertheless certain that, at least within the framework of a particular language, com-
pletely precise concepts of this kind can be defined. (Gödel, letter to Bernays, 1970)

Introduction

1 Programs

The programs are usual (untyped) λ-expressions with pairs. We add constants and definitions
by cases, like in the language PCF

M ::= x | λx.M | M M | M,M | M.1 | M.2 | c | M D | B

the category B is for functions defined by cases

B ::= c1 → M1, . . . , ck → Mk

and the category D is for mutual recursive definitions

D ::= x1 = M1, . . . , xk = Mk

Notice that programs are first-order objects, with an associated decidable equality.

2 Denotational semantics

We take the Scott domain solution of the recursive equation

V = [V →s V] + V ×s V + Ide

where the sum is the non lifted sum. Any element of V different from ⊥ is thus a strict function
f or of the form c or is a pair u1, u2 of two elements 6=⊥.

One essential point is to consider a strict semantics for our language.
We define [[M]]ρ in V for ρ an environment, i.e. a function from variables to V.
We introduce first a function app in V → V → V by taking app d1 d2 to be ⊥ if d1 is not

a function; if d1 is a function f and app d1 d2 is defined to be f(d2). We define then as usual
[[M1 M2]]ρ to be app [[M1]]ρ [[M2]]ρ. We define also [[x]]ρ = ρ(x).

We define [[λx.M]]ρ to be the function f such that f(⊥) =⊥ and if u 6=⊥

f(u) = [[M]]ρ,x=u

1

Similarly, [[B]]ρ is the function f such f(c) = [[N]]ρ if c → N is in B and f(c, u) = app [[N]]ρ u if
c → N is in B1. In all the other cases we have f(v) =⊥.

We take [[M1,M2]]ρ = ([[M1]]ρ, [[M2]]ρ) if both [[Mi]]ρ 6=⊥ and [[M1,M2]]ρ =⊥ if [[M1]]ρ =⊥ or
[[M2]]ρ =⊥. We take [[c]]ρ = c.

Finally let D be a definition x1 = M1, . . . , xk = Mk. We define

[[M D]]ρ = [[M]]ρ′

where the environment ρ′ is the least solution of the recursive equation

ρ′ = (ρ, x1 = [[M1]]ρ′ , . . . , xk = [[Mk]]ρ′)

3 Definitional Equality

The goal of this section is to introduce the notion of definitional equality or convertibility
between programs. We want to represent the idea that two terms are convertible if we can get
to the same term by unfolding some definitions.

The equality [[M1]] = [[M2]] is not decidable, and does not really coincide with the notion of
“having the same definition”. To take a simple example, if we define

M1 = zero1(zero1 = (0 → 0, S → zero1))

M2 = zero2(zero2 = (0 → 0, S → (0 → 0, S → zero2)))

we do have [[M1]] = [[M2]] but we cannot say that M1 and M2 are convertible, in the sense of
having the same definition2.

We are going to define a notion of definitional equality, which is decidable over programs
M such that [[M]] 6=⊥ (intuitively, programs that “make sense”). For this, we introduce the
notion of values, which is convenient to represent what happens when we unfold a definition.
Furthermore, this notion is closely connected to what happens in computations of programs
with environment machines. Like in any environment machines, the programs are essentially
static objects and the computations are done on values. The values can be described in the
following way

u ::= Xi | u, u | u u | c | u.1 | u.2 | Mσ, σ ::= () | σ, x = u | Dσ

The values Xi, called generic values, are introduced here only to define the notion of normalisable
values (see below). The equality on values in not decidable, and is given by the following (weak)
conversion rules

(M1 M2)σ = M1σ (M2σ), (λx.M)σ u = M(σ, x = u),

cσ = c, (M1,M2)σ = (M1σ,M2σ), (u1, u2).i = ui

(M D)σ = M(Dσ), (Bσ) c = Mσ, (Bσ) (c, u) = Mσ u

1This implicit anticurrification is quite useful in the representation of type theory in our language.
2Intuitively, both terms represent the infinite object

(0→ 0, S → (0→ 0, S → (0→ 0, . . .)))

It might be that bissimulation on these kind of objects is actually decidable, but this would not capture the
notion of definitional equality.

2

where in the last two rules it is assumed that c → M occurs in B. The remaining rules are
access rules

x(σ, x = u) = u, x(σ, y = v) = xσ (x 6= y)

and x(Dσ) = xσ if x is not declared in D and (the main rule)

x(Dσ) = M(Dσ)

if x = M occurs in D.
It is rather direct that, if we see these conversion rules as a rewriting system, we get a

confluent system.
For instance, if B = (0 → x | S → λy.(S, add x y)) and D is add = λx.B we have the

following computation

(add 0 (S, 0)) D = B(D,x = 0) (S, 0) = (S, B(D,x = 0) 0) = (S, 0)

while, if D1 is the definition x = (S, x) we have the computation

xD1 = (S, x) D1 = (S, xD1) = (S, (S, xD1)) = . . .

The strong conversion is obtained by adding the ξ-rule that (λx1.M1)σ1 and (λx2.M2)σ2 are
convertible whenever M1(σ1, x1 = Xi) and M2(σ2, x2 = Xi) are, where Xi is a “fresh” generic
value, i.e. a value which does not occur neither in σ1 nor in σ2. (It is arguable if this step
corresponds really to definitional equality.)

4 Head Normalisable values

We define the head reduction relation u � u1 on values. The rules are the following

(M1 M2)σ � M1σ (M2σ) (λx.M)σ u � M(σ, x = u) cσ � c

(M1,M2)σ � (M1σ,M2σ) (u1, u2).i � ui (M.i)σ � (Mσ).i

(M D)σ � M(Dσ) (Bσ) c � Nσ (Bσ) (c, u) � Nσ u (c ~x → N in B)

x(σ, x = u) � u x(σ, y = v) � xσ (x 6= y)

x(Dσ) � xσ (x not in D) x(Dσ) � M(Dσ) (x = M in D)
v � v1

v u � v1 u

u � u1

Bσ u � Bσ u1

We define next when a value u is HN. First it has to have a canonical form u �∗ v which
has to be of the following form

v ::= (λx.M)σ | c | u, u | Bσ | k k ::= Xi | k u | Bσ k | k.1 | k.2

and which has to satisfy

if v = (λx.M)σ then M(σ, x = Xi) should be HN
if v = Bσ then σ should be HN
if v = k v′ then v′ and k should be HN
if v = Bσ k then k and σ should be HN
if v = v1, v2 then v1 and v2 should be HN
if v = c then it is HN

3

if v = Xi then it is HN

and we define σ HN by

if σ = (σ1, x = v) then v and σ1 should be HN
if σ = Dσ1 then σ1 should be HN
if σ = () then it is HN

For instance x (x = (S, x)) has no canonical form while add D, where D is add = λx.B
and B is (0 → x | S → λy.(S, add x y)) is HN, since it has a canonical form (λx.B)D and
B(D,x = Xi) is HN.

Proposition 4.1 Strong convertibility is decidable on HN values.

5 Main result

Theorem 5.1 If M is a closed program and [[M]] 6=⊥ then the value M() is HN.

6 Representation of Gödel system T

We can embed Gödel system T in the present calculus by using the definition D

rec = λf.λa.(0 → a, S → λx.f x (rec f a x))

Usually, one defines (the untyped version of) Gödel system T by extending untyped λ-
calculus with constants 0, S, rec and conversion equations

rec f a 0 = a, rec f a (S x) = f x (rec f a x)

Proposition 6.1 Let M1, M2 be two terms of Gödel system T. They are convertible, as terms
of Gödel system T iff the values M1D and M2D are convertible.

This shows that this representation is faithful. We can represent in our calculus any system
containing functions defined by case analysis. In our calculus we can define locally such systems,
or we can have such systems depending on parameters, which is essential for modularisation.

Furthermore Theorem 5.1 provides a sufficient condition ensuring normalisation (and hence
decidability of convertibility). As usual, we can prove [[M]] 6=⊥ by introducing totality subset
on the domain V, that are non empty subset of V not containing ⊥.

7 Proof of Main Theorem

For the proof of Theorem 5.1 we formulate the semantics [[M]]ρ in V as a typing relation Γ `
M : U where the “types” are finite elements of V. The finite elements 6=⊥ of V are of the form

W ::= ∇ | c | W,W | W → W | W ∩W

We introduce the formal relation of inclusion U1 ⊆ U2 between these elements which corre-
sponds to the opposite of the relation in the domain V. The elements U are also called formal
neighbourhood. We have also an operational interpretation [U] of each formal neighbourhood.
This is a set of HN values defined in such a way that [U1] ⊆ [U2] if U1 ⊆ U2, We have also that
[∇] is the set of all neutral values. What is important is that the formal inclusion relation is
decidable. The element ∇ correspond to the top element > of the domain V.

4

We define [W] by induction on W .

[∇] is the set of neutral values
[c] is the set of HN values, neutral or of canonical form c
[U → V] is the set of HN values w, neutral or of canonical form (λx.N)σ or Bσ, and such

that w u is in [V] if u is in [U]
[U1, U2] is of HN values, neutral or of canonical form u1, u2 and such that ui is in [Ui]
[U1 ∩ U2] is [U1] ∩ [U2]

We may write u ∈ U instead of u ∈ [U].
The typing rules are the following, where Γ(x) represents A such that x : A appears last in

Γ (this notation requires that x is declared in Γ).

Γ ` M : U U ⊆ V

Γ ` M : V

Γ ` M : U1 Γ ` M : U2

Γ ` M : U1 ∩ U2

Γ ` x : Γ(x)
Γ, x : U ` N : V

Γ ` λx.N : U → V

Γ ` N : U → V Γ ` M : U

Γ ` N M : V

Γ ` M1 : U1 Γ ` M2 : U2

Γ ` M1,M2 : (U1, U2)
Γ ` M : (U1, U2)

Γ ` M.i : Ui Γ ` c : c

If c → N appears in B we have

Γ ` N : V

Γ ` B : c → V

Γ ` N : U → V

Γ ` B : (c, U) → V

Finally we have the typing rule for Γ ` MD : U . This has the following form.

Γ(0) ` M1 : U
(1)
1 . . . Γ(0) ` Mk : U

(1)
k . . . Γ(l−1) ` M1 : U

(l)
1 . . . Γ(l−1) ` Mk : U

(l)
k Γ(l) ` M : U

Γ ` MD : U

where D is x1 = M1, . . . , xk = Mk and Γ(j) is Γ, x1 : U
(j)
1 , . . . , xk : U

(j)
k and U

(0)
i is ∆. This

rule reflects the fact that the semantics [[MD]]ρ is [[M]]ρ′ where the environment ρ′ is the least
solution of the recursive equation ρ′ = (ρ, x1 = [[M1]]ρ′ , . . . , xk = [[Mk]]ρ′).

We generalise the statement of Theorem 5.1 in the following way.

Lemma 7.1 If Γ ` M : U , σ is HN and xσ is in [Γ(x)] for each variable x declared in Γ then
Mσ is in [U].

Proof. The proof is by induction on the proof of Γ ` M : U .
The result is clear for the first two rules, and for the variable rule.
For the abstraction rule: if σ is HN and xσ is in [Γ(x)] for each variable x declared in Γ and

U is 6= ∆ and u ∈ U and we assume N(σ, x = u) in V then (λx.N)σ u is in V since it head
reduces to N(σ, x = u)

For the application rule: if Nσ is in U → V and Mσ is in U then Nσ (Mσ) and so (N M)σ
is in V .

The constant rule is clear.
For the case rule: we assume that c → N appears in B and Γ ` N : V . We want to show

that Bσ is in c → V . Since σ is HN we only have to show that Bσ c is in V . This is the case
since Bσ c � Nσ and Nσ is in V by induction. If we have Γ ` N : U → V we show that Bσ
is in (c, U) → V . Since σ is HN we only have to show that Bσ (c, u) is in V . This is the case
since Bσ (c, u) � Nσ u and Nσ is in U → V by induction.

5

For the where rule. If we assume that we have xσ in [Γ(x)] for all x declared in Γ then we
prove by induction that xDσ is in [Γ(j)(x)] for all j 6 l and so M(Dσ) is in [U] and hence also
(MD)σ is in [U]. (Notice that Dσ is HN if σ is HN.)

8 Encoding of type theory

8.1 Denotational semantics

We describe first the encoding at the level of denotational semantics.
We suppose that the discrete domain Ide contains two special elements Π and Σ and that

the other elements are either simple c, i, j, . . . or encode a finite set of simple identifiers I, J, . . .
We write Π a f instead of (Π, (a, f)) and similarly Σ a f instead of (Σ, (a, f)).
A totality on V is a subset X ⊆ V such that ⊥/∈ X and > ∈ X. We write TP(V) the set of

all totality on V.
An interpretation of type theory is a pair (X, El) with X in TP(V) and El in X → TP(V)

such that El(>) is the singleton {>} (we have > in X since X is a totality) and we have I in
X and El(I) = {>} ∪ I.

The set of all interpretations I is ordered by the relation: (X, El) 6 (X ′, El′) iff X ⊆ X ′ and
El′ extends El. This forms a conditionally complete poset and it has a least element X0, El0
where X0 is the set of all elements I and >.

We define a monotone function Ψ : I → I. If (X1, El1) = Ψ(X, El) the intuition is that
the elements of X1 are productive trees where the nodes are products or sums, the branching
given by elements El(a) with a in X, and the leaves are of the form I. More formally, X1 is the
greatest subset of V such that b is in X1 iff

b = I or
b = Π a f and a ∈ X and f u in X1 for all u in El(a) or
b = Σ a f and a ∈ X and f u in X1 for all u in El(a).
We define then v ∈ El1(b) inductively by the clauses
> ∈ El1(b) and
i ∈ El1(I) if i is in I and
v ∈ El1(Π a f) if v u ∈ El1(f u) for all u in El(a) and
(u, v) ∈ El1(Σ a f) if u in El(a) and v ∈ El1(f u).
We have the empty type N0 = {} and the unit type N1 = {·} and the Boolean type

N2 = {0, 1}. These are in X0.
For instance we encode nat as the least fixed-point of the equation nat = Σ I f with

I = {0, S} and f 0 = N1 and f S = nat. We have nat in X1 where X1, El1 = Ψ(X0, El0) and
El1(nat) contains (0, ·), (S, (0, ·)), (S, (S, (0, ·))), . . .

Theorem 8.1 The least fixed-point (Typ, El) of the operator Ψ (which exists since I is condi-
tionally complete and has a least element) is closed under product and sum.

This interpretation Typ contains most of the usual data type we need for type theory. It
contains all finite types (obtained at level 0), all first-order types (obtained at level 1), the type
of ordinal numbers (obtained at level 2), . . . We can define a + b = Σ N2 f with f 0 = a and
f 1 = b and we have that Typ is closed under disjoint sum. It is also closed by list formation:
if a is in Typ then the type [a] of lists over a is also in Typ. We even that Typ contains the
least-fixed point of the equation a = Σ N1 f with f 0 = [a].

A question is whether Typ contains the universe defined by the recursive equations

U = Σ N2 f, T = (0 → nat, 1 → λ(a, f).(Πx : T a)T (f x))

6

with f 0 = N1 and f 1 = (Σa : V)T a → V .
More simply, one can ask if Typ contains the type recursively defined by

S = ΣN2 f

with f 0 = N1 and f 1 = (Σx : S)S.

8.2 Syntactical representation

We introduce the syntactic sugar (c1 A1 | . . . | ck Ak) for Σ I (c1 → A1, . . . , ck → Ak). We write
N1 for the enumeration type {·} and N0 for the enumeration type {}. We write also simply for
instance (c1 A1 | c2) if A2 is N1. We can then define nat = (0 | S nat). We write c M instead
of (c,M) and c instead of (c, ·). We have then 0 : nat and S M : nat if M : nat.

We represent in this way type theory. Notice that if [[A]] ∈ Typ and [[a]] ∈ El([[A]]) then we
have [[A]] 6=⊥ and [[a]] 6=⊥ and hence A and a are HN.

So we have decidable conversion as long as we form only expressions semantically justified
by Typ, El.

9 Representation of infinite objects

We have a type of streams
S A = Π I (hd → A, tl → S A)

where I = {hd, tl}. The semantics of S A is in Typ if the semantics of A is. However with the
definition of El (S A) as well-founded trees, then this semantics will be empty.

It makes sense however to consider the productive elements of this type, which contains for
instance the semantics of

as = (hd → a, tl → as)

if a is in El(A).

10 Implementation in Haskell

We use a nameless representation and using sigma types, we can replace mutual recursive
definition by one recursive definition. We can also merge the type of expression and the type
of environment. We obtain in this way the following implementation.

-- nameless miniTT, with recursive definitions

module Enum1 where

type Brc = [(String,Exp)]

type Name = String

data Exp =
Comp Exp Exp

| App Exp Exp
| Pi Exp Exp

7

| Sig Exp Exp
| Pair Exp Exp
| Lam Exp
| Fst Exp
| Snd Exp
| Var Int -- de Bruijn level or generic values
| Ref Int -- de Bruijn index
| Def Exp Exp -- unit substitutions
| Fun Brc
| Con Name
| Enum [Name]

deriving (Show,Eq)

eval :: Exp -> Exp -> Exp -- eval is also composition!

eval (Comp t1 t2) s = eval t1 (eval t2 s)
eval (Pair t1 t2) s = Pair (eval t1 s) (eval t2 s)
eval (App t1 t2) s = app (eval t1 s) (eval t2 s)
eval (Pi a b) s = Pi (eval a s) (eval b s)
eval (Sig a b) s = Sig (eval a s) (eval b s)
eval (Fst t) s = fstE (eval t s)
eval (Snd t) s = sndE (eval t s)
eval (Ref k) s = getE k s
eval e@(Con _) s = e
eval e@(Enum _) s = e
eval t s = Comp t s

app :: Exp -> Exp -> Exp
app (Comp (Lam b) s) u = eval b (Pair s u)
app (Comp (Fun ces) s) (Con c) = eval (get c ces) s
app (Comp (Fun ces) s) (Pair (Con c) u) = app (eval (get c ces) s) u
app f u = App f u

getE 0 s@(Comp (Def m _) a) = eval m s
getE 0 (Pair _ u) = u
getE (k+1) (Comp _ s) = getE k s
getE (k+1) (Pair s _) = getE k s

fstE (Pair u1 u2) = u1
fstE u = Fst u

sndE (Pair u1 u2) = u2
sndE u = Snd u

data G a = Success a | Fail Name

instance Monad G where
(Success x) >>= k = k x
Fail s >>= k = Fail s

8

return = Success
fail = Fail

eqG s1 s2 | s1 == s2 = return ()
eqG s1 s2 = Fail ("eqG " ++ show s1 ++ " =/= " ++ show s2)

check :: Int -> Exp -> [Exp] -> Exp -> Exp -> G ()
checkT :: Int -> Exp -> [Exp] -> Exp -> G ()
checkI :: Int -> Exp -> [Exp] -> Exp -> G Exp
checkD :: Int -> Exp -> [Exp] -> Exp -> G (Exp,[Exp])

checkD k rho gam d@(Def m a) =
do
checkT k rho gam a
check (k+1) (Pair rho (Var k)) (v:gam) v m
return (Comp d rho,v:gam)
where v = eval a rho

checkD k rho gam u = Fail ("checkD " ++ show u)

checkT k rho gam t = case t of
Con "U" -> return ()
Enum _ -> return ()
Pi a (Lam b) -> do

checkT k rho gam a
checkT (k+1) (Pair rho (Var k)) ((eval a rho):gam) b

Sig a (Lam b) -> do
checkT k rho gam a
checkT (k+1) (Pair rho (Var k)) ((eval a rho):gam) b

Pi (Enum _) (Fun es) -> sequence_ [checkT k rho gam e | (_,e) <- es]
Sig (Enum _) (Fun es) -> sequence_ [checkT k rho gam e | (_,e) <- es]
_ -> checkI k rho gam t >>= eqG (Con"U")

upd k rho = Pair rho (Var k)

check k rho gam a t = case (a,t) of
(_,Con c) -> extEnG c a
(Con"U",Pi a (Lam b)) -> do

check k rho gam (Con"U") a
check (k+1) (upd k rho) ((eval a rho):gam) (Con"U") b

(Con"U",Sig a (Lam b)) -> do
check k rho gam (Con"U") a
check (k+1) (upd k rho) ((eval a rho):gam) (Con"U") b

(Con"U",Pi (Enum _) (Fun es)) -> sequence_ [check k rho gam (Con"U") e | (_,e) <- es]
(Con"U",Sig (Enum _) (Fun es)) -> sequence_ [check k rho gam (Con"U") e | (_,e) <- es]
(Pi (Enum en) f,Fun es) -> sequence_ [check k rho gam (app f (Con i)) e | (i,e) <- es]
(Pi a f,Lam t) -> check (k+1) (upd k rho) (a:gam) (app f (Var k)) t
(Sig a f,Pair m1 m2) -> do

check k rho gam a m1
check k rho gam (app f (eval m1 rho)) m2

9

(Pi (Sig (Enum en) f) g,Fun es) ->
if map fst es == en

then sequence_ [check (k+1) (upd k rho) ((app f (Con i)):gam)
(app g (Pair (Con i) (Var k))) e

| (i,Lam e) <- es]
else fail ("case branches does not match the data type ")

(a,Fun es) -> Fail ("checkFun " ++ show a)
(_,Comp t d) -> do

(rho1,gam1) <- checkD k rho gam d
check k rho1 gam1 a t

_ -> do
a’ <- checkI k rho gam t
eqG (reif k a) (reif k a’)

checkI k rho gam e = case e of
Ref k -> return (gam !! k)
Fst t -> do

c <- checkI k rho gam t
(a,b) <- extSig c
return a

Snd t -> do
c <- checkI k rho gam t
(a,f) <- extSig c
return (app f (fstE (eval t rho)))

App n m -> do
c <- checkI k rho gam n
(a,f) <- extPi c
check k rho gam a m
return (app f (eval m rho))

Comp t d -> do
(rho1,gam1) <- checkD k rho gam d
checkI k rho1 gam1 t

Enum _ -> return (Con"U")
_ -> Fail ("checkI " ++ show e)

extPi (Pi a b) = return (a,b)
extPi t = Fail (show t ++ " is not a product")

extSig (Sig a b) = return (a,b)
extSig t = Fail (show t ++ " is not a sigma")

extEnG c (Enum cs) =
if elem c cs then return () else Fail ("extEnG " ++ c ++ " " ++ show cs)
extEnG c a = Fail (show a ++ " is not an enumeration type")

reif :: Int -> Exp -> Exp -- reify function
reif k (App e1 e2) = App (reif k e1) (reif k e2)
reif k (Pair e1 e2) = Pair (reif k e1) (reif k e2)
reif k (Pi e1 e2) = Pi (reif k e1) (reif k e2)

10

reif k (Sig e1 e2) = Sig (reif k e1) (reif k e2)
reif k (Fst e) = Fst (reif k e)
reif k (Snd e) = Snd (reif k e)
reif k f@(Comp (Lam _) _) = Lam (reif (k+1) (app f (Var k)))
reif k (Comp e r) = Comp e (reif k r)
reif k (Var l) = Ref (k-l-1)
reif k e@(Con _) = e
reif k e@(Enum _) = e

get s [] = error ("get " ++ show s) -- should never occur
get s ((s1,u):us) | s == s1 = u
get s ((s1,u):us) = get s us

getG s [] = Fail ("getG " ++ show s) -- should never occur
getG s ((s1,u):us) | s == s1 = return u
getG s ((s1,u):us) = getG s us

11

