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Constructive Algebra

This course

An introduction to constructive algebra, as developped by F. Richman, H.
Lombardi, P. Schuster, I. Yengui, . . . but also Kronecker, H. Edwards

The first lecture will consist of some historical and logical remarks, and a
presentation of some examples that will be analyzed in following lectures
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Constructive Algebra

This course

Lecture 2: coherent rings

Lecture 3: prime ideals and Zariski spectrum

Lecture 4: algebraically closed fields

Lecture 5: constructive homological algebra
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Constructive Algebra

Constructive algebra, some history

The word algebra comes from the title of a book Hibab al-jabr wal-muqubala
(around 825)

The word algorithm comes from the name of the author of this book Al-
Khwarizmi

Until 1800 most works in algebra are presenting clever computations

Example: elimination theory (Bezout, Poisson), Lagrange
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Constructive Algebra

Some history

The situation changes with Gauss, Abel, Galois

Concept of irreducible polynomial: Gauss (cyclotomic polynomial),
fundamental notion for Abel and Galois

Construction of the splitting field of a polynomial (very interesting from the
constructive/logical point of view. The importance of this problem has been
stressed by H. Edwards)

Rational functions of given quantities (which will become domain of rationality
for Kronecker, and later our notion of field, introduced by Dedekind)
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Constructive Algebra

Some history

The proofs still have a direct algorithmic interpretation, though Galois insists
on the ideal character of these computations

“If now, you give me an equation that you have in any way you like and you
want to know whether it is or not solvable by radicals, I have nothing to do but to
indicate to you the way to reply to the question, but whithout to obliging either
myself or anyone else to do so. In other word, the calculations are impracticable.”
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Constructive Algebra

Some history

The connection between reasoning and algorithms became then less and less
clear

Typical example: different versions that Dedekind will give to his theory of
ideals

H. Edwards The genesis of ideal theory, Arch. Hist. Ex. Sci. 23 (1980)

Other typical example: all ideals of K[X1, . . . , Xn] are of finite type (Hilbert’s
basis theorem)

Noetherian: all ideals are of finite type
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Constructive Algebra

Dedekind domains

There are now described as: Noetherian integrally closed domain where any
nonzero prime ideal is maximal

But a lot of important and computational properties of Dedekind domains are
best captured without the Noetherian hypothesis (Prüfer domain)

For instance the fact that the intersection of two finitely generated ideals
is finitely generated in a Dedekind domain corresponds to a nice algorithm
(fundamental for Dedekind) which is hidden if we use the notion of Noetherian
ring
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Constructive Algebra

Mathematics and algorithms

We have lost the direct connection between reasoning and computing

It may be that, from a proof of an existence statement in mathematics, it
is not possible to extract from it a computation of the witness the existence of
which is claimed by this statement

Where does this non effectiveness come from?

Two aspects: the objects/sets we manipulate and the logic we use to reason
about these objects
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Constructive Algebra

Constructive objects

Example: symbols, natural numbers, integers, rational numbers, formulae,
matrices, rational polynomials

They can be coded as natural numbers, but it is convenient to work with the
general notion of constructive objects

Constructive objects derive their importance from the fact that they are the
only objects which we can communicate to each other in complete detail

Martin-Löf, Notes on constructive mathematics

Abstract objects: function, well-founded tree, real number, set
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Constructive Algebra

Constructive objects

This notion of constructive object is essential, but is usually not made explicit

For instance, is Z Noetherian, in the sense that for any ideal I ⊆ Z we can
find a finite set G of generators?

The input I is abstract, the output G is a concrete object

No way to compute G from I if for instance I is {0} ∪ {n ∈ Z | P} where P
is some undecided proposition
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Constructive Algebra

Sets

What is a set in constructive mathematics?

A set is defined when we describe how to construct its members and describe
what it means for two members of S to be equal

Example of sets: N, Q, R and k[X], k[[X]], k((X))

A set is discrete iff one can decide the equality; N, Q are discrete sets but
k[[X]] and k((X)) are not

A set of concrete objects is discrete (the converse is not valid)

11



Constructive Algebra

Rings and fields

The usual view of a ring R is that it is a set with two functions on it

In set theory, a function is a functional relation

It may have no computational meaning

∀x.∃!y.R(x, y)

12



Constructive Algebra

Rings and fields

“Explicitely given” ring and field

“Its elements are uniquely represented by distinguishable symbols with which
addition, substraction, multiplication and division can be performed in a finite
number of operations” (van der Waerden)

Explicitely given implies discrete

Example: if the field k is explicitely given, then so is the field k(X)
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Constructive Algebra

Excluded-Middle, a simple example

Proposition: If K is a field and P is a non constant polynomial in K[X]
there exists Q in K[X] such that Q is irreducible and Q divides P

The classical proof claims the existence of such a polynomial Q but it cannot
gives an algorithm for finding Q
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Constructive Algebra

Constructive algebra

Proposition: There is no irreducibility test for k[X] even if k is discrete

Let P be an arbitrary proposition and k be the field

Q ∪ {z ∈ Q[i] | P}

Intuitively k is in between Q and Q[i] but we cannot decide where. The field
k is discrete.

X2 + 1 is reducible over k[X] iff P holds. So we cannot hope to decide the
reducibility of X2 + 1
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Constructive Algebra

Constructive algebra

For some special discrete field k there is such a test

Kronecker gives a test in the case k = Q(X1, . . . , Xn) or for algebraic
extensions of such field. See H. Edwards’ Essays in Constructive Mathematics or
van der Waerden Modern Algebra

In Kronecker’s approach/Edwards’ book, such an irreducibility test plays a
fundamental role

We present a different approach in this course
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Constructive Algebra

Excluded-Middle

What this example illustrates is that it is the law of Excluded-Middle

(∀x.¬ψ(x)) ∨ ∃x.ψ(x)

which is the cause of the non effectiveness of mathematical arguments and the
lack of direct connection between reasoning and computation

This has been noticed explicitely first by Brouwer (and probably Hilbert was
already aware of this point)

Not at all obvious when Brouwer made this remark since at the time people
thought about the Axiom of Choice as the source of non effectivity in mathematics
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Constructive Algebra

Constructive mathematics

Constructive mathematics is best characterised as mathematics developped
using intuitionistic logic (logic without excluded middle)

Notice that this characterization does not mention the notion of computable
function, Turing machine, . . .
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Constructive Algebra

Excluded-Middle

This gives a purely logical characterisation of constructive algebra

Mathematics is more than logic, we need some sort of set theory

Two research directions

-type theory, non set-theoretic foundation, direct connection with
programming, a new very general formulation of the axiom of extensionality
(Voevodsky)

-constructive set theory, constructive reformulation of forcing, large cardinals,
. . .

19



Constructive Algebra

Axiom of Choice

The axiom of choice can be stated as the fact that any surjective map has a
section

This is not valid constructively

{−1, 0, 1}N → [−1, 1]

(bn) 7−→ Σbn/2n

This is a surjective map, but it has no continuous section
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Constructive Algebra

Axiom of Choice and Excluded Middle

Theorem: AC → EM

where AC is the Axiom of Choice and EM is the law of Excluded-Middle
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Constructive Algebra

Axiom of Choice and Excluded Middle

Let X be a set and ∼ be an equivalence relation on X

We write Y = X/ ∼ and ϕ : X → Y, a 7−→ [a] the canonical surjection

Lemma: If ϕ has a section ψ and X is discrete then ∼ is decidable (and Y
is discrete as well)

Indeed

a1 ∼ a2 ↔ [a1] =Y [a2] ↔ ψ([a1]) =X ψ([a2])
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Constructive Algebra

Axiom of Choice and Excluded Middle

In particulart N2 = {0, 1} is discrete set

Let P be an arbitrary proposition, and define a ∼P b by P ∨ a = b

∼P is an equivalence relation

If the axiom of choice holds, then ∼P is decidable and so we have P ∨ ¬P
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Constructive Algebra

Constructive mathematics

Because of this, if we want a connection between reasoning and computation
we cannot use Zorn’s Lemma

So it seems that we have to develop algebra without using

-Prime ideals, maximal ideals, minimal prime ideals

-Noetherianity

-Excluded-Middle

How is it possible to develop algebra without these tools? Several
effective/concrete properties are proved using these non effective notions
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Constructive Algebra

Use of prime ideals

Let R be a ring. We say that a0, . . . , an is unimodular iff 〈a0, . . . , an〉 = 1

We say that ΣaiX
i is primitive iff a0, . . . , an is unimodular

Theorem: The product of two primitive polynomials is primitive

Lemma: A sequence a0, . . . , an is unimodular iff it is not zero modulo any
prime ideal

Lemma: If R is an integral domain then so is R[X]

25



Constructive Algebra

Use of prime ideals

The statement proved is something “concrete”: if we have two relations

Σaiui = 1 Σbjvj = 1

and we define ck = Σi+j=kaibj then we can find (wk) such that

Σckwk = 1

Because the use of Zorn’s Lemma and Excluded Middle, it is not so clear how
we can compute (wk).
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Constructive Algebra

Example with maximal prime: Jacobson radical

Classically one defines J ⊆ R as the intersection of all maximal ideals of R

One can prove x ∈ J ↔ ∀z.inv(1 − xz) where inv(u) ≡ ∃y.uy = 1, using
Zorn’s Lemma

It follows that we have

∀z.inv(1− uz) ∧ ∀z.inv(1− vz) → ∀z.inv(1− (u+ v)z)
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Constructive Algebra

Algebraic closure

First step for building the algebraic closure: existence of a splitting field

Let P be a polynomial in k[X], how to build an extension L of k in which P
can be decomposed in linear factors

The usual argument relies on taking an irreducible factor of P !

So it is difficult to build a splitting field for X2 + 1, without deciding whether
X2 + 1 has a root in k or not
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Constructive Algebra

Noetherianity: regular element

We say that a in R is regular iff ax = 0→ x = 0

An ideal I is regular iff xI = 0→ x = 0

Theorem: A regular finitely generated ideal contains a regular element if the
ring R is Noetherian

Kaplansky (commutative rings) states that this is “a result that is among the
most useful in the theory of commutative rings”

The result may not hold if R is not Noetherian
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Constructive Algebra

Quillen-Suslin

Serre’s problem (Quillen-Suslin’s Theorem)

Theorem : An idempotent matrix over a polynomial ring is similar to a

canonical projection matrix of the form Ir,n =
(
Ir 0
0 0

)
Given such a matrix M satisfying M2 = In we can find an invertible matrix

P such that PMP−1 = Ir,n

The proof by Suslin uses a maximal ideal. Does this proof indicate a way to
compute the matrix P given M?

30



Constructive Algebra

Non constructive reasoning

Non effective reasoning is used often to prove existence of concrete objects
satisfying a decidable property

Is the use of non effective reasoning essential in some cases?

Can we always “extract” from a non effective reasoning its “computational
content” and provide a constructive explanation of this reasoning?
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Constructive Algebra

Non constructive reasoning

Hilbert’s program: if we can show some concrete statements by non effective
reasoning, then there is a concrete/simple direct argument

Gödel has shown that this is not valid for arithmetic

For algebra?
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Constructive Algebra

Help from logic: Logical complexity

1 equational logic: theory of rings

2 (first-order) logic: theory of fields

3 higher-order logic: to be Noetherian
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Constructive Algebra

Logical complexity

Noetherian: all ideals are finitely generated

This involves a quantification over all subsets of the ring

First-order: we quantify only over the elements of the ring
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Constructive Algebra

Logical complexity

There is no completeness theorem for higher-order logic (Gödel)

For first-order logic, as shown by Skolem and Gödel there is a completeness
theorem (however the proof is not constructive)

Most notions in algebra can be captured by first-order logic
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Constructive Algebra

Logical complexity

Completeness Theorem for first-order logic plays an important heuristic role
in our presentation of constructive algebra

If a result expressed in first-order logic is semantically valid then it can be
proved in first-order logic

This is a remarkable result, which can be seen as a partial realisation of
Hilbert’s Program

We can replace semantics by syntax
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Constructive Algebra

Summary

The source of non effectivity in mathematical arguments is the law of Excluded-
Middle

Intuitionistic logic is logic without using the law of excluded-middle. Any
argument in intuitionistic logic has a direct computational interpretation

Completeness holds for first-order logic (and holds constructively for coherent
logic). There is no completeness for higher-order logic. Several notions in algebra
are naturally expressed in first-order logic.

How can one develop algebra without prime ideals, maximal ideals,
Noetherianity?
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