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The Zariski Spectrum of a ring

Use of prime ideals

Let R be a ring. We say that a0, . . . , an is unimodular iff 〈a0, . . . , an〉 = 1

We say that ΣaiX
i is primitive iff a0, . . . , an is unimodular

Theorem: The product of two primitive polynomials is primitive

Lemma: A sequence a0, . . . , an is unimodular iff it is not zero modulo any
prime ideal

Lemma: The product of two non zero polynomials modulo a prime ideal p is
not zero modulo p
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Product of primitive polynomials

A = a0 + a1X B = b0 + b1X C = c0 + c1X + x2X
2

c0 = a0b0 c1 = a0b1 + a1b0 c2 = a1b1

By completeness theorem, in the theory of rings (equational theory) we can
show the implication

a0x0 + a1x1 = 1 ∧ b0y0 + b1y1 = 1 →

∃z0 z1 z2. a0b0z0 + (a0b1 + a1b0)z1 + a1b1z2 = 1
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Use of prime ideals

We analyze the proof

Let p be a prime ideal of R, we are interested in the property Dp(a) meaning
a is not in the ideal p

If A = a0 + a1X + · · · + anXn is a polynomial in R[X] we write Dp(A) for
Dp(a0) ∨ · · · ∨Dp(an)

A is primitive iff Dp(A) holds for all p

We want to show Dp(A) ∧Dp(B)→ Dp(AB)
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Use of prime ideals

The property Dp(x) satisfies

(Dp(a)∧Dp(b))↔ Dp(ab) Dp(a+b)→ Dp(a)∨Dp(b) ¬Dp(0) Dp(1)

A = a0 + a1X + · · ·+ anXn

B = b0 + b1X + · · ·+ bmXm

C = AB = c0 + c1X + · · ·+ clX
l

4



The Zariski Spectrum of a ring

Use of prime ideals

We want to show Dp(A) ∧Dp(B)→ Dp(C)

We show Dp(ai) ∧Dp(bj)→
∨

k6i+j Dp(ck) by induction on i + j
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Use of prime ideals

For instance A = a0 + a1X and B = b0 + b1X + b2X
2

c0 = a0b0 c1 = a0b1 + a1b0

c2 = a0b2 + a1b1 c3 = a1b2

In general

ai0bj0 = ck0 −
∑

i<i0 i+j=k0

aibj −
∑

j<j0 i+j=k0

aibj
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Use of prime ideals

If A and B are primitive we have Dp(A) and Dp(B) for all p and so we have
Dp(AB) for all p

Hence AB is primitive
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Prime filters

The property Dp(x) satisfies

¬Dp(0) Dp(1) (Dp(a)∧Dp(b))↔ Dp(ab) Dp(a+b)→ Dp(a)∨Dp(b)

A subset of R having these properties (complement of a prime ideal) is called
a prime filter
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Use of prime ideals

It can be shown that, even if the ring is given effectively, it is not possible in
general to define effectively a prime ideal on this ring

Lawvere (ICM 1970) conjectured the existence of a prime filter for any non
trivial ring in an arbitrary topos. Joyal built topos where a ring does not have
any prime filter

This indicates that we cannot follow naively the previous proof in an effective
context or in an arbitrary topos
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Use of prime ideals

In the previous argument, we use a prime filter in a generic way

We are going to use a method similar the one of forcing in set theory, to
“force” the existence of a generic prime ideal. This method is also due to Joyal
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Zariski spectrum

The set of all prime ideals of a ring R has a natural topology with basic open

D(a) = {p | a /∈ p}

We clearly have D(a) ∩D(b) = D(ab) D(0) = ∅

The space of all prime ideals with this topology is called the Zariski spectrum
of R

This is a compact topology, in general non Hausdorff
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Zariski spectrum

Though we cannot describe the points of this space effectively in general, we
can describe the topology of the space effectively

The compact open of the spectrum are of the form

D(a1, . . . , an) = D(a1) ∪ · · · ∪D(an)

The compact open form a distributive lattice

We give a direct effective description of this lattice
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Zariski lattice

We consider now D(a) as pure symbolic expression for each a in R and we
consider the lattice generated by these symbols and the relations

D(1) = 1 D(0) = 0 D(ab) = D(a) ∧D(b) D(a + b) 6 D(a) ∨D(b)

This lattice is called the Zariski lattice of the ring R. This is a purely algebraic
notion.
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Zariski lattice

We write D(a1, . . . , an) = D(a1) ∨ · · · ∨D(an) so that the last relation can
be written D(a + b) 6 D(a, b)

We have D(a2) = D(a3) = · · · = D(a)

Since we have D(a)∧D(b) = D(ab) all elements of the lattice are of the form
D(a1, . . . , an)

In general we don’t have D(a, b) = D(a + b) only D(a + b) 6 D(a, b)

We have D(a, b) = D(a+b) if D(ab) = 0 and in general D(a, b) = D(a+b, ab)

Also D(a, b, c) = D(a + b + c, ab + bc + ca, abc)

14



The Zariski Spectrum of a ring

Gauss-Joyal

Theorem: If (ΣaiX
i)(ΣbjX

j) = ΣckX
k then we have

D(a0, . . . , an) ∧D(b0, . . . , bm) = D(c0, . . . , cl)

It is clear that we have D(ck) 6 D(a0, . . . , an) ∧D(b0, . . . , bm) for all k and
we have to show, for all i0, j0

D(ai0bj0) 6 D(c0, . . . , ck0)

where k0 = i0 + j0
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Gauss-Joyal

We can write

ai0bj0 = ck0 −
∑

i<i0 i+j=k0

aibj −
∑

j<j0 i+j=k0

aibj

and so
D(ai0bj0) 6 D(ck0) ∨

∨
i<i0

D(ai) ∨
∨

j<j0

D(bj)
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Logical interpretation

“Lattice-valued” model: the predicate a 7−→ D(a) is a predicate on the ring
R with values in the Zariski lattice

This predicate defines a prime filter on the ring

This is a generic prime filter. This prime filter exists, but in a forcing
extension/sheaf model over the Zariski spectrum
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Zariski lattice

All this can be derived from the relations, but we did not use that the lattice
is generated by these relations

We have shown that the product of two non zero polynomials is non zero
modulo a prime ideal

We have to show that if D(a1, . . . , an) = 1 holds then a0, . . . , an is unimodular
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Zariski lattice

Theorem: We have D(a) 6 D(b1, . . . , bm) iff a is in the radical of the
ideal generated by b1, . . . , bm. In particular D(a1, . . . , an) = 1 iff a1, . . . , an is
unimodular

If I is an ideal the radical
√

I of I is the set of elements a that have a power
in I i.e. {a ∈ R | (∃N) aN ∈ I}

The formal Nullstellensatz states precisely that this lattice will coincide with
the lattice of compact open subsets of the Zariski spectrum
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Zariski lattice

For proving the Theorem, we give a realization of the Zariski lattice, by
interpreting D(a1, . . . , an) as the radical of the ideal 〈a1, . . . , an〉

Clearly if aN = b1v1 + · · ·+ bmvm then we have D(a) 6 D(b1, . . . , bm)

The theorem can be seen as a kind of normal form for proofs: any proof of
D(a) 6 D(b1, . . . , bm) is given by an algebraic equality aN = b1v1 + · · ·+ bmvm
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Zariski lattice

In general the lattice of ideals of R is not distributive

〈X + Y 〉 ∩ 〈X, Y 〉 6= (〈X + Y 〉 ∩ 〈X〉) + (〈X + Y 〉 ∩ 〈Y 〉)

However the lattice of radical ideals is distributive√
〈a1, . . . , an〉 ∧

√
〈b1, . . . , bm〉 =

√
〈a1b1, . . . , anbm〉√

〈a1, . . . , an〉 ∨
√
〈b1, . . . , bm〉 =

√
〈a1, . . . , an, b1, . . . , bm〉

If uN = Σaixi and uM = Σbjyj then uN+M = Σaibjxiyj
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Application 1: Primitive polynomials

In particular, if both ΣaiX
i and ΣbjX

j are primitive we have

D(a0, . . . , an) = D(b0, . . . , bm) = 1

and so, by Gauss-Joyal
D(c0, . . . , cl) = 1

We have an elementary product of two primitive polynomials is primitive,
which corresponds to the non effective argument
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Logical interpretation

There is always a generic prime filter of this formal space, in a sheaf model
(introduction), and we can then eliminate the use of this prime filter

This is a possible interpretation of Hilbert’s method of introduction and
elimination of ideal elements

23



The Zariski Spectrum of a ring

Gauss-Joyal

We have only used the relations, and not the fact that the lattice is generated
by these relations, so the result applies to R or to k[[X]] with D(a) being a apart
from 0
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Gauss-Joyal

In general we do not have

〈a0, . . . , an〉〈b0, . . . , bm〉 = 〈c0, . . . , cl〉

This holds over a Prüfer domain
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Constructible topology

The Boolean algebra B(R) generated by the Zariski lattice corresponds to the
constructible topology B(R)

We add new generators V (a) with new axioms

V (a) ∧D(a) = 0 V (a) ∨D(a) = 1

Clearly this associates a Boolean algebra to any ring in a functorial way; any
map R→ S defines a map B(R)→ B(S)

Classically, we have two topology on the same set of points, which is the set
of all prime ideals
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Chevalley Theorem and quantifier elimination

The map B(R) → B(R[X]) has an adjoint which defines an existential
quantifier

The projection of V (aX−1) is D(a) (read V (r) as r = 0 and D(r) as r 6= 0)

The projection of V (aX + b) is D(a) ∨ V (b)

This corresponds to both Tarski’s quantifier elimination and Chevalley’s
projection theorem (the projection of a constructible set is constructible)
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Chevalley Theorem and quantifier elimination

Chevalley Theorem holds for any finitely presentated extensions: the following
map has an adjoint

B(R)→ B(R[X1, . . . , Xn]/〈p1, . . . , pm〉)

By composition it is enough to show it for R→ R[X] and R→ R/〈p〉

Thus Chevalley Theorem can be seen as a refinement of Tarski quantifier
elimination

B(Z[X1, . . . , Xn]) is Sn(T ) where T is the theory of algebraically closed fields
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Zariski spectrum

Any element of the Zariski lattice is of the form

D(a1, . . . , an) = D(a1) ∨ · · · ∨D(an)

We have seen that D(a, b) = D(a + b) if D(ab) = 0

In general we cannot write D(a1, . . . , an) as D(a) for one element a

We can ask: what is the least number m such that any element of Zar(R)
can be written on the form D(a1, . . . , am). An answer is given by the following
version of Kronecker’s Theorem: this holds if Kdim R < m
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Krull dimension

The Krull dimension of a ring is defined to be the maximal length of proper
chain of prime ideals.

Surprisingly it is possible to define Kdim R<n directly on the Zariski spectrum

We define the boundary of an element a of a lattice: it is the lattice quotiented
by the ideal a∨¬a, which is the ideal containing all u∨v with u 6 a and v∧a = 0

Then Kdim L < 0 iff the lattice is trivial, i.e. 1 = 0 in L, and Kdim L<n + 1
iff all boundary lattices have a dimension < n

To be 0-dimensional = to be a Boolean lattice
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Original statement of Kronecker’s theorem

Kronecker (1882) proves a theorem which is now stated in the following way

An algebraic variety in Cn is the intersection of n + 1 hypersurfaces

In particular if R is a polynomial ring k[X1, . . . , Xl] then this says that given
finitely many polynomials we can find l + 1 polynomials that have the same set
of zeros (in an algebraic closure of k)
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Forster’s Theorem

This concrete proof/algorithm, is extracted from R. Heitmann “Generating
non-Noetherian modules efficiently” Michigan Math. J. 31 (1984), 167-180

If M is a matrix over R we let ∆n(M) be the ideal generated by all the n×n
minors of M

Theorem: Let M be a matrix over a commutative ring R. If ∆n(M) = 1
and Kdim R < n then there exists an unimodular combination of the column
vectors of M

This is a non Noetherian version of Forster’s 1964 Theorem
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Application 2: GCD domain

Theorem: If R is a GCD domain then so is R[X]

The Noetherian version of this theorem is that R[X] is UFD if R is UFD

The main Lemma is that if the GCD of the coefficients of ΣaiX
i is 1 and the

GCD of the coefficients of ΣbjX
j is 1 then so is the GCD of the coefficients of

the product ΣckX
K

This follows from Gauss-Joyal since we have N such that if u divides all ck

then it divides all aN
i bN

j

Lemma: In a GCD domain if an element is relatively prime to two elements
then it is relatively prime to their product
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