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Constructive Homological Algebra

Application of proof theory

Elements of Mathematical Logic, by Kreisel and Krivine

Herbrand’s Theorem: If one proves ∃x.A(x) and A is quantifier free, then one
can find terms t1, . . . , tn such that A(t1)∨· · ·∨A(tn) is a propositional tautology

For ∃x.∀y.A(x, y) we introduce a new function symbol f and we can find
terms t1, . . . , tn such that A(t1, f(t1)) ∨ · · · ∨ A(tn, f(tn)) is a propositional
tautology
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Constructive Homological Algebra

Proof theory

A. Joyal, Théorème de Chevalley-Tarski et remarque sur l’algèbre constructive,
Cahiers de Topologie et Géométrie Différentielle 16 (1975) 256-258

G. Wraith, Intuitionistic algebra, some recent development in topos theory,
Proceeding of ICM, 1978

M. Coste, H. Lombardi and M.F. Roy, Dynamical method in algebra, Ann.
Pure Appl. Logic 111 (2001), 203-256

We say that a formula ϕ is positive iff it does not contain ∀, →

ϕ ::= ⊥ | t = u | P (t1, . . . , tn) | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x.ϕ

2



Constructive Homological Algebra

Proof theory

A coherent formula is a formula of the form

∀x1 . . . xn. ϕ→ ψ

where ϕ and ψ are positive formulae

It is clear that any such formula is equivalent to a conjunction of formulae of
the form

ϕ(~x)→ ∃~y1.ϕ1(~x, ~y1) ∨ · · · ∨ ∃ ~yn.ϕn(~x, ~yn)

where ϕ, ϕ1, . . . , ϕn are conjunctions of atomic formulae
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Constructive Homological Algebra

Proof theory

A coherent theory T is a set of coherent formulae

Proposition: if a coherent formula is proved with classical logic from a
coherent theory, it can also be proved in intuitionistic logic.

This follows directly from the soundness theorem: if ` ϕ then 
 ϕ
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Constructive Homological Algebra

Coherent Theories

For the theory of ACF.

If ` t1 = 0 ∧ · · · ∧ tk = 0→ t = 0 in ACF

We have, by soundness of the forcing relation

Z[x1, . . . , xn]/〈t1, . . . , tk〉 
 t = 0

and (Lemma from the previous lecture) this means that t is in the radical of the
ideal generated by t1, . . . , tk (Nullstellensatz). This gives an algebraic identity.

This holds also for the theory of fields.

For the theory of rings we have t in 〈t1, . . . , tk〉
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Constructive Homological Algebra

Coherent Theories

If we prove t1 = 0 ∧ tk = 0→ ∃x.t(x) = 0 in the theory of ring we have

Z[x1, . . . , xn]/〈t1, . . . , tk〉 
 ∃x.t(x) = 0

and since we have no branching this means

Z[x1, . . . , xn]/〈t1, . . . , tk〉 
 t(p) = 0

for for polynomial p in Z[x1, . . . , xn]
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Constructive Homological Algebra

Proof theory

a0x0 + a1x1 = 1 ∧ b0y0 + b1y1 = 1 →

∃z0 z1 z2. a0b0z0 + (a0b1 + a1b0)z1 + a1b1z2 = 1

is valid in the theory of rings by lecture 3

It follows that we should be able to find p0, p1, p2 polynomials in
a0, a1, x0, x1, b0, b1, y0, y1 such that

a0x0 + a1x1 = 1 ∧ b0y0 + b1y1 = 1 →

a0b0p0 + (a0b1 + a1b0)p1 + a1b1p2 = 1
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Constructive Homological Algebra

Proof theory

A priori more subtle than what we get from Herbrand’s Theorem (which would
give a disjunction)

In general, the truth of an existential statement does not imply that we can
compute a witness

∃x.∀y. P (x)→ P (y)

In mathematics ∃N.∀m > N. f(m) = 0, existence of bounds
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Constructive Homological Algebra

Local rings

The basic covering are R→ R[a−1] and R→ R[(1− a)−1]

The general covering are R→ R[a−1
1 ], . . . , R→ R[a−1

n ] with 1 = 〈a1, . . . , an〉

This is equivalent to 1 = D(a1, . . . , an) in the Zariski spectrum
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Constructive Homological Algebra

Local rings

Theorem: A (finitely generated) projective module over a local ring R is free

Concretely this means that if we have an idempotent matrix M2 = M over R
then this matrix is similar to a canonical projection matrix

By applying the soundness theorem, we get the following result: for any ring
R and any n×n matrix M, M2 = M there exists a covering 1 = D(a1, . . . , ak),
and matrix P1, . . . , Pk such that Pi is invertible in R[a−1

i ] and P−1
i MPi is a

canonical projection matrix
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Constructive Homological Algebra

Local rings

Let ϕ be ¬(x = 0)→ inv(x)

We have 
 ϕ but ` ϕ does not hold

If R 
 ¬(a = 0) then we have, for all f : R→ S if f(a) = 0 then 1 = 0 in S.
In particular 1 = 0 in R/〈a〉 and so a is invertible

This formula is not valid in a local ring which is not a field

All this applies for any coherent theory extending the theory of rings
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Constructive Homological Algebra

Example: theory of ordered fields

We have the relations 6, <and the axioms

0 6 x2

0 < x ∧ 0 6 y → 0 < x+ y

x2 = 0→ x = 0

x = 0 ∨ x2 > 0

x > 0→ ∃z.1 = xz

From these axioms we can prove x3 − y3 = 0→ x− y = 0
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Homological Algebra

Linear algebra over a ring

For a finitely generated ideal I we have a map Rm
A−−→ I −−→ 0 and we can

build a sequence, if R is coherent

. . . −−→ Rm3
A3−−→ Rm2

A2−−→ Rm1
A1−−→ Rm

A−−→ I −−→ 0
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Constructive Homological Algebra

Free Resolution

In particular if we have a finitely generated ideal I we have a map Rm
A−−→

I −−→ 0 and we can build a sequence

. . . −−→ Rm3
A3−−→ Rm2

A2−−→ Rm1
A1−−→ Rm

A−−→ I −−→ 0

This is called a free resolution of the ideal

This measures the “complexity” of the ideal: relations between generators,
then relations between relations, and so on.
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Constructive Homological Algebra

Free Resolution

If we have mk = 0 for k > N we say that I has a finite free resolution

0 −−→ RmN
AN−−→ . . .

A2−−→ Rm1
A1−−→ Rm

A−−→ I −−→ 0
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Constructive Homological Algebra

Regular rings

A ring is regular iff any finitely generated ideal has a finite free resolution

For instance k[X1, . . . , Xn] is regular (Hilbert’s syzygies Theorem)

This notion was introduced by Serre to capture the properties of a local ring
at a smooth (non singular) point of an algebraic variety (to show that this notion
is stable under localisation)

Theorem: If R is Noetherian and regular, then R is an UFD. If R is regular
then R is a GCD domain
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Constructive Homological Algebra

Noetherianity

Most presentation of homological algebra assumes the ring R to be Noetherian

A remarquable exception is the book by Northcott Finite Free Resolution

In this context most results are first-order schema, and we can hope to have
direct elementary proofs.
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Regular element and ideal

We say that a is regular iff ax = 0→ x = 0

We say that a1, . . . , an is regular iff a1x = 0 ∧ · · · ∧ anx = 0→ x = 0

We say that I is regular iff xI = 0→ x = 0

Lemma: If a1, . . . , an, a and a1, . . . , an, b are regular then so is a1, . . . , an, ab

Simple logical form

Corollary: If a1, . . . , an is regular then so is ak1, . . . , a
k
n
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Constructive Homological Algebra

Vasconcellos Theorem

If we have

0 −−→ Rmk
Ak−−→ . . .

A2−−→ Rm1
A1−−→ Rm

A−−→ I −−→ 0

We define c(I) = m−m1 +m2 − . . . to be the Euler characteristic of I

One can show that it depends only on I and not on the choice of the resolution

Theorem: If c(I) = 0 then I = 0. If c(I) = 1 then I is regular. In all the
other cases then 1 = 0 in R
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Constructive Homological Algebra

Vasconcellos Theorem

The proof of Vasconcellos Theorem in Northcott’s book relies on the existence
of minimal prime ideals, which is proved using Zorn’s Lemma

If we fix the size of the resolution, for instance

0→ R2 A−−→ R3 → 〈a0, a1, a2〉 → 0

the statement becomes first-order

Logical form of the statement? It is a coherent implication, hence we know a
priori that it should have a simple logical proof
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Vasconcellos Theorem

We explain the elementary proof in this case

This relies on the following glueing principle

Lemma: If u1, . . . , un is regular and b = 0 in R[1/u1], . . . , R[1/un] then
b = 0 in R

The proof is direct since uk1, . . . , u
k
n is regular

Local-global principle, compare with 1 = 〈u1, . . . , un〉
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Constructive Homological Algebra

Vasconcellos Theorem

We write A =

 u0 v0
u1 v1
u2 v2


Since A represents an injective map both u0, u1, u2 and v0, v1, v2 are regular

22



Constructive Homological Algebra

Vasconcellos Theorem

I prove that I = 〈a0, a1, a2〉 is regular in R[1/u0], R[1/u1], R[1/u2]

In R[1/u0], we can by change of basis, consider the sequence

0→ R2 A′−−→ R3 → I → 0

with A′ =

 1 0
0 v1 − u1v0/u0

0 v2 − u2v0/u0


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Constructive Homological Algebra

Vasconcellos Theorem

We can then simplify the sequence to

0→ R −−→ R2 → I → 0

Reasoning in a similar way, we reduce the problem to

0→ R→ I → 0

and it is clear that I is regular in this case
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Regular Ring

Assume that any finitely generated ideal has a finite free resolution

In particular 〈a〉 has a finite free resolution

Hence we have a = 0 or a is regular

Classically, this means that R is an integral domain
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Injective maps

The glueing property for regular elements has replaced the use of minimal
prime ideals

The same method gives a proof of the following result.

Lemma: If A is a n × m matrix with n 6 m and ∆n(A) is regular then

Rn
A−−→ Rm is injective
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Injective maps

The converse holds

Lemma: If A is a n ×m matrix with n 6 m and Rn
A−−→ Rm is injective

then and ∆n(A) is regular

The same method proves the converse, by induction on n and considering the
first column which is regular
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Regular Element Theorem

The following result holds only for Noetherian rings

Theorem: If a finitely generated ideal is regular then it contains a regular
element

It is one reason why most treatment considers only Noetherian rings

Northcott presents a beautiful way to avoid this Noetherianity condition (due
to Hochster).
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Regular Element Theorem

Theorem: (McCoy) If a0, . . . , an is regular in R then a0 + a1X + · · ·+ anX
n

is regular in R[X]

Thus, in general, we have a regular element but in R[X]

The solution exists in an enlarged universe

This result can be used instead of the Regular Element Theorem
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McCoy’s Theorem

We write P = a0+ · · ·+anXn and we show by induction on m that if PQ = 0
with Q = b0 + b1X + · · ·+ bmX

m, then Q = 0

We have anbm = 0 and P (anQ) = 0. Hence by induction, anQ = 0

Similarly, we get an−1Q = · · · = a0Q = 0 and since a0, . . . , an is regular we
have Q = 0
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Constructive Homological Algebra

McCoy’s Theorem

The same argument shows that

Theorem: (McCoy) If a0, . . . , an is regular in R then a0X0+a1X1+· · ·+anXn

is regular in R[X0, . . . , Xn]

We have replaced the ideal 〈a0, . . . , an〉 by the polynomial a0X0 + · · ·+anXn

H. Edwards Divisor Theory, Kronecker works with such polynomial (instead of
working with ideals)
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Hilbert-Burch Theorem

Theorem: If we have an exact sequence

0→ Rn
A−−→ Rn+1 → 〈a0, . . . , an〉 → 0

then the elements a0, . . . , an have a GCD, which is regular

Here again, for a fixed size, this is a first-order statement

Logical form of the statement?
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Hilbert-Burch Theorem

We prove it for n = 2 with A =

 u0 v0
u1 v1
u2 v2


Question: how do we compute the gcd from the given data?
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Hilbert-Burch Theorem

Write ∆i = ujvk − ukvj we know that ∆0,∆1,∆2 is regular. Hence the
element w = ∆0X0 + ∆1X1 + ∆2X2 is regular by McCoy’s Theorem

We change R to R[X0, X1, X2] we still have an exact sequence

0→ R[X0, X1, X2]2 A−−→ R[X0, X1, X2]3
(a0 a1 a2)−−→ IR[X0, X1, X2]→ 0

It follows from this that 0 → R[X0, X1, X2]2 A−−→ R[X0, X1, X2]3 is still
exact modulo w, using the fact that w is regular
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Regular Element

Lemma: If 0→ E
ϕ−−→ F

ψ−−→ G is exact and a is regular for G then ϕ is
still mono modulo a

a regular for G means az = 0 implies z = 0 for z in G

If we have ϕ(x) = ay then we have aψ(y) = 0 and hence ψ(y) = 0, since
a is regular for G. Hence there exists x1 such that y = ϕ(x1) and we have
ϕ(x− ax1) = 0 and hence x = 0 modulo a
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Hilbert-Burch Theorem

Hence ∆0,∆1,∆2 is still regular modulo w

Since we have ∆iaj = ∆jai it follows that

∆j(a0X0 + a1X1 + a2X2) = ajw = 0

modulo w. Hence a0X0 + a1X1 + a2X2 = 0 modulo w

Hence we have one element g such that ai = g∆i

By Vasconcellos Theorem, a0, a1, a2 is regular and so g is regular
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Hilbert-Burch Theorem

I claim that g is the GCD of a0, a1, a2

If we have ai = tbi then t is regular since a0, a1, a2 is regular

We have t(bi∆j − bj∆i) = 0 and hence bi∆j = bj∆i

Like before, we deduce that there exists s such that bi = s∆i

We then have ∆i(ts− g) = 0 and so g = ts
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Some variation on McCoy’s Theorem

R arbitary ring

A = a0 + a1X + · · ·+ anX
n c(A) = 〈a0, . . . , an〉

B = b0 + b1X + · · ·+ bmX
m

C = AB = c0 + c1X + · · ·+ clX
l
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Some variation on McCoy’s Theorem

Gauss-Joyal D(A) ∧D(B) = D(C) or
√
c(A)

√
c(B) =

√
c(C)

Artin ∃p c(A)p+1c(B) = c(A)pc(C)

McCoy Ann(c(A)) = 0, AB = 0 → B = 0

Kronecker c0, . . . , cl are integral over a0b0, . . . , anbm

Dedekind-Mertens c(A)m+1c(B) = c(A)mc(C)
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