
A Simple Programming Language

Type theory and functional programming

This talk will about the connections between type theory and functional
programming

Can we see type theory as a functional programming language?

Some basic questions still need to be clarified

1

A Simple Programming Language

Type theory as a functional programming language

The interest in having a programming language integrated to a proof system
is perfectly illustrated by the work of G. Gonthier (2004) on the complete formal
proof of the four color theorem

Gonthier clarifies/simplifies the C programs used in the proof of Robertson et
al. by rewriting them as functional programs (with proofs of correctness)

One can internalize decision procedures (represented as functional programs)
and Gonthier uses systematically the technique of reflection

2

A Simple Programming Language

Asp

Asp was designed by Bengt Nordström in January 1980 to “show the similarity
between type theory and other functional languages. Asp can be described as
a programming language with general recursion and no dependent types. The
treatment of types as objects is different from common functional languages.”

It appeared in the Programming Methodology Group Report 1
Description of a Simple Programming Language, April 1984

3

A Simple Programming Language

Type Theory

Suppose we have defined a function which to an arbitrary object x of type A
assigns a type B(x). Then the cartesian product

(Πx ∈ A)B(x)

is a type, namely the type of functions which take an arbitrary object x of type
A into an object of type B(x).

4

A Simple Programming Language

Type Theory

Functions may be introduced by explicit definition. That is, if we build up a
term from constants for already defined objects and a variable x that denotes an
arbitrary object of type A and if this term t denotes a term of type B(x), then
we may introduce a function f of type (Πx ∈ A)B(x) be means of the schema

f(x) = t

where explicit mention of parameters is suppressed.

5

A Simple Programming Language

Type Theory

We can introduce the type N , the type of natural numbers.

0 is an object of type N and, if x is an object of type N , so is its successor
S(x).

6

A Simple Programming Language

Type Theory

Given an object c of type C(0) and a function g of type

(Πx ∈ N)C(x)→ C(S(x))

we may introduce a function f of type (Πx ∈ N)C(x) by the recursion schema

f(0) = c f(S(x)) = g(x, f(x))

7

A Simple Programming Language

Type Theory

Thinking of C(x) as a proposition f is a proof of the universal proposition
(Πx ∈ N)C(x) which we get by applying the principle of mathematical induction

In the case C(x) does not depend explicitely on x we get the schema of
primitive recursion (at higher types), schema introduced by Hilbert and used later
by Gödel

8

A Simple Programming Language

Type Theory

We can introduce the type Ord, the type of ordinal numbers.

0 is an object of type Ord and, if x is an object of type Ord, so is its successor
S(x) and if u is a function of type N → Ord then its limit L(u) is an object of
type Ord

9

A Simple Programming Language

Type Theory

Given an object c of type C(0) and a function g of type

(Πx ∈ Ord)C(x)→ C(S(x))

and h a function of type

(Πu ∈ N → Ord)((Πx ∈ N)C(u(x))→ C(L(u))

we may introduce a function f of type (Πx ∈ Ord)C(x) by the recursion schema

f(0) = c f(S(x)) = g(x, f(x)) f(L(u)) = h(u, f ◦ u)

where (f ◦ u)(x) = f(u(x))

10

A Simple Programming Language

Type Theory

Thinking of C(x) as a proposition, f is a proof of the universal proposition
(Πx ∈ Ord)C(x) which we get by applying the principle of transfinite induction
over the second number class ordinals.

11

A Simple Programming Language

Type Theory

In the formal theory the abstract entities (natural numbers, ordinals, functions,
types, and so on) become represented by certain symbol configurations, called
terms, and the definitional schema, read from the left to the right, become
mechanical reduction rules for these symbol configurations.

Type theory effectuates the computerization of abstract intuitionistic
mathematics that above all Bishop has asked for

It provides a framework in which we can express conceptual mathematics in a
computational way.

How to implement type theory? How to do actual computations?

12

A Simple Programming Language

Asp: types as objects

Asp has labelled sum types

If T1, . . . , Tn are types then so is T = c1 T1 + · · ·+ cn Tn

If e is an object of type Ti then ci e is an object of type T

An object in canonical form of type T is of the form ci e where e is an object
of type Ti

13

A Simple Programming Language

Asp: types as objects

Asp has a type of (small) types U

We can explain the type N as a recursively defined object of type U

N : U = 0 () + S N

then S x is of type N if x is of type N

14

A Simple Programming Language

Terminating general recursion

Theorem 1 (1987) All iterating constructs in type theory can be reduced to
pattern matching and the general recursion operator

Pattern matching: if T = c1 T1 + · · ·+ cn Tn we can define an object of type
(Πx ∈ T)C(x) by the equations

f (c1 x) = e1 . . . f (cn x) = en

provided ei is of type C(ci x)

15

A Simple Programming Language

Terminating general recursion

For instance, the primitive recursive operator of Gödel system T can be defined
recursively using pattern matching

R 0 = a R (S n) = g n (R n)

where a and g are parameters of the definition

16

A Simple Programming Language

Variation: LML

Lazy ML Compiling Lazy Functional Languages, Part II (1987) L. Augustsson

Telescopes: vector of types

T = c1 ~T1 + · · ·+ cn ~Tn

f (c1 ~x1) = e1 . . . f (cn ~xn) = en

provided ei is of type C(ci ~xi) in the context ~xi : ~Ti

N = 0 + S N and 0 of type N and S x of type N if x of type N

17

A Simple Programming Language

Representation of primitive recursion

Given an object c of type C(0) and a function g of type

(Πx ∈ N)C(x)→ C(S(x))

we may introduce a function f of type (Πx ∈ N)C(x) by the recursion schema

f 0 = c f (S x) = g x (f x)

f is a function defined recursively by pattern matching

18

A Simple Programming Language

Representation of type theory

In order to represent all iterating constructs of type theory it is enough to
have a programming language with

a type of (small) types U

labelled sum

recursive definitions (of types and functions)

19

A Simple Programming Language

Type theory as a functional programming language

The language Asp points out how the representation of type theory as a
functional programming language should look like

It has a simple description (one page), a simple interpreter (in itself), a simple
operational semantics (evaluation rules) and a simple denotation semantics

It does not have dependent types, and does not explain how to compare types

20

A Simple Programming Language

A Simple Progamming Language

Programs

M,A ::= x | M M | λx.M | M D | c ~M | B | L

Branches, Labelled Sums and (recursive) Definitions

B ::= c1 ~x1 → N1, . . . , cl ~xl → Nl L ::= c1 T1, . . . , cl Tl

D ::= [~x : T = ~M] T ::= () | (x : A, T)

21

A Simple Programming Language

Environments and Values

Environments and Values

ρ, σ ::= () | ρ, x = u | Dρ u ::= Mρ | u u | x

Operational semantics (cf. eval in LISP)

(c ~M)ρ→ c (~Mρ)

(M1 M2)ρ→M1ρ (M2ρ) (M D)ρ→M(Dρ)
(λx.N)ρ u→ N(ρ, x = u) Bρ (ci ~u)→ Ni(ρ, ~xi = ~u)

where B = c1 ~x1 → N1, . . . , cl ~xl → Nl

22

A Simple Programming Language

Evaluation rules

Access rules
x(σ, x = u)→ u x(σ, y = u)→ xσ

xρ→ x(σ, ~x = ~Mρ)

where ρ = [~x : T = ~M]σ

23

A Simple Programming Language

Examples

N = 0 + S N add = λx.(0→ x, S y → S (add x y))

add x 0 = x add x (S y) = S (add x y)

Ord = 0 + S Ord+ L (N → Ord)

add = λx.(0→ x, S y → S (add x y), L u→ L (λn.add x (u n)))

add x 0 = x add x (S y) = S (add x y) add x (L u) = L (λn.add x (u n))

24

A Simple Programming Language

Examples

N0 = () N1 = 0 N2 = 0 + 1

T : N2 → U = (0→ N0, 1→ N1)

which corresponds to the equations

T 0 = N0 T 1 = N1

25

A Simple Programming Language

Examples

U for the type of (small) types

Π A (λx.B) for (Πx ∈ A)B

A→ B if x not free in B

N : U = 0 + S N

26

A Simple Programming Language

Examples

eqN : N → N → N2 = (0→ (0→ 1, S y → 0), S x→ (0→ 0, S y → eqN x y))

eqN 0 0 = 1 eqN 0 (S y) = 0 eqN (S x) 0 = 0 eqN (S x) (S y) = eqN x y

(<) : N → N → N2 = (0→ (0→ 0, S y → 1), S x→ (0→ 0, S y → x < y))

0 < 0 = 0 0 < (S y) = 1 (S x) < 0 = 0 (S x) < (S y) = x < y

27

A Simple Programming Language

Examples

Lookup function on vectors

vec : (N → U)→ N → U

vec B 0 = N1 vec B (S x) = (vec B x)× (B x)

lookup : (ΠB ∈ N → U)(Πn ∈ N)(Πx ∈ N) x < n→ vec B n→ B x

28

A Simple Programming Language

Inductive-recursive definitions

Inductive-recursive definitions can be represented by the mutual recursive
definition of a labelled sum and a function

V : U = N̂ + Π̂ (x : V, T x→ V)

T : V → U = (N̂ → N, Π̂ x f → (Πy ∈ T x)T (f y))

This corresponds to the equations

T N̂ = N

T (Π̂ x f) = (Πy ∈ T x)T (f y)

29

A Simple Programming Language

Type-checking

Γ ` T Γ, ~x : T ` ~M : T
Γ ` D

where D is ~x : T = ~M

30

A Simple Programming Language

Normal forms

v ::= k | c ~v | (λx.M)σ | Bσ | Lσ
σ ::= () | (σ, x = v) | Dσ
k ::= x | Bσ k | k v

31

A Simple Programming Language

Normal forms

We use closures to represent infinite objects (cf. streams in scheme, Friedman
and Wise)

(λx.M)σ Bσ Lσ

have both a static part and a dynamic part with actual values to parameters
v1, . . . , vl

(λx.M)σ can be written f(~v) with defining equation f(~v) u = M(σ, x = u)

Bσ can be written f(~v) with defining equations f(~v) (ci ~u) = Ni(σ, ~xi = ~u)

Lσ can be written d(~v)

32

A Simple Programming Language

Normal forms

v ::= k | c ~v | f(~v) | d(~v)

k ::= x | f(~v) k | k v

For Gödel system T

f(v1, v2) 0 = v1 f(v1, v2) (S n) = v2 n (f(v1, v2) n)

33

A Simple Programming Language

Representation of mathematical reasoning

M,A ::= x | M M | λx.M | M D | c ~M | B | L

recursive definitions for reasoning by induction

reasoning by case analysis

auxiliary lemma and definitions

34

A Simple Programming Language

Example

filter : {A : Set} -> (A -> Bool) -> List A -> List A
filter p [] = []
filter p (x :: xs) with p x
... | true = x : filter p xs
... | false = filter p xs

subset : {A : Set} -> (p : A -> Bool) ->
(xs : List A) -> subseteq (filter p xs) xs

subset p [] = stop
subset p (x :: xs) with p x
... | true = keep (subset p xs)
... | false = drop (subset p xs)

35

A Simple Programming Language

Total functional programming

“The driving force of functional programming is to make programming more
closely related to mathematics. A program in a functional language . . . consists
of equations which are both computation rules and a basis for simple algebraic
reasoning. The existing model of functional programming, although elegant and
powerful, is compromised to a greater extent than is commonly recognized by the
presence of partial functions. We consider a simple discipline of total functional
programming designed to exclude the possibility of non termination.”

D.A.Turner, 2004, J.U.C.S

36

A Simple Programming Language

Denotational semantics

Basic types are represented by labelled sums

Can be infinite objects denotationally

No fixed sets of primitive types

For a strict semantics, if the semantics of a term is 6=⊥ then this term is
strongly normalizable (U. Berger, A. Spiwack, T.C.)

37

A Simple Programming Language

Total functional programming

Type theory can then be represented as the total subset of this language

Convertibility is decidable on normalizable terms, hence on any total fragment

Programs and proofs are terminating functional programs

This provides a way to actually program the type theoretic computations (cf.
work of B. Grégoire and X. Leroy)

38

