
TORCS: The open racing car simulator

Bernhard Wymann∗ Christos Dimitrakakis†

Andrew Sumner† Eric Espié‡ Christophe Guionneau‡

March 12, 2015

1 Introduction

The open racing car simulator (TORCS [14]), is a modern, modular, highly-
portable multi-player, multi-agent car simulator. Its high degree of modularity
and portability render it ideal for artificial intelligence research. Indeed, a num-
ber of research-oriented competitions and papers have already appeared that
make use of the TORCS engine. The purpose of this document is to introduce
the structure of TORCS to the general artificial intelligence and machine learn-
ing community and explain how it is possible to tests agents on the platform.

TORCS can be used to develop artificially intelligent (AI) agents for a va-
riety of problems. At the car level, new simulation modules can be developed,
which include intelligent control systems for various car components. At the
driver level, a low-level API gives detailed (but only partial) access to the sim-
ulation state. This could be used to develop anything from mid-level control
systems to complex driving agents that find optimal racing lines, react success-
fully in unexpected situations and make good tactical race decisions. Finally,
for researchers that like a challenge and are also interested in visual processing,
a 3d projection interface is available.

2 The simulation engine

The engine uses a discrete-time simulation, with simple Euler integration of dif-
ferential equations. The discretisation is set to 0.002s of simulated time. The
simulator is geared towards simplicity, yet it handles all basic elements of a ve-
hicular dynamics. This includes (i) the basic properties of the vehicular system
such as the mass and rotational inertia of the car, engine, wheels and other
components (ii) mechanical details such as different suspension types, links and
differentials (iii) dynamic and static friction profile of tyres for different ground
types, and finally (iv) a simple, but realistic, aerodynamic model including slip-
streaming and ground effects.

∗Project leader
†Project developer
‡Project founder

1



As TORCS is completely modular, the simulation can be easily replaced.1

This would be of particular interest to researchers interested in developing low-
level controllers for electronic drive systems.

3 The robots

In TORCS, the participating players are referred to as “robots”. They are
loaded as external modules in TORCS. This means that new artificially intelli-
gent agents can be developed independently and they only have to satisfy the
basic API requirements for robot code. At the moment, a large number of
dedicated TORCS robots exist, some of which can operate at a level exceeding
that of human performance in the game. Consequently, they form a challenging
metric against which any new AI player can be evaluated.

Before every race, each robot can gather and process information about the
track’s geometry and surfaces. It is up to the user to decide how much of this
information use. This is an opportunity to calculate a reasonable initial racing
line for the track, perform a suitable set-up for the cars and decide upon a team
and pit strategy.

The robots have the opportunity to interact with the simulation every 0.02s.
The default interface is through a low-level API2 which can provide detailed
information about the race status to the robot, exact position, distance from the
edge of the track, the position of other cars, etc. However, there are many parts
of the simulation state to which the robots have no direct access. Consequently,
even the basic driving problem is partially observable.

Robots may also use a calculated three-dimensional projection, instead of
the low-level API. This is intended to be used for researchers that have an
interest in visual processing. However, the overall problem then becomes much
harder as there is significantly less information directly available.

4 The racing problem

The racing problem could be split into a number of different components, in-
cluding robust control of the vehicle, dynamic and static trajectory planning,
car setup, inference and vision, tactical decisions (such as overtaking) and fi-
nally overall racing strategy. With only a single car on the track, the overall
problem can be formalised as a partially observable Markov decision processes.
However, in general it is a partially observable stochastic game. Having said
that, there are a number of different challenges of varying difficulty that may
be formulated within the context of racing.

The trajectory planning problem is the problem of finding an optimal tra-
jectory according to some criterion (such as the time to complete a track). In
the static case, we are given the track geometry and calculate the trajectory.
The dynamic case involves calculating trajectories on the fly. This can happen
for many reasons such as a lack of geometry information, or an unexpected
deviation from the trajectory, or the appearance of obstacles.

1In fact, a more complex simulation with fewer simplifications in the contact forces and
aerodynamics is also available.

2A thorough description of the API can be found at http://www.berniw.org/aboutme/

publications/api-1.3.6.tar.bz2

2



If a trajectory has been pre-planned, a robust control problem would prin-
cipally involve maintaining the desired trajectory, as well as more low-level
problems such as making sure that the car is stable and tyres don’t spin or
lock out. At a higher-level, the minimal lap time problem is to find a driving
policy that minimises the expected time taken to complete one or more laps of
the track. It is easy to see such an objective can be formalised via an additive
utility function, c.f. the racetrack problem in [11].

The inference and vision problems appear when the robot is using the 3d-
projection interface rather than the detailed low-level API information. In that
case, the robot must infer its speed, its position on the track, the relative location
of other cars, the distance to obstacles and track-edges, etc. However, inference
problems already exist even with the API, since the robots do not have access
to the simulation itself. Consequently, they must have some level of uncertainty
regarding the effect of any action they take.

The overall racing problem itself can be formalised as maximising the prob-
ability of winning a race, minimising expected race rank or maximising the
expected number of points obtained for the team in a championship setting.
While it is possible to formulate an additive utility function for this problem, it
would necessarily be very sparse and so difficult to optimise. In that sense, it
would be similar to the utility function in games such as go [8].

5 Conclusion

There is now a large set of software surrounding TORCS, such as an online
interactive track generator [4]. In addition, there are now multiple forks. One
of them is Speed Dreams [7] which is geared towards a better human player
experience, pyTorcs [5], which is a port of TORCS to Python replacing many
modules with standard open-source software.

There are also two major competitions using TORCS. One of them is the
simulated car racing championship [10], organised around the evolutionary com-
putation conference GECCO and the computational intelligence in games (CIG)
confernece. This is mainly a research-oriented event. The second is the an-
nual TORCS endurance world championship[13], which usually lasts around 6
months every calendar year. Due to its length, the event is geared towards
hobbyists, but would also benefit from academic entries.

As a result, more than 300 research papers have now been written employing
TORCS as a basis, primarily as a test-bed for artificial intelligence algorithms.
While most of those use the low-level API features, or the auxiliary API for
driver development [3], others are more ambitious and try to employ vision [9,
12]. However, TORCS has found other uses, beyond AI research. For example,
it has been used to create an automotive test-bed [6], to perform a study on
driver attention and stress [1], to develop highway platooning controllers and to
access economical driving for trucks [2].

TORCS continues to evolve, and we feel that it has a lot more to offer to both
hobbyists and the academic research community. One of our main goals is to
maintain a stable API so as to avoid disruption for its many users. Finally, the
modular architecture of TORCS and open source licensing allows it to continue
to live long after its original creators and current maintainers have moved on.

3



Acknowledgements

Many thanks go to all past contributors, and in particular to Rémi Coulom,
Charalambos Alexopoulos and Andrew Sumner. Finally, we wish to acknowl-
edge the efforts of Luigi Cardamone, Daniele Loiacono and Pier Luca Lanzi,
who have turned TORCS into a highly successful competition platform CIG
and GECCO.

References

[1] Alexandre Benoit, Laurent Bonnaud, Alice Caplier, Phillipe Ngo, Lionel
Lawson, Daniela G Trevisan, Vjekoslav Levacic, Céline Mancas, and Guil-
laume Chanel. Multimodal focus attention and stress detection and feed-
back in an augmented driver simulator. Personal and Ubiquitous Comput-
ing, 13(1):33–41, 2009.

[2] Tales Nereu Bogoni and Marcio Sarroglia Pinho. Use of a simulator to assess
the application of economic driving techniques by truck drivers. In Systems,
Man, and Cybernetics (SMC), 2012 IEEE International Conference on,
pages 3020–3026. IEEE, 2012.

[3] Clara Caldeira, Claus Aranha, and Guilherme N Ramos. Torcs training
interface: An auxiliary api for developing torcs drivers. 2011.

[4] Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. Interactive evo-
lution for the procedural generation of tracks in a high-end racing game.
In Proceedings of the 13th annual conference on Genetic and evolutionary
computation, pages 395–402. ACM, 2011.

[5] Keith Curtis. pytorcs. https://github.com/KeithCu/PyTorcs, 2013.

[6] Utsav Drolia, Zhenyan Wang, Yash Pant, and Rahul Mangharam. Au-
toplug: an automotive test-bed for electronic controller unit testing and
verification. In Intelligent Transportation Systems (ITSC), 2011 14th In-
ternational IEEE Conference on, pages 1187–1192. IEEE, 2011.

[7] Andé Gaëtan, Beelitz Wolf-Dieter, Xavier Bertaux, Eckhard M. Jaeger,
Kristóf Kály-Kullai, Gábor Kmetykó, Enrico Mattea, Haruna Say, Joe
Thompson, and Simon Wood. Speed dreams v2.0. http://www.

speed-dreams.org, 2013.

[8] Sylvain Gelly and Yizao Wang. Exploration exploitation in go: UCT for
monte-carlo go, 2006.

[9] Jan Koutńık, Giuseppe Cuccu, Jürgen Schmidhuber, and Faustino Gomez.
Evolving large-scale neural networks for vision-based torcs. 2013.

[10] Daniele Loiacono, Luigi Cardamone, and Pier Luca Lanzi. Simulated Car
Racing Championship Competition Software Manual, 2011.

[11] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. 1998.

4



[12] Cuong Tran and Mohan M Trivedi. Towards a vision-based system explor-
ing 3d driver posture dynamics for driver assistance: Issues and possibili-
ties. In Intelligent Vehicles Symposium (IV), 2010 IEEE, pages 179–184.
IEEE, 2010.

[13] Bernhard Wymann. The torcs endurance world championship. http://

www.berniw.org/trb/, 2008–2013.

[14] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimi-
trakakis, Rémi Coulom, and Andrew Sumner. TORCS, the open racing
car simulator, v1.3.5. http://www.torcs.org, 2013.

5


