
Security of Multithreaded Programs by Compilation

Gilles Barthe

IMDEA Software, Madrid, Spain

and

Tamara Rezk

Inria Sophia Antipolis and MSR-INRIA, France

and

Alejandro Russo

Chalmers University of Technology, Sweden

and

Andrei Sabelfeld

Chalmers University of Technology, Sweden

1. INTRODUCTION

Motivation. Information security is a pressing challenge for mobile code technolo-
gies. Current security architectures provide no end-to-end security guarantees for
mobile code: such code may either intentionally or accidentally propagate sensitive
information to an adversary. However, recent progress in the area of language-based
information-flow security [Sabelfeld and Myers 2003] indicates that insecure flows
in mobile code can be tracked by language-based techniques.

While the existing work focuses on source languages, recent work has developed
security analyses for increasingly expressive bytecode and assembly languages [Barthe
and Rezk 2005; Genaim and Spoto 2005; Medel et al. 2005; Barthe et al. 2007a;
Barthe et al. 2007; Zanardini 2006]. Given sensitivity annotations on inputs and
outputs, these analyses provably guarantee noninterference [Goguen and Meseguer
1982], a property of programs that says that there are no insecure flows from sen-
sitive inputs to public outputs.

It is, however, unsettling that information flow for multithreaded low-level pro-
grams has received only little attention [Barthe et al. 2007]. It is especially con-
cerning because multithreaded bytecode is ubiquitous in mobile code scenarios.
For example, multithreading is used for preventing screen lock-up in mobile ap-
plications [Mahmoud 2004]. In general, creating a new thread for long and/or
potentially blocking computation, such as establishing a network connection, is a
much recommended pattern [Knudsen 2002].

Internal timing leaks. Assume variables are given security levels: either secret
(high) or public (low) levels. The attacker has access to low-level variables, and
so we say the attacker is at the low level. What is the main problem with rea-
soning about information flow for multithreaded low-level languages? In addition
to explicit flows (as in public := secret) and implicit flows [Denning and Denning
1977] (as in if secret then public := 1) that need to be tracked as in sequential
programs, multithreading creates a new channel for information transfer: internal

1

timing [Volpano and Smith 1999].
For an example of an internal timing leak, consider a simple two-threaded source-

level program, where hi is a high and lo is a low variable:

if hi {sleep(100)}; lo := 1 ‖ sleep(50); lo := 0

If hi is originally non-zero, the last command to assign to lo is likely to be lo := 1.
If hi is zero, the last command to assign to lo is likely to be lo := 0. Hence, this
program is likely to leak information about hi into lo. In fact, all of hi can be
leaked into lo via the internal timing channel, if the timing difference is magnified
by a loop (see, e.g., [Russo et al. 2007]).

Internal-timing attacks are particularly dangerous because the attacker needs
no access to a clock to learn the complete secrets in linear time.(In the paper we
assume the attacker does not have access to a clock.) In a language where a clock
is available programmatically, this implies that the result of reading the clock is
secret [Smith and Volpano 1998]. There is a separate line of work on external timing
attacks (e.g., [Agat 2000; Sabelfeld and Sands 2000; Sabelfeld 2001; Sabelfeld and
Mantel 2002; Köpf and Mantel 2006]), where an attacker can measure computation
time. A price paid for security against this kind of more powerful attackers is
restrictiveness. For example, loops with secrets guards are disallowed.

The goals and the state of the art: secure multithreading. Our main goal is se-
curity enforcement of multithreaded low-level languages that is (i) sound w.r.t.
noninterference, (ii) permissive, i.e., not too many useful secure programs are re-
jected, and (iii) not scheduler-specific, i.e., the security does not break as we vary
the scheduler (there should be a clearly-defined class of schedulers in which security
is parametric).

When extending security enforcement for sequential low-languages with multi-
threading, we have several choices offered by the state-of-the-art in analyses of
source-level multithreaded programs. While we defer a detailed discussion of the
state of the art to Section 9, we remark that the most popular approaches can
be roughly categorized as follows: protection/hiding-based approaches [Smith and
Volpano 1998; Volpano and Smith 1999; Smith 2001; 2003; Russo and Sabelfeld
2006a], low-determinism-based approaches [Zdancewic and Myers 2003; Huisman
et al. 2006; Terauchi 2008], and external timing-based approaches [Agat 2000;
Sabelfeld and Sands 2000; Sabelfeld 2001; Sabelfeld and Mantel 2002; Köpf and
Mantel 2006].

The protection/hiding-based approaches prevent sensitive timing behavior (as
exhibited by the first thread in the example above when it branches on secret) to
be observed by other threads. The low-determinism approaches disallow races on
public data. The external timing approaches prevent leaks with respect to attackers
that may observe real time.

For the goals we have, the external timing-based solutions are sound but too re-
strictive, as discussed above. Permissiveness is also a concern with low-determinism,
where all races on public data are prohibited. This rejects the program above, for
example. On the other hand, protection/hiding-based techniques allow accepting
the program, given that there is a possibility of runtime support to restrict cer-
tain dangerous interleavings. In order for the timing difference of the thread that

2

branches on hi not to influence the interleaving of the assignments to lo, we need to
ensure that the scheduler treats the first thread as “hidden” from the second thread:
the second thread should not be scheduled until the first thread reaches the junc-
tion point of the if. This is the choice we follow in the rest of the paper, driven
by previous work on interaction between the threads and the scheduler [Russo and
Sabelfeld 2006a], which is parametric in a class of schedulers (cf. our goal(iii)).

The goals and the state of the art: security-preserving compilation. Security-
preserving compilation is an instance of type-preserving compilation; its aim is to
relate security type systems for source programs with security type systems for
low-level programs. More formally, the goals of security-preserving compilation
are (i) to prove that typable source programs are compiled into typable low-level
programs, (ii) in case the target type system requires additional information for
type checking, extend compilers to generate certificates that package the required
information.

Security-preserving compilation is important in practice because it ensures that
applications developed using information-flow aware programming languages are
compiled into code that will be analyzed as secure by an information-flow type
system for the target language [Barthe et al. 2006]. Security-preserving compilation
is essential in the context of Proof Carrying Code [Necula 1997], since it allows code
producers to derive security types for low-level programs from security types for
source programs. This makes our solution practical for the scenario of untrusted
mobile code, as discussed in the next section. Moreover, even if the code is trusted
(and perhaps even immobile), compilers are often too complex to be a part of the
trusted computing base. Security-type preserving compilation removes the need
to trust the compiler, because the type annotations of compiled programs can be
checked directly at the target level.

Another benefit of security-preserving compilation is that it can reliably protect
program implementations while letting programmers safely ignore some security
issues that are handled automatically by the compiler [Abadi 1998]. In this paper,
we show that internal timing leaks can be handled automatically by a compiler.

Contributions. This paper proposes type-based enforcement methods that prov-
ably guarantee secure information flow for multithreaded low-level programs, and
security-preserving compilation methods that allow source type systems safely ig-
nore internal timing leaks. On the code consumer side, our type systems can be
used for checking the security of programs before running them. On the producer
side, the source type systems allow programmers to think about security of mul-
tithreaded programs in the same way as for sequential programs; in particular,
programmers do not have to know about the existence of internal timing leaks and
there are no restrictions on dynamic thread creation at the source level. One impli-
cation is that secure source programs that pass security type checking for sequential
languages [Volpano et al. 1996] can be securely composed in parallel. This might
be counter-intuitive: there are covert channels in the presence of threads, such as
internal timing channels [Volpano and Smith 1999], that do not arise in a sequen-
tial setting. However, we will show that for a class of security-aware schedulers the
compiler will help to enforce a scheduling discipline for the target code so that the

3

execution of a the compilation of a typable source program is free of internal timing
leaks.

A first (minor) contribution of this paper is a new formulation of security-aware
schedulers; previous definitions can be found in e.g., [Russo and Sabelfeld 2006a].
Security-aware schedulers take into account the security levels of the program coun-
ters of each thread when deciding which thread to execute; to be secure, a security-
aware scheduler must correctly hide threads, i.e., it must suspend execution of low
threads when another thread has entered a high branch, and there is a potential for
an internal timing leak. Thus, schedulers which ignore security information (as a
basic round-robin scheduler would do) are insecure; however, we show how to secure
the round-robin scheduler by a simple modification that is presented in Section 3.
Note that secure schedulers do not introduce unexpected behaviors, but they may
disallow certain interleavings. Disallowing interleavings may, in general, affect the
liveness properties of a program; such a trade-off between between liveness and
security is shared with other approaches (e.g., [Smith and Volpano 1998; Volpano
and Smith 1999; Smith 2001; 2003; Russo and Sabelfeld 2006a]).

A second contribution of the paper is a sound method for extending information-
flow type systems from sequential to multithreaded programs. We start from the
intuition that a program is secure if it has no explicit or implicit flows, and no inter-
nal timing leaks can arise during its execution. By construction, a secure scheduler
prevents internal timing leaks, therefore it is sufficient for a type system to prevent
explicit and implicit flows. As information-flow type systems for sequential lan-
guages are conceived to prevent exactly such flows, one can hope that it is possible
to device provably sound extensions of these type systems to multithreaded pro-
grams. In Section 6, we show indeed that it is possible to systematically construct
such extensions for type systems that are written in the style of [Barthe et al. 2007a]
and enforce noninterference. Modularity is two-fold: first, the framework is para-
metric in the semantics of sequential programs. The transitions for the sequential
part can be arbitrarily extended, which is useful when introducing new sequential
features into the underlying programming language. Thus, we have full language-
independence from the sequential part. Second, the framework is parametric in the
security type system for the sequential part of the language—provided the rules
are written in the style of [Barthe et al. 2007a], as mentioned above. Increasing
complexity of the underlying language is accompanied by increasing complexity of
the typing rules. We have identified sufficient hypotheses that, when satisfied by
the type system for the sequential part of the language, guarantee security for the
full multithreaded language.

A third contribution of the paper is showing security-preserving compilation.
A clear interface (in terms of sufficient hypotheses) determines what needs to be
guaranteed by security type preserving compilation for a sequential language in
order for the result for type-preserving compilation to hold for the full multithreaded
language. In particular, security preserving compilation is also a modular extension
of the sequential counterpart.

A final contribution of the paper is an instantiation of the main ingredients of our
framework. To illustrate the applicability of the framework, we instantiate it with
some scheduler examples. These examples clarify what is expected of a scheduler to

4

Fig. 1. Proof Carrying Code scenario

prevent internal timing leaks. Also, we give an instantiation of our framework for
compiling a simple imperative language into a simple assembly language (featuring
an operand stack, conditions, and jumps), and show that the resulting type system
is compatible with bytecode verification. The framework is language-independent
(any sequential language and type system can be plugged in, as long as appro-
priate information about joint points can be extracted), and so this instantiation
is for illustration only, deliberately leaving richer features of both the source and
target language out of the scope. However, we expect our results to extend to lan-
guages with objects, methods, and exceptions, for which mechanisms for tracking
information flow by security-type systems were recently developed [Barthe et al.
2007a].

Proof Carrying Code scenario. Our approach pushes the feasibility of replacing
trust assumptions by type checking for mobile code security one step further, and
extends to information flow the principles of typed assembly languages, certifying
compilation and Proof Carrying Code by Morrisett, Necula, and others [Morrisett
et al. 1999; Necula 1997].

Figure 1 describes the process of producing and verifying a secure application,
and illustrates that there is no need to trust the compiler nor the source type
system. On the left of the figure, the code producer writes an application that
is typable with respect to an information-flow policy. One of the most attractive
features of our approach is that the type system needs to make no special provi-
sion for concurrency. The application is then transformed to bytecode thanks to an
extended compiler that also produces information for tracking implicit flows and in-
ternal timing flows: a security environment and additional control-flow information
(these concepts are explained in Section 2). The consumer receives the compiled
application, the policy, the security environment, and the additional control-flow
information. The consumer verifies the correctness of the control-flow information,
and that the program is typable w.r.t. the type system. If both verifications suc-
ceed, the execution of the program will not reveal information when executed with
a secure scheduler. Thus, the trusted computing base (TCB) consists of the control-
flow information checker, of the type system, and of the scheduler. Note that the

5

control-flow information checker and the type system are not restricted to com-
piled programs. However, type-preserving compilation ensures that typable source
programs are compiled into typable programs, and that the control-flow informa-
tion that is generated by the compiler is accepted by the control-flow information
checker. Therefore, if the producer generates the security environment and control-
flow information following our approach, and the source program is typable, then
the consumer will succeed with the consumer-side checks.

Remark. This paper revises and extends an earlier conference version [Barthe
et al. 2007] with proofs, explanations, and examples (note that we have renumbered
the hypotheses of Section 6 in order to ease reading). More details can be found in
the full electronic version [Barthe et al. 2009].

2. MOTIVATING EXAMPLE

The purpose of this section is to illustrate some essential points of our approach,
using a program written in the imperative language of Section 7:

fork(hi ′ := 0; hi ′ := 0; lo := 0);
if hi then hi ′ := 0; hi ′ := 0; hi ′ := 0 else hi ′ := 0;
lo := 1

The policy for such a program is given by a mapping of variables/registers to
security levels and a security condition; here the condition is noninterference, i.e.,
the final values of low variables should not depend on the initial values of high
variables. (We discuss different flavors of noninterference that might be included
in the policy in Section 4).

In the example, variables hi and hi ′ store secret data, while lo stores public
information. The above program contains a command that branches on secrets
and, depending on which branch is taken, takes different timing behavior. Thus,
this program suffers from internal-timing leaks: assuming a one-step round-robin
scheduler, the last command to assign lo is lo := 1 when hi is true; and lo := 0
when hi is false.

We start by showing how our approach prevents the compiled program to leak
information through such internal timing leaks when executed when a secure sched-
uler.

The compiler produces the following low-level code:

1 goto 9
2 push 0
3 store hi’
4 push 0
5 store hi’
6 push 0
7 store lo
8 return

9 start 2
10 load hi
11 ifeq 15
12 push 0
13 store hi’
14 goto 21
15 push 0
16 store hi’

17 push 0
18 store hi’
19 push 0
20 store hi’
21 push 1
22 store lo
23 return

Instruction push stores a value into the stack. Instruction store moves the top of
the stack into a register. Instructions goto and ifeq represents unconditional and
conditional branches, respectively. Instruction return finishes the execution of a

6

thread and returns the value stored on the top of the stack. Instruction start n
spawns a new thread that starts executing the instruction number n. Instructions
2–8 result from compiling the body of the fork command, while instructions 10–22
are obtained by compiling the main thread. Instructions 1, 9, and 23 properly plug
together the code corresponding to the generated threads.

If the compiled program is executed using an arbitrary scheduler, e.g, a round-
robin scheduler, then information is leaked. In order to guarantee that the execution
of the program will not leak information, one must extend the compiler so that it
propagates to the scheduler information related to hiding to the scheduler. Specif-
ically, the compiler is extended to produce a security environment that assigns a
security level to each instruction. To illustrate that in the current example, we
show the compiled code where instructions assigned to the high security level are
marked with gray. Unmarked instructions are assigned to the low security level.

1 goto 9
2 push 0
3 store hi’
4 push 0
5 store hi’
6 push 0
7 store lo
8 return

9 start 2
10 load hi
11 ifeq 15
12 push 0
13 store hi’
14 goto 21
15 push 0
16 store hi’

17 push 0
18 store hi’
19 push 0
20 store hi’
21 push 1
22 store lo
23 return

The intuition is that the instructions inside of the if-then-else command are
assigned to the high security level. More formally, the security environment is built
by first computing the security level of the guards of branching expressions in the
source program, and then by propagating these levels to the compiled program.

Note that providing a security environment in itself does not guarantee that exe-
cuting the program will not leak information: if the scheduler ignores the informa-
tion or uses it incorrectly, executing the program may leak information. However, if
the scheduler is itself secure (i.e., it actually suspends threads like the second thread
in the example above at the right time), then security is restored, i.e., executing the
compiled code will not yield internal timing leaks; as the compiled program does
not contain explicit or implicit flows either, it will not leak information.

While the security environment allows to provide information that can be used
by a secure scheduler to ensure that the compilation of secure programs is executed
securely, the compiler must take additional steps before its result is amenable to
security type checking. Indeed, the low-level type system also relies on informa-
tion about control dependence regions to reject programs with implicit flows, i.e.,
programs in which a low assignment is taking place in a high branch. Thus, the
compiler must also be extended to generate this information (referred to as addi-
tional control-flow information in Section 1). In this paper, we capture the necessary
information using a (partial) function next from program points to program points
that maps every program point deemed high by the security environment to the
first reachable low program point—note that one important property of next is pre-
cisely to be a function, i.e., the program point, when it exists, is unique. In the
example, next assigns 21 to each instruction k that is grey, i.e, next(k) = 21. The
next function is in close relation with the control dependence regions used in our

7

earlier works on bytecode languages.
At this point, the extended compiler has produced all the necessary information

for type-checking the compiled code: the security environment, and function next.
Type-checking the program is performed on a per-thread basis, with some additional
checks to ensure that threads created in high branches do not assign to low variables.
In the example, the thread is forked outside of any branching statement, so the latter
condition is trivially fulfilled, and we are left to check in isolation the following
sequential code fragments:

2 push 0
3 store hi’
4 push 0
5 store hi’
6 push 0
7 store lo
8 return

10 load hi
11 ifeq 15
12 push 0
13 store hi’
14 goto 21
15 push 0
16 store hi’

17 push 0
18 store hi’
19 push 0
20 store hi’
21 push 1
22 store lo
23 return

Each fragment can be type-checked successfully using an information flow type
system for sequential low-level programs [Barthe et al. 2007a].

Note that the information flow type system of [Barthe et al. 2007a] is in fact
a lightweight bytecode verifier, i.e., programs can be checked in one pass using a
variant of Kildall’s algorithm on a transition function over security states (for the
language of Section 7 a security state is simply a stack of security levels). Since
information-flow type checking of multithreaded programs is performed on a per
thread basis, the information flow type system for multithreaded low-level programs
remains compatible with the principles of lightweight bytecode verification. This is
a first advantage of making the definition of the information flow type system for
multithreaded low-level programs modular in the information flow type system for
sequential low-level programs.

However, the question remains whether the information-flow type system for
multithreaded programs is sound: informally, the soundness of the type system
should follow from: (i) the hypothesis that programs are executed with a secure
scheduler, ruling out the possibility of internal timing leaks, and that threads that
are created in a high context cannot influence low memory; (ii) the soundness of
the type system for sequential programs, ruling out explicit and implicit flows.
Section 6 makes this reasoning precise, showing that soundness of the information
flow type system for multithreaded programs is a consequence of the soundness
of the information flow type system for sequential programs, and of the fact that
the next function satisfies some properties. The properties required for soundness
are closely related to the properties required for control dependence regions in our
earlier works on bytecode languages.

Let us now turn to security-preserving compilation. We have seen with the
example that a program is typable if its “sequential parts” (in the case of the
example the two framed programs above) are typable, and some local constraints
are satisfied. How does it relate to the typability of the source program? If we take

8

as typing rule

` c : σ

` fork(c) : σ

then we see that the source program is also typable using the rules of [Volpano et al.
1996] for the other constructs. One cannot conclude directly from the typability
of the source program that the compiled program is typable. However, one can
observe that typability of the source program entails typability of its “sequential
parts”:

(hi ′ := 0; hi ′ := 0; lo := 0);
if hi then hi ′ := 0; hi ′ := 0; hi ′ := 0 else hi ′ := 0; lo := 1

whose compilation yield the “sequential parts” of the compiled low-level program.
Thus, we can appeal to type-preserving compilation for sequential programs [Barthe
et al. 2006] to conclude that the compiled multithreaded program is typable. Sec-
tion 8 makes this reasoning precise, showing that type-preserving compilation can
be proved in a modular fashion.

3. SYNTAX AND SEMANTICS OF MULTITHREADED PROGRAMS

This section sets the scene by defining the syntax and semantics for multithreaded
programs. We introduce the notion of secure schedulers that deal with covert
channels in the presence of multithreading.

Syntax and program structure. Assume we have a set Thread of thread identifiers,
a partially ordered set Level of security levels, a set LocState of local states and a
set GMemory of global memories. The definition of programs is parametrized by a
set of sequential instructions SeqIns. The set of all instructions extends SeqIns by a
dynamic thread creation primitive start pc that spawns a new thread with a start
instruction at program point pc.

Definition 3.1 (Program). A program P consists of a set of program points P, with
a distinguished entry point 1 and a distinguished exit point exit, and an instruction
map from program points to Ins, where Ins = SeqIns∪{start pc} with pc ∈ P\{exit}.
We write P [i] to refer to the instruction of program P at program point i.

Each program has an associated successor relation 7→⊆ P × P. The successor
relation describes possible successor instructions in an execution. We assume that
exit is the only program point without successors, and that any program point i
s.t. P [i] = start pc is not branching, and has a single successor, denoted by i + 1
(if it exists); in particular, pc is not a successor of i. These assumptions help to
simplify the formalization in subsequent sections. Notice that any thread can be
desugared to a thread with a non-branching start point by using a first instruction
with the semantics of a skip or noop instruction. As common, we let 7→? denote
the reflexive and transitive closure of the relation 7→ (similar notation is used for
other relations).

Definition 3.2 (Initial program points). The set Pinit of initial program points is
defined as: {i ∈ P | ∃j ∈ P, P [j] = start i} ∪ {1}.

9

We assume the attacker level k ∈ Level partitions all elements of Level into low
and high elements. Low elements are no more sensitive than k: an element ` is low
if ` ≤ k. All other elements (including incomparable ones) are high. We assume
that the set of high elements is not empty. This partition reduces the set Level to
a two-element set {low , high}, where low < high, which we will adopt without loss
of generality.

Programs come equipped with a security environment [Barthe et al. 2007] that
assigns a security level to each program point and is used to prevent implicit
flows [Denning and Denning 1977]. The security environment is also used by the
scheduler to select the thread to execute.

Definition 3.3 (Security environment, low, high, and always high program points).

(1) A security environment is a function se : P → Level.
(2) A program point i ∈ P is low, written L(i), if se(i) = low; high, written H(i),

if se(i) = high; and always high, written AH (i), if se(j) = high for all points
j such that i 7→? j.

Semantics. The operational semantics for multithreaded programs is built from
an operational semantics for sequential programs and a scheduling function that
picks the thread to be executed among the currently active threads. The schedul-
ing function takes as parameters the current state, the execution history, and the
security environment.

Definition 3.4 (State).

(1) The set SeqState of sequential states is a product LocState × GMemory of the
local state LocState and global memory GMemory sets.

(2) The set ConcState of concurrent states is a product (Thread ⇀ LocState) ×
GMemory of the partial-function space (Thread ⇀ LocState), mapping thread
identifiers to local states, and the set GMemory of global memories.

It is convenient to use accessors to extract components from states: we use s.lst
and s.gmem to denote the first and second components of a state s. Then, we use
s.act to denote the set of active threads, i.e., s.act = Dom(s.lst). We sometimes
write s(tid) instead of s.lst(tid) for tid ∈ s.act. Furthermore, we assume given an
accessor pc that extracts the program counter for a given thread from a local state.

We follow a concurrency model [Russo and Sabelfeld 2006a] that lets the scheduler
distinguish between different types of threads. A thread is low (resp., high) if the
security environment marks its program counter as low (resp., high). A high thread
is always high if the program point corresponding to the program counter is always
high. A high thread is hidden if it is high but not always high. (Intuitively, the
thread is hidden in the sense that the scheduler will, independently from the hidden
thread, pick the following low threads.) Formally, we have the following definitions:

s.lowT = {tid ∈ s.act | L(s.pc(tid))}
s.highT = {tid ∈ s.act | H(s.pc(tid))}

s.ahighT = {tid ∈ s.act | AH (s.pc(tid))}
s.hidT = {tid ∈ s.act | H(s.pc(tid)) ∧ ¬AH (s.pc(tid))}

10

A scheduler treats different classes of threads differently. To see what guarantees
are provided by the scheduler, it is helpful to foresee what discipline a type system
would enforce for each kind of threads. From the point of view of the type system, a
low thread becomes high while being inside of a branch of a conditional (or a body
of a loop) with a high guard. Until reaching the respective junction point, the
thread may not have any low side effects. In addition, until reaching the respective
junction point, the high thread must be hidden by the scheduler: no low threads
may be scheduled while the hidden thread is alive. This prevents the timing of the
hidden thread from affecting the interleaving of low side effects in low threads. In
addition, threads may be spawned inside of a branch of a conditional (or a body
of a loop) with a high guard. These threads are always high: they may not have
any low side effects. On the other hand, such threads do not have to be hidden in
the same way: they can be interleaved with both low and high threads. Recall the
example from Section 1. The intention is that the scheduler treats the first thread
(which is high while it is inside the branch) as “hidden” from the second (low)
thread: the second thread should not be scheduled until the first thread reaches
the junction point of the if.

We proceed to defining computation history and secure schedulers, which operate
on histories as parameters.

Definition 3.5 (History).

(1) A history is a list of pairs (tid, `), where tid ∈ Thread and ` ∈ Level. We
denote the empty history by εhist.

(2) Two histories h and h′ are indistinguishable1, written h
hist∼ h′, if h|low = h′|low ,

where h|low is obtained from h by projecting out pairs with the high level in the
second component.

We denote the set of histories by History. We now turn to the definition of a secure
scheduler. The definition below is of a more algebraic nature than that of [Russo and
Sabelfeld 2006a], but captures the same intuition, namely that a secure scheduler:
i) always picks an active thread; ii) chooses a high thread whenever there is one
hidden thread; and iii) only uses the names and levels of low and the low part of
histories to pick a low thread.

Definition 3.6 (Secure scheduler). A secure scheduler is a function pickt : ConcState×
History ⇀ Thread, subject to the following constraints, where s, s′ ∈ ConcState and
h, h′ ∈ History:

(1) for every s such that s.lowT ∪ s.highT 6= ∅, pickt(s, h) is defined, and pickt(s, h) ∈
s.act;

(2) if s.hidT 6= ∅, then pickt(s, h) ∈ s.highT; and

(3) if h
hist∼ h′ and s.lowT = s′.lowT, then 〈pickt(s, h), `〉 :: h

hist∼ 〈pickt(s′, h′), `′〉 ::
h′, where ` = se(s.pc(pickt(s, h))) and `′ = se(s′.pc(pickt(s′, h′))).

To illustrate how schedulers are expressed with our formalism, we give two ex-
amples of round-robin schedulers: an insecure and a secure one.

1Throughout the paper, we consistently use the term indistinguishable to mean low-
indistinguishable.

11

Example 3.1. Consider a round-robin policy: pickt(s, h) = rr(AT , last(h)), where
AT = s.act, and the partial function last(h) returns the identity of the most recently
picked thread recorded in h (if it exists). Given a set of thread ids, an auxiliary
function rr returns the next thread id to pick according to a round-robin policy.
This scheduler is insecure because low threads can be scheduled even if a hidden
thread is present, which violates req. 2 above.

Example 3.2. An example of a secure round-robin scheduler is defined below. The
scheduler takes turns in picking high and low threads.

pickt(s, h) =

rr(ATL, lastL(h)),

if h = εhist or
h = (tid,L).h′ and ATH = ∅ and ATL 6= ∅ or
h = (tid,H).h′ and hidT = ∅ and ATL 6= ∅

rr(ATH , lastH (h)),
if hidT 6= ∅ or

h = (tid,H).h′ and ATL = ∅ and ATH 6= ∅ or
h = (tid,L).h′ and ATH 6= ∅

We assume that ATL and ATH are functions of s that extract the set of identifiers
of low and high threads, respectively, and the partial function last` returns the
identity of the most recently picked thread at level ` recorded in h, if it exists. The
scheduler may only pick active threads (cf. req. 1). In addition to the alternation
between high and low threads, the scheduler may only pick a low thread if there are
no hidden threads (cf. req. 2). The separation into high and low threads ensures
that for low-equivalent histories, the observable choices of the scheduler are the
same (cf. req. 3). For simplicity, we have described a one-step secure scheduler.
However, the definition above can be easily extended to schedulers, where threads
are scheduled for some fixed number of steps.

To define the execution of multithreaded programs, we assume given a (deter-
ministic) sequential execution relation ;seq⊆ SeqState × SeqState that takes as
input a current state and returns a new state, provided the current instruction is
sequential.

We assume given for every program point i a local state σinit(i) whose local
memory is initialized to default values and whose program counter is pointing to
pc. We also assume given a family of functions fresht` that takes as input a set of
thread identifiers and generates a new thread identifier at level `. We assume that
the ranges of fresht` and fresht`′ are disjoint whenever ` 6= `′. We sometimes use
fresht` as a function from states to Thread.

Definition 3.7 (Multithreaded execution). One step execution ;conc⊆ (ConcState×
History) × (ConcState × History) is defined by the rules of Figure 2. We write
s, h ;conc s′, h′ when executing s with history h leads to state s′ and history h′.

The first two rules of Figure 2 correspond to non-terminating and terminating
sequential steps. In the case of termination, the current thread is removed from
the domain of lst. The last rule describes dynamic thread creation caused by the
instruction start pc. A new thread receives a fresh name ntid from freshtse(i), where
se(i) records the security environment at the point of creation. This thread is added
to the pool of threads under the name ntid . All rules update the history with the
current thread id and the security environment of the current instruction. The

12

pickt(s, h) = ctid s.pc(ctid) = i P [i] ∈ SeqIns
〈s(ctid), s.gmem〉 ;seq σ, µ σ.pc 6= exit

s, h ;conc s.[lst(ctid) := σ, gmem := µ], 〈ctid , se(i)〉 :: h

pickt(s, h) = ctid s.pc(ctid) = i P [i] ∈ SeqIns
〈s(ctid), s.gmem〉 ;seq σ, µ σ.pc = exit

s, h ;conc s.[lst := lst \ (ctid , s(ctid)), gmem := µ], 〈ctid , se(i)〉 :: h

pickt(s, h) = ctid s.pc(ctid) = i P [i] = start pc
freshtse(i)(s) = ntid s(ctid).[pc := i + 1] = σ′

s, h ;conc s.[lst(ctid) := σ′, lst(ntid) := σinit(pc)], 〈ctid , se(i)〉 :: h

Fig. 2. Semantics of multithreaded programs

P [i] ∈ SeqIns i `seq s ⇒ t

se, i ` s ⇒ t

P [i] = start pc se(i) ≤ se(pc)

se, i ` s ⇒ s

Fig. 3. Typing rules

evaluation semantics of programs can be derived from the small-step semantics in
the usual way. We let main be the identity of the main thread.

Definition 3.8 (Evaluation semantics). The evaluation relation ⇓conc⊆ (ConcState×
History) × GMemory is defined by the clause s, h ⇓conc µ iff ∃s′, h′. s, h ;?

conc

s′, h′ ∧ s′.act = ∅ ∧ s′.gmem = µ. We write P, µ ⇓conc µ′ as a shorthand for
〈f, µ〉, εhist ⇓conc µ′, where f is the function {〈main, σinit(1)〉}.

4. SECURITY POLICY

Noninterference is defined relative to a notion of indistinguishability between global
memories. For the purpose of this paper, it is not necessary to specify the definition
of memory indistinguishability.

Definition 4.1 (Noninterfering program). Let ∼g be an indistinguishability re-
lation on global memories. A program P is noninterfering if for all memories
µ1, µ2, µ

′
1, µ

′
2:

µ1 ∼g µ2 and P, µ1 ⇓ µ′1 and P, µ2 ⇓ µ′2 implies µ′1 ∼g µ′2

This policy is termination-insensitive noninterference [Volpano et al. 1996], where
leaks via (non)termination are ignored. This is a common baseline policy for much
of information-flow work (e.g., [Volpano et al. 1996; Pottier and Simonet 2003;
Banerjee and Naumann 2005; Barthe et al. 2006; Russo and Sabelfeld 2006a]) and
the target policy for the mainstream information-flow tools Jif [Myers et al. 2001],
FlowCaml [Simonet 2003], and the SPARK Examiner [Barnes and Barnes 2003;
Chapman and Hilton 2004]. An example of a termination leak can be found in
program (while h do skip); l := 42. Upon observing that the final value of l is
42, the attacker deduces that h was 0. In a batch-job model, at most one bit can
be leaked per run via the (non)termination channel. The motivation for ignoring

13

this channel in the above-mentioned work is permissiveness, which allows accepting
loops with secret guards without the need for termination analysis. While we do not
foresee fundamental difficulties for adapting our framework to termination-sensitive
noninterference (where program (non)termination may not depend on secrets), we
also settle for termination-insensitive noninterference.

5. TYPE SYSTEM

This section introduces a type system for multithreaded programs as an extension
of a type system for noninterference for sequential programs. In Section 6, we show
that the type system is sound for multithreaded programs, in that it enforces the
noninterference property defined in the previous section. In Section 7, we instantiate
the framework to a simple assembly language.

5.1 Assumptions on type system for sequential programs

We assume given a set LType of local types for typing local states, with a distin-
guished local type tinit to type initial states, and a partial order ≤ on local types.
Typing judgments in the sequential type system are of the form se, i `seq s ⇒ t,
where se is a security environment, i is a program point in program P , and s and
t are local types.

Typing rules are used to establish a notion of typable program, which ensures
that runs of typable programs verify at each step the constraints imposed by the
typing rules.

Definition 5.1 (Typable sequential program). A sequential program P is typable
w.r.t. type S : P → LType and security environment se, written se,S ` P if

(1) S1 = tinit (the initial program point is mapped to the initial local type); and
(2) for all i ∈ P and j ∈ P i 7→ j implies that there exists s ∈ LType such that

se, i `seq Si ⇒ s and Sj ≤ s,

where we write Si instead of S(i).

The sequential type system is assumed to satisfy further properties e.g. unwind-
ing lemmas, that have already been established for some specific languages and
that are formulated precisely in Section 6.

5.2 Type system for multithreaded programs

The typing rules for the concurrent type system have the same form as those of the
sequential type system and are given in Figure 3.

Definition 5.2 (Typable multithreaded program). A concurrent program P is
typable w.r.t. type S : P → LType and security environment se, written se,S ` P ,
if

(1) Si = tinit for all initial program points i of P (initial program point of main
threads or spawn threads); and

(2) for all i ∈ P and j ∈ P: i 7→ j implies that there exists s ∈ LType such that
se, i ` Si ⇒ s and Sj ≤ s.

14

6. SOUNDNESS

The purpose of this section is to prove, under sufficient hypotheses on the sequential
type system and assuming that the scheduler is secure, that typable programs are
noninterfering. Formally, we want to prove that under suitable hypotheses (detailed
below), the following theorem holds:

Theorem 6.1. If the scheduler is secure and se,S ` P , then P is noninterfering,
provided Hypotheses 1-6 hold.

Throughout this section, we assume that P is a typable program, i.e., se,S ` P ,
and that the scheduler is secure. Moreover, we state some general hypotheses that
are used in the soundness proofs. We revisit these hypotheses in Section 7 and show
how they can be fulfilled.

State equivalence. In order to prove noninterference, we rely on a notion of state
equivalence. The definition is modular, in that it is derived from an equivalence
between global memories ∼g and a partial equivalence relation ∼l between local
states. (Intuitively, partial equivalence relations on local and global memories rep-
resent the observational power of the adversary.) In comparison to [Barthe et al.
2007a], equivalence between local states (operand stacks and program counters for
the JVM) is not indexed by local types, since these can be retrieved from the
program counter and the global type of the program.

Definition 6.1 (State equivalence). Two concurrent states s and t are:

(1) equivalent w.r.t. local states, written s
lmem∼ t, iff s.lowT = t.lowT and for every

tid ∈ s.lowT, we have s(tid) ∼l t(tid).

(2) equivalent w.r.t. global memories, written s
gmem∼ t, iff s.gmem ∼g t.gmem.

(3) equivalent, written s ∼ t, iff s
gmem∼ t and s

lmem∼ t.

In order to carry out the proofs, we also need a notion of program counter equiv-
alence between two states.

Definition 6.2. Two states s and s′ are pc-equivalent, written, s
pc∼ s′ iff s.lowT =

t.lowT and for every tid ∈ s.lowT, we have s.pc(tid) = t.pc(tid).

Unwinding lemmas. In this section, we formulate unwinding hypotheses for se-
quential instructions and extend them to a concurrent setting. Two kinds of un-
winding statements are considered: a locally respects unwinding result, which in-
volves two executions and is used to deal with execution in low environments, and
a step consistent unwinding result, which involves one execution and is used to deal
with execution in high environments. From now on, we refer to local states and
global memories as λ and µ, respectively.

Hypothesis 1 (Sequential locally respects unwinding). Assume λ1 ∼l λ2 and
µ1 ∼g µ2 and λ1.pc = λ2.pc. If 〈λ1, µ1〉 ;seq 〈λ′1, µ′1〉 and 〈λ2, µ2〉 ;seq 〈λ′2, µ′2〉,
then λ′1 ∼l λ′2 and µ′1 ∼g µ′2.

In addition, we also need a hypothesis on the indistinguishability of initial local
states.

15

Hypothesis 2 (Equivalence of local initial states). For every initial program point
i, we have σinit(i) ∼l σinit(i).

We now extend the unwinding statement to concurrent states; note that the hy-
pothesis s′.lowT = t′.lowT is required for the lemma to hold. This excludes the case
of a thread becoming hidden in an execution and not another (i.e., a high while
loop).

Lemma 6.1 (Concurrent locally respects unwinding). Assume s ∼ t and hs
hist∼ ht

and pickt(s, hs) = pickt(t, ht) = ctid and s.pc(ctid) = t.pc(ctid). If s, hs ;conc

s′, hs′ and t, ht ;conc t′, ht′ , and s′.lowT = t′.lowT, then s′ ∼ t′ and hs′
hist∼ ht′ .

We now turn to the second, so-called step consistent, unwinding lemma. The
lemma relies on the hypothesis that the current local memory is high, i.e., invisible
for the attacker. Formally, highness is captured by a predicate High lmem(λ) where
λ is a local state.

Hypothesis 3 (Sequential step consistent unwinding). Assume λ1 ∼l λ2 and µ1 ∼g

µ2. Let λ1.pc = i. If 〈λ1, µ1〉 ;seq 〈λ′1, µ′1〉 and High lmem(λ1) and H(i), then
λ′1 ∼l λ2 and µ′1 ∼g µ2.

Lemma 6.2 (Concurrent step consistent unwinding). Assume s ∼ t and hs
hist∼

ht and pickt(s, h) = ctid and s.pc(ctid) = i and High lmem(s(ctid)) and H(i). If
s, hs ;conc s′, hs′ and s′.lowT = t.lowT, then s′ ∼ t and hs′

hist∼ ht.
The proofs of the unwinding lemmas are by a case analysis on the semantics of

concurrent programs.
In addition to the above assumptions, we also need another hypothesis stating

that, under the assumptions of the concurrent locally respects unwinding lemma,
either the executed instruction is a low instruction, in which case the program
counter of the active thread remains equal after one step of execution, or that the
executed instruction is a high instruction, in which case the active thread is hidden
in one execution (high loop) or both (high conditional).

Hypothesis 4 (Preservation of pc equality). Assume s ∼ t; pickt(s, hs) = pickt(t, ht) =
ctid; s(ctid).pc = t(ctid).pc; s, hs ;conc s′, hs′ ; and t, ht ;conc t′, ht′ . Then,
s′(ctid).pc = t′(ctid).pc; or H(s′(ctid).pc); or H(t′(ctid).pc).

Note that the hypothesis is formulated w.r.t. concurrent states and concurrent
execution. However, it is immediate to derive the above hypothesis from its restric-
tion to sequential states and sequential execution.

We also need an hypothesis about visibility by the attacker:

Hypothesis 5 (High hypotheses).

(1) For every initial program point i, we have High lmem(σinit(i)).

(2) If 〈λ, µ〉 ;seq 〈λ′, µ′〉 and High lmem(λ) and H(λ.pc) then High lmem(λ′).

(3) If High lmem(λ1) and High lmem(λ2) then λ1 ∼l λ2.

16

e ::= x | n | e op e c ::= x := e | c; c | if e then c else c | while e do c | fork(c)

instr ::= binop op binary operation on stack
| push n push value on top of stack
| load x load value of x on stack
| store x store top of stack in variable x
| ifeq j conditional jump
| goto j unconditional jump
| start j creation of a thread

where op ∈ {+,−,×, /}, n ∈ Z, x ∈ X , and j ∈ P.

Fig. 4. Source and target language

The next function. Finally, the soundness proof relies on the existence of a func-
tion next that satisfies several properties. Intuitively, next computes for any high
program point its minimal observable successor, i.e., the first program point with a
low security level reachable from it. If executing the instruction at program point
i can result in a hidden thread (high if or high while), then next(i) is the first
program point such that i 7→? next(i) and the thread becomes visible again. The
existence of the next function is closely related to control dependence regions, which
are discussed in Section 7.1.

Hypothesis 6 (Existence of next function). There exists a function next : P ⇀ P
such that the next properties (NeP) hold:

NePd) Dom(next) = {i ∈ P|H(i) ∧ ¬AH (i)}
NeP1) i, j ∈ Dom(next) ∧ i 7→ j ⇒ next(i) = next(j)
NeP2) i ∈ Dom(next) ∧ j 6∈ Dom(next) ∧ i 7→ j ⇒ next(i) = j
NeP3) j, k ∈ Dom(next) ∧ i 6∈ Dom(next) ∧ i 7→ j ∧ i 7→ k ∧ j 6= k ⇒ next(j) = next(k)
NeP4) i, j ∈ Dom(next) ∧ k 6∈ Dom(next) ∧ i 7→ j ∧ i 7→ k ∧ j 6= k ⇒ next(j) = k

Intuitively, properties NeP1, NeP2, and NeP3 ensure that the next of instruc-
tions within an outermost high conditional statement coincides with the junction
point of the conditional; in addition, properties NeP1, NeP2, and NeP4 en-
sure that the next of instructions within an outermost high loop coincides with
the exit point of the loop. Note that in NeP2, it would be equivalent to re-
place j 6∈ Dom(next) by L(j); and in NeP3, it would be equivalent to replace
i 6∈ Dom(next) by L(i).

7. INSTANTIATION

In this section, we apply our main results to a simple assembly language with condi-
tional jumps and dynamic thread creation. We present the assembly language with
a semantics and a type system for noninterference but without considering concur-
rent primitives and plug these definitions into the framework for multithreading.
Then, we present a compilation function from a simple while-language with dy-
namic thread creation into assembly code. The source and target languages are
defined in Figure 4. The compilation function allows us to easily define control
dependence regions and junction points in the target code. Function next is then
defined using that information. Moreover, we prove that the obtained definition

17

P [i] = push n

se, i `seq st ⇒ se(i) :: st

P [i] = binop op

se, i `seq k1 :: k2 :: st ⇒ (k1 t k2 t se(i)) :: st

P [i] = store x se(i) t k ≤ Γ(x)

se, i `seq k :: st ⇒ st

P [i] = load x

se, i `seq st ⇒ (Γ(x) t se(i)) :: st

P [i] = goto j

se, i `seq st ⇒ st

P [i] = ifeq j ∀j′ ∈ reg(i), k ≤ se(j′)

se, i `seq k :: st ⇒ liftk(st)

Fig. 5. Transfer rules

of next satisfies the properties required in Section 6. Finally, we conclude with a
discussion about how a similar instantiation can be done for the JVM.

7.1 Sequential part of the language

The instantiation requires us to define the semantics and a type system to enforce
noninterference for the sequential primitives of the language. On the semantics
side, we assume that a local state is a pair 〈os, pc〉, where os is an operand stack,
i.e., a stack of values, and pc is a program counter, whereas a global state µ is a
map from variables to values. The operational semantics is standard and therefore
we omit it. We also define σinit(pc) to be the local state 〈ε, pc〉, where ε is the empty
operand stack.

The enforcement mechanism consists of local types which are stacks of security
levels, i.e., LType = Stack(Level); we let tinit be the empty stack of security levels.
Typing rules are summarized in Figure 5, where liftk(st) denotes the point-wise
extension of λk′. k t k′ to stacks of security levels, and reg : P ⇀ ℘(P) denotes
the region of branching points. We express the chosen security policy by assign-
ing a security level Γ(x) to each variable x. Then, we say that a program p is
typable, written `ssl p, if there exists se, reg, jun and S such that se,S ` p (as in
Definition 5.1) and additionally, (reg, jun) satisfy the so-called SOAP properties2.

The definition of state equivalence is inspired from [Barthe and Rezk 2005]: two
global memories are indistinguishable iff they coincide on all low variables. Equiva-
lence between local memories is defined relative to a mapping of program points to
stack types, using the notion of operand stack indistinguishability used in [Barthe
and Rezk 2005]. Formally, we instantiate the definitions of local and global state
equivalence, and of high stacks as follows:

〈os, pc〉 ∼l 〈os′, pc′〉 ⇐⇒ os
os∼s(pc),s(pc′) os′

µ1 ∼g µ′1 ⇐⇒ µ1
vmap∼ µ′1

High lmem(〈os, pc〉) ⇐⇒ highos(os, s(pc))

where os∼,
vmap∼ , and highos are defined as in [Barthe and Rezk 2005]:

µ1
vmap∼ µ′1 iff µ1(x) = µ′1(x) for all x ∈ V such that Γ(x) ≤ k

2Thus, the notion of typable program in the instantiation is an exact instance of Definition 5.1.
It is possible to amend this minor mismatch, but clearer to abide to presentation in [Barthe and
Rezk 2005].

18

highos(os, s) iff os and s have the same length n, and s(i) 6≤ k for all 1 ≤ i ≤ n

s
os∼s,s′ s′ is defined by the clauses

highos (s, s) highos (s′, s′)

s
os∼s,s′ s′

s
os∼s,s′ s′ v ∼k v′

v :: s
os∼k::s,k::s′ v′ :: s′

state equivalence s
•∼S,S′ s′ is defined as

os
os∼S,S′ os′ ∧ µ

vmap∼ µ′

assuming s = 〈〈os, i〉, µ〉 and s′ = 〈〈os′, i′〉, µ′〉.

We conclude this section by showing that all hypotheses, except Hypotheses 6,
follow immediately from definitions, or from the results of [Barthe and Rezk 2005].
Note that the latter rely on some assumptions about control dependence regions in
programs. Essentially, these regions represent an over-approximation of the range
of branching points. This concept is formally introduced by the functions reg :
P ⇀ ℘(P) and jun : P ⇀ P, which respectively compute the control dependence
region and the junction point for a given instruction. Both functions need to satisfy
some properties in order to guarantee noninterference in typable programs. These
properties, which are known as SOAP properties [Barthe and Rezk 2005], are given
in the Appendix, and can be guaranteed by compilation.

Lemma 7.1. Hypotheses 1, 2, 3, 4 and 5 hold for all programs p such that `ssl p.

7.2 Concurrent extension

The semantics of concurrent programs is derived from the semantics of sequential
instructions as prescribed by Definition 3.7. Likewise, the sequential type system in
Figure 5 is extended by the typing rules presented in Figure 3 to consider concurrent
programs.

The soundness of the type system for concurrent programs holds for programs P
for which there exists a function next satisfying the NeP properties. In the setting
of certifying compilation, the code consumer receives this function, together with
the security environment, and must check that the next function complies with the
properties of Hypothesis 6. This check can be performed using ideas of control
dependence regions. In the sequel, we focus on the existence of a next function
with the expected properties. There are two possible strategies for showing the
existence of a function. The more general strategy would be to derive Hypoth-
esis 6 from assumptions on sequential programs, and show that compilers which
generate sequential target programs that satisfy these assumptions can be natu-
rally extended to compilers which generate concurrent target programs for which
Hypothesis 6 holds. To conclude, one would just need to prove that in the case
of our instantiation the compiler for sequential programs does indeed verify with
the required assumptions. While this strategy is clearly in line with the approach
followed in this paper, it requires to introduce a significant amount of material. For
this reason, we follow a more direct strategy and prove that compiled programs
verify Hypothesis 6. The proof method is closely related to our earlier work on
type-preserving compilation [Barthe et al. 2006].

19

E(x) = load x E(n) = push n E(e op e′) = E(e) :: E(e′) :: binop op

S(x := e, T) = (E(e) :: store x, T)

S(c1; c2, T) = let (lc1, T1) = S(c1, T); (lc2, T2) = S(c2, T1);
in (lc1 :: lc2, T2)

S(while e do c, T) = let le = E(e); (lc, T ′) = S(c, T);
in (goto (pc + #lc + 1) :: lc :: le :: ifeq (pc−#lc−#le),

T ′)
S(if e then c1 else c2, T) = let le = E(e); (lc1, T1) = S(c1, T); (lc2, T2) = S(c2, T1);

in (le :: ifeq (pc + #lc2 + 2) :: lc2 :: goto (pc + #lc1 + 1) ::

lc1, T2)
S(fork(c), T) = let (lc, T ′) = S(c, T); in (start (#T ′ + 2), T ′ :: lc :: return)

C(c) = let (lc, T) = S(c, []); in goto (#T + 2) :: T :: lc :: return

Fig. 6. Compilation function

Similarly to the technique of [Barthe et al. 2006], we name program points where
control flow can branch or writes can occur. We add natural number labels to the
source language as follows:

c ::= [x := e]n | c; c | [if e then c else c]n | [while e do c]n | [fork(c)]n

This labeling allows us to define control dependence regions for the source code and
use this information to derive control dependence regions for the assembly code.
We introduce two functions, sregion and tregion, to deal with control dependence
regions in the source and target code, respectively.

Definition 7.1 (function sregion). For each branching command [c]n, sregion(n)
is defined as the set of labels that are inside of the command c except for those ones
that are inside of fork commands.

As in [Barthe et al. 2006], control dependence regions for low-level code are
defined based on the function sregion and a compilation function. For a complete
source program c, we define the compilation C(c) in Figure 6. We use symbol #
to compute the length of lists. Symbol :: is used to insert one element to a list
or to concatenate two existing lists. The current program point in a program is
represented by pc. The function C(c) calls the auxiliary function S which returns
a pair of programs. The first component of that pair stores the compiled code of
the main program, while the second one stores the compilation code of spawned
threads. We now define control dependence regions for assembly code and respective
junction points.

Definition 7.2 (function tregion). For a branching instruction [c]n in the source
code, tregion(n) is defined as the set of instructions obtained by compiling the
commands [c′]n

′
, where n′ ∈ sregion(n). Moreover, if c is a while loop, then

n ∈ tregion(n) as well as the instructions obtained from compiling the guard of
the loop. Otherwise, the goto instruction after the compilation of the else-branch
also belongs to tregion(n).

Junction points are computed by the function jun. The domain of this function
20

` e : L `α c : E E(n) = F (n) = α

`α [while e do c]nα : E, F

` e : L `α c : E, F `α c′ : E, F E(n) = F (n) = α

`α [if e then c else c′]nα : E, F

` e : H `H c : E, F E(n) = F (n) = H

`H [while e do c]nH : E, F

` e : H `H c : E, F `H c′ : E, F E(n) = F (n) = H

`H [if e then c else c′]nH : E, F

`α c : E, F `α c′ : E, F

`α c ; c′ : E, F

`α c : E, F E(n) = F (n) = α

`α [fork(c)]nα : E, F

Assign
` e : k k t E(n) ≤ Γ(x) E(n) = F (n) = α

`α [x := e]nα : E, F

Top-H-While
` e : H `H c : E, F E(n) = L F (n) = H

`L [while e do c]nH : E

Top-H-Cond
` e : H `H c : E, F `H c′ : E, F E(n) = L F (n) = H

`L [if e then c else c′]nH : E, F

Fig. 7. Intermediate typing rules for high-level language commands

consist of every branching point in the program. We define jun as follows:

Definition 7.3 (junction points). For every branching point [c]n in the source
program, we define jun(n) = max{i|i ∈ tregion(n)}+ 1.

Having defined control dependence regions and junction points for low-level code,
we proceed to defining next. Intuitively, next is only defined for instructions that
belong to regions corresponding to the outermost branching points whose guards
involved secrets. For every instruction i inside of an outermost branching point
[c]n, we define next(i) = jun(n). Observe that this definition captures the intuition
about next given in the beginning of Section 6. However, it is necessary to know, for
a given program, what are the outermost branching points whose guards involved
secrets. With this in mind, we extend one of the type systems given in [Barthe
et al. 2006] to identify such points. We add some rules for outermost branching
points that involved secrets together with some extra notations to know when a
command is inside of one of those points or not.

A source program c is typable, written `L c : E,F , if its command part is
typable with respect to E and F according to the rules given in Figure 7. The
typing judgment has the form `α [c]nα′ : E,F , where E and F are functions from

21

labels to security levels. Function E and F play the role of security environment
for the source code which easily allows to define the security environment for the
target code (see Definition A.7 in Appendix). Specifically, the security level E(n)
can be thought as the security level of the program counter (pc) when running
instruction number n. Function F agrees on every label that does not correspond
to an outermost branch involving secrets on the guard. This difference indicates
that low level instructions generated from compiling outermost branches should
also be considered with a program counter H . Function E is defined as in [Barthe
et al. 2006], while function F can be seen as a modular addition to the type system
presented by the authors. We omit writing E and F in type judgments when
expressing properties only related with source code. Variable α denotes if c is
part of a branching instruction that branches on secrets (H) or public data (L).
Variable α′ represents the level of the guards in branching instructions. The most
interesting rules are TOP−H−COND and TOP−H−WHILE . These rules can
be only applied when the branching commands are the outermost ones and when
they branch on secrets. Observe that such commands are the only ones that are
typable considering α = L and α′ = H . Moreover, the type system prevents explicit
(via assignment) and implicit (via control) flows [Denning and Denning 1977]. To
this end, the type system enforces the same constraints as standard security type
systems for sequential languages (e.g., [Volpano et al. 1996]). Explicit flows are
prevented by rule ASSIGN , while implicit flows are ruled out by demanding a
security environment of level H inside of commands that branch on secrets. The
type system guarantees information-flow security at the same time as it identifies
the outermost commands that branch on secrets. Function next is defined as follows:

Definition 7.4 (function next). For every branching point c in the source program
such that `L [c]nH , we have that ∀k ∈ tregion(n).next(k) = jun(n).

This definition satisfies the properties from Section 6, as shown by the following
lemma.

Theorem 7.1. Definition 7.4 satisfies properties NePd and NeP1–4.

Notice that one does not need to trust the compiler in order to verify that prop-
erties NePd and NeP1–4 are satisfied. Indeed, these properties are intended to
be checked independently from the compiler by code consumers. We are now in
condition to show the soundness of the instantiation.

Corollary 7.1 (Soundness of the instantiation). The derived type system guaran-
tees noninterference for multithreaded assembly programs.

7.3 The compilation example (revised)

We now illustrate how our definitions and intermediate type system provide the
necessary information to build the security environment se and function next for
the example given in Section 2.

The producer labels the source code in such a way that instructions in the com-
piled code match the instructions that generated them at the source level. More

22

specifically, the source code is labeled as follows:

[fork([hi ′ := 0]3; [hi ′ := 0]5; [lo := 0]7)]9;
[if hi then [hi ′ := 0]16; [hi ′ := 0]18; [hi ′ := 0]20 else [hi ′ := 0]13]11;
[lo := 1]22

Observe that instructions related to stack operations are not associated to instruc-
tions at the source level.

The program has only one branching point. The compiler consequently obtains
sregion(11) = {16, 18, 20, 13}, tregion(11) = {12, 13, 14, 15, 16, 17, 18, 19, 20}, and
jun(11) = 21 by applying Definitions 7.1, 7.2, and 7.3, respectively.

By applying the intermediate type system in Figure 7 to the labeled source, the
compiler also obtains that functions E and F are defined as follows.

labels E F

3 L L
5 L L
7 L L

labels E F

9 L L
11 L H
13 H H

labels E F

16 H H
18 H H
20 H H

labels E F

12 L L

By Definition A.7 (see Appendix), the security environment se for the compiled
code is determined as follows.

instr. se

1 L
2 E(3)
3 E(3)
4 E(4)
5 E(4)
6 E(7)

instr. se

7 E(7)
8 L
9 E(9)
10 E(11)
11 E(11)
12 E(13)

instr. se

13 E(13)
14 F (11)
15 E(16)
16 E(16)
17 E(18)
18 E(18)

instr. se

19 E(20)
20 E(20)
21 E(22)
22 E(22)
23 L

Observe that the instructions inside of the if-then-else command have H as
their security environment. Finally, the compiler obtains function next by ap-
plying Definition 7.4. Specifically, ∀k ∈ tregion(11).next(k) = jun(11) = 21 since
`L [if hi then hi ′ := 0; hi ′ := 0; hi ′ := 0 else hi ′ := 0;]11H by the type derivation
of the program on the intermediate type system.

7.4 Discussion: towards information-flow type systems for the Java Virtual Machine

The modular proof techniques developed in this paper can be extended to more
realistic languages. One original motivation for this work is in fact to build an
information-flow bytecode verifier that is able to guarantee noninterference for a
concurrent fragment of the JVM (Java Virtual Machine). Since an existing type sys-
tem for information flow checking is compatible with bytecode verification [Barthe
et al. 2007a], then also the concurrent type system that extends it as prescribed
in Definition 5.2 shall also be compatible with it. Furthermore, the definition of
a secure scheduler is compatible with the JVM, where the scheduler is mostly left
unspecified. Moreover, it is possible to, in effect, override an arbitrary scheduler
from any particular implementation of the JVM with a secure scheduler that keeps
track of high and low threads as a part of an application’s own state (cf. [Tsai et al.
2007]).

23

Thus, the main issue is to show that our modular approach can accommodate
language features that exist in Java but lack in the minimalist imperative language
of Section 7: synchronization, objects, exceptions and methods. Dealing with these
features is outside of the scope of this paper, and left for future work. Nevertheless
we discuss each of them below.

Synchronization. The semantics of the multithreaded JVM obtained by the method
described in Section 3 only partially reflects the JVM specification. In particular,
it ignores object locks, which are used to perform synchronization throughout pro-
gram execution. Thus, in order to instantiate our results to the JVM it would be
necessary to add synchronization in the framework, and to modify the scheduler
so that it only picks threads among active ones. Including synchronization is an
interesting topic for future work.

Objects. In order to define state equivalence in presence of objects, one can define
indistinguishability relative to a bijection between object references: to our best
knowledge, this approach was suggested in [Banerjee and Naumann 2005] and was
later adopted in other works, including [Barthe et al. 2007a]. We do not expect
any particular difficulty in extending our modularity results to the object fragment
of the language considered by [Barthe et al. 2007a], and thus in achieving a sound
type system for a concurrent object oriented language.

One potential issue with objects is that many JVMs do not provide an opaque
implementation of pointers, i.e., they make it possible to cast a reference to a
natural number. Hedin and Sands [Hedin and Sands 2006] have observed that
opaque pointers are dangerous when specific API are called, and proposed a type
system that remains sound in presence of non-opaque pointers. One could also
consider instantiating our framework to a bytecode variant of their type system.

Methods. Methods are largely orthogonal to multithreading issues, and our frame-
work is applicable to languages with method calls. There is a catch however: the se-
mantics of programs with method calls is often given in mix-step style, i.e., method
calls are executed in one-step; for example, [Barthe et al. 2007a] adopts this style of
semantics. One problem with mix-step semantics is that it is not compatible with
concurrency: indeed, the semantics of multithreaded programs that one obtains by
applying the rules of Figure 2 to a mix-step semantics is inaccurate.

To remedy to this problem, one must adopt a small-step semantics, and prove
the unwinding lemmas for this new semantics. It is immediate to give a small-
step semantics for methods, but it complicates the notion of state considerably,
as states must now carry a stack frame storing the local state of all method calls
currently executing. Furthermore, indistinguishability must be modified to accom-
modate this new notion of state. The overall development is substantially more
complicated than the one in [Barthe et al. 2007a], but the proofs go through—in
earlier unpublished work, we gave a proof of noninterference of the JVM, including
methods, using a small-step semantics.

Exceptions. Multiple exceptions for analysis of information flow are handled in
JIF [Myers et al. 2001] for Java, and in [Barthe et al. 2007a] for unstructured
languages. Type preserving compilation with multiple exceptions from Java to

24

bytecode appears in [Rezk 2006]. As explained in [Myers 1999], static treatment
of exceptions as discriminated unions would result in an acceptable loss of precision:
if all code for different exception handlers is included in the same control dependence
region then many programs will be deemed insecure by the static checker. Hence a
precise treatment of exceptions with a static checker for information flow that avoid
implicit flows should take account of different termination paths and distinguish
control dependence regions according to the path to which instructions belong.

In order to adapt our results to multithreaded Java with multiple exceptions we
need to adapt the sequential part of the language to consider different termination
paths, in particular control dependence regions should distinguish dependencies
caused by normal or abnormal termination due to different kind of exceptions (see
e.g., [Barthe et al. 2007a]).

Exceptions in multithreaded Java are handled and propagated as in sequen-
tial Java, except maybe by the interrupt mechanism that is not a concern by the
termination-insensitive noninterference policy that we consider here.

Exceptions that a thread may throw are handled by the stack frame corresponding
to the thread, if handled. Threads with exception handlers that execute code that
is observable, can still cause internal timing leaks. Consider for example an internal
timing leak caused by a simple two-threaded program, where hi is a high variable
and size, lo, and lo′ are low variables:

if hi {sleep(100)};
try {if (lo′ < size) {throw (new SizeException)}} catch (SizeException se) {lo := 1}
‖ sleep(50); lo := 0

The first thread should be considered as hidden, even if without throwing excep-
tions it only executes high code. Otherwise, if an exception is thrown the value of
variable lo reveals the value of variable hi .

Threads with exception handlers containing low code, should be treated as hidden
threads, exactly as defined in our framework without exceptions.

Hence, our hypothesis on the scheduler should remain the same, but the tracking
of implicit flows for the sequential part of the language should implement a fine-
grained treatment of exceptions as shown in previous works mentioned above.

Java Memory Model. Another point is that the semantics of the multithreaded
JVM obtained by the method described in Section 3 only partially reflects the
JVM specification. In particular, it ignores object locks, which are used to perform
synchronization throughout program execution. Dealing with synchronization is a
worthwhile topic for future work.

In addition, Java semantics is defined relative to a relaxed memory model, which
is not captured by our interleaving semantics except for the cases where programs
do not have races. We also discuss this issue at the end of the paragraph.

8. TYPE PRESERVING COMPILATION

Type-preserving compilation is an essential tool to ensure that applications devel-
oped using information-flow aware programming languages are compiled into code
that will be analyzed as secure by an information-flow type system for the target
language. The purpose of this section is to prove a modular type-preservation re-

25

sult for concurrent programs, under the assumption that type-preservation holds
for sequential programs. Then, we instantiate our result with the source and target
languages of the previous section. The instantiation enables us to obtain a key non-
restrictiveness result: although the source-level type system is no more restrictive
than a typical type system for a sequential language (e.g., [Volpano et al. 1996]),
the compilation of typable programs is guaranteed to be typable at low-level.

8.1 Modular proof

We assume given a source language, an information flow type system `s for se-
quential source programs, a compiler C, and an information flow type system `t

built from an information flow type system for sequential programs as prescribed
in Definition 5.2. The goal is to prove that programs that are typable with `s are
compiled into programs that are typable with `t. For the purpose of this section,
we hide the fact that the compiler might need to generate additional information
for the target type system, by allowing “target programs” to be programs extended
with additional information.

Our starting hypothesis is that the compiler preserves typability of sequential
programs.

Hypothesis 7. For all sequential source programs p, if `s p then `t C(p).

Now, consider an extended source language with a fork operator. We extend
the type system to parallel programs by defining a mapping Ts from concurrent to
source programs; note that the transformation is not assumed to preserve semantics.
Rather, the transformation captures at an abstract level the typing rule for forking;
see the next paragraph for an example.

Definition 8.1. For all concurrent programs, `s p iff `s Ts(p).

Since the concurrent type system is meant to extend the sequential type system,
we require that the transformation Ts acts as the identity on source programs.
Besides, we assume given a matching transformation Tt at target level, and assume
that the transformation commutes with compilation.

Hypothesis 8. For all concurrent source programs p, Ts(p) is sequential; fur-
thermore Ts(p) = p whenever p is sequential. Finally, for all concurrent source
programs p, C(Ts(p)) = Tt(C(p)).

To conclude, we must assume that at target level typability of transformed pro-
grams entails typability of initial programs.

Hypothesis 9. For all concurrent target programs p, if `t Tt(p) then `t p.

Under these hypotheses, one can prove type-preserving compilation.

Theorem 8.1 (Type-preserving compilation). For all concurrent source programs
p, if `s p then `t C(p).

Proof. Assume `s p. Then `s Ts(p) by definition, and by Hypothesis 8, Ts(p)
is sequential. Thus, by Hypothesis 7, we have `t C(Ts(p)). By Hypothesis 8,
C(Ts(p)) = Tt(C(p)), and so `t Tt(C(p)). By Hypothesis 9, we conclude `t C(p).

26

8.2 Instantiation to imperative language

In order to apply Theorem 8.1, we must prove that Hypotheses 7, 8 and 9 hold.
Hypothesis 7 follows from [Barthe et al. 2006], where compilation of sequential Java
programs is established.

For Hypothesis 8, we must first define Ts and Tt:

Ts is defined recursively; all clauses, except for fork, simply propagate the trans-
formation; the clause for fork is

Ts(fork(c)) = if True then skip else Ts(c)

(A simpler alternative is to replace fork(c) by c, but defining the corresponding
transformation at target level is cumbersome.)
Tt replaces every instruction start pc by the two instructions (push 1) :: (ifeq pc′).
Since the transformation introduces new instructions, pc′ needs to be recom-
puted from pc accordingly.

By construction, the transformations commute with compilation, thus Hypothesis 8
holds. Moreover, note that the definition of `s p as given in Definition 8.1 is
equivalent to the type system of [Volpano et al. 1996] with additional rule for fork:

` c : k

` fork(c) : k

where k is a security level.
To conclude, one must proves Hypothesis 9, i.e., that se,S ` Tt(p) implies se,S `

p. This is a rather direct consequence of the definition of typability and of the typing
rules.

9. RELATED WORK

Information-flow type systems for low-level languages, including JVML, and their
relation to information-flow type systems for structured source languages, have
been studied by several authors [Barthe and Rezk 2005; Genaim and Spoto 2005;
Medel et al. 2005; Barthe et al. 2006; Barthe et al. 2007a; Barthe et al. 2007].
Nevertheless, the present work (and its predecessor [Barthe et al. 2007]) provides,
to the best of our knowledge, the first proof of noninterference for a concurrent
low-level language, and the first proof of type-preserving compilation for languages
with concurrency.

This work exploits recent results on interaction between the threads and the
scheduler [Russo and Sabelfeld 2006a] in order to control internal timing leaks.
The interaction is modeled by hide and unhide primitives that communicate to the
scheduler whether a thread’s timing behavior should be “hidden”. In this paper,
there is no need for explicit hide/unhide primitives because scheduler is driven by
the security environment. If a thread is inside of a conditional with a high guard,
then it executes in a high security environment and thus its timing behavior is
automatically hidden from threads that run in a low security environment.

Other approaches [Smith and Volpano 1998; Volpano and Smith 1999; Smith
2001; 2003] to handling internal timing rely on protect(c) which, by definition,
hides the internal timing of command c. It is not difficult to implement protect()

27

under a cooperative scheduler [Russo and Sabelfeld 2006b; Tsai et al. 2007]). For a
preemptive scheduler, our work can be (very roughly) interpreted as providing re-
alistic means of implementing protect(). In addition, we allow more interleavings
(several “protected” threads might execute without blocking each other), and we
do not assume a specific scheduler but parametrize in any deterministic scheduler
that is secure. It is possible to prevent internal timing leaks by spawning dedi-
cated threads for computations that involve secrets and carefully synchronizing the
resulting threads [Russo et al. 2007]. Yet other approaches prevent internal tim-
ing leaks in code by disallowing any races on public data [Zdancewic and Myers
2003; Huisman et al. 2006; Terauchi 2008]. One implication is that some programs
that do not involve secrets (as lo := 0 ‖ lo := 1, where lo is a public variable)
are considered insecure. Still other approaches prevent internal timing by disal-
lowing low assignments after high branching [Boudol and Castellani 2002; Almeida
Matos 2006]. Less related work [Agat 2000; Sabelfeld and Sands 2000; Sabelfeld
2001; Sabelfeld and Mantel 2002; Köpf and Mantel 2006] considers external timing,
where the attacker can use a clock to measure computation time. This work con-
siders a more powerful attacker, and, as a price paid for security, disallows loops
with secret guards.

Further afield, different flavors of possibilistic noninterference have been explored
in process-calculus settings [Honda et al. 2000; Focardi and Gorrieri 2001; Ryan
2001; Honda and Yoshida 2002; Pottier 2002], but without considering the impact
of scheduling. Most recently, van der Meyden and Zhang [van der Meyden and
Zhang 2008] have investigated how the choice of a scheduler can affect security def-
initions in an abstract automata-based setting. However, they leave enforcement
mechanisms and treatment of dynamic thread creation unaddressed. For addi-
tional related work, we refer to an overview of language-based information-flow
security [Sabelfeld and Myers 2003].

10. CONCLUSIONS

We have presented a framework for controlling information flow in multithreaded
low-level code. Thanks to its modularity and language-independence, we have been
able to reuse several results for sequential languages. An appealing feature enjoyed
by the framework is that security-type preserving compilation is no more restric-
tive for programs with dynamic thread creation than it is for sequential programs.
Primitives for interacting with the scheduler are introduced by the compiler behind
the scenes, and in such a way that internal timing leaks are prevented.

We have demonstrated an instantiation of the framework to a simple impera-
tive language and have argued that our approach is amenable to extensions to
object-oriented languages. The compatibility with bytecode verification makes our
framework a promising candidate for establishing mobile-code security via type
checking.

Acknowledgments

This work was funded in part by the Sixth Framework programme of the European
Community under the MOBIUS project FP6-015905 and HATS project FP7-231620
and in part by the Swedish research agencies SSF and VR.

28

REFERENCES

Abadi, M. 1998. Protection in programming-language translations. In 25th International Collo-
quium on Automata, Languages and Programming (ICALP ’98). Lecture Notes in Computer
Science, vol. 1443. Springer-Verlag, 868–883.

Agat, J. 2000. Transforming out timing leaks. In Proc. ACM Symp. on Principles of Program-
ming Languages. 40–53.

Almeida Matos, A. 2006. Typing secure information flow: declassification and mobility. Ph.D.
thesis, Ecole Nationale Supérieure des Mines de Paris.

Banerjee, A. and Naumann, D. A. 2005. Stack-based access control and secure information
flow. Journal of Functional Programming 15, 2 (Mar.), 131–177.

Barnes, J. and Barnes, J. 2003. High Integrity Software: The SPARK Approach to Safety and
Security. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.

Barthe, G., Pichardie, D., and Rezk, T. 2007a. A certified lightweight non-interference java
bytecode verifier. In European Symposium on Programming, R. D. Niccola, Ed. Lecture Notes
in Computer Science. Springer.

Barthe, G., Pichardie, D., and Rezk, T. 2007b. A certified lightweight non-interference Java
bytecode verifier. Tech. rep., INRIA. Extended version of [Barthe et al. 2007a].

Barthe, G. and Rezk, T. 2005. Non-interference for a JVM-like language. In Proceedings of
TLDI’05, M. Fähndrich, Ed. ACM Press, 103–112.

Barthe, G., Rezk, T., and Basu, A. 2007. Security types preserving compilation. Journal of
Computer Languages, Systems and Structures.

Barthe, G., Rezk, T., and Naumann, D. 2006. Deriving an information flow checker and
certifying compiler for java. In SP ’06: Proceedings of the 2006 IEEE Symposium on Security
and Privacy (S&P’06). IEEE Computer Society, 230–242.

Barthe, G., Rezk, T., Russo, A., and Sabelfeld, A. 2007. Security of multithreaded programs
by compilation. In Proc. European Symp. on Research in Computer Security. LNCS, vol. 4734.
Springer-Verlag, 2–18.

Barthe, G., Rezk, T., Russo, A., and Sabelfeld, A. 2009. Security of mul-
tithreaded programs by compilation. Full version. Tech. rep. Located at
http://www.cse.chalmers.se/∼russo/tissecfull.pdf.

Boudol, G. and Castellani, I. 2002. Noninterference for concurrent programs and thread
systems. Theoretical Computer Science 281, 1, 109–130.

Chapman, R. and Hilton, A. 2004. Enforcing security and safety models with an information
flow analysis tool. ACM SIGAda Ada Letters 24, 4, 39–46.

Denning, D. E. and Denning, P. J. 1977. Certification of programs for secure information flow.
Comm. of the ACM 20, 7 (July), 504–513.

Focardi, R. and Gorrieri, R. 2001. Classification of security properties (part I: Information
flow). In Foundations of Security Analysis and Design, R. Focardi and R. Gorrieri, Eds. LNCS,
vol. 2171. Springer-Verlag, 331–396.

Genaim, S. and Spoto, F. 2005. Information Flow Analysis for Java Bytecode. In Proceedings
of VMCAI’05, R. Cousot, Ed. LNCS, vol. 3385. Springer-Verlag, 346–362.

Goguen, J. A. and Meseguer, J. 1982. Security policies and security models. In Proc. IEEE
Symp. on Security and Privacy. 11–20.

Hedin, D. and Sands, D. 2006. Noninterference in the presence of non-opaque pointers. In
Proceedings of CSFW’06. IEEE Computer Society Press, 255–269.

Honda, K., Vasconcelos, V., and Yoshida, N. 2000. Secure information flow as typed process
behaviour. In Proc. European Symp. on Programming. LNCS, vol. 1782. Springer-Verlag, 180–
199.

Honda, K. and Yoshida, N. 2002. A uniform type structure for secure information flow. In Proc.
ACM Symp. on Principles of Programming Languages. 81–92.

Huisman, M., Worah, P., and Sunesen, K. 2006. A temporal logic characterisation of observa-
tional determinism. In Proc. IEEE Computer Security Foundations Symposium.

29

Knudsen, J. 2002. Networking, user experience, and threads. Sun Technical Articles and Tips
http://developers.sun.com/techtopics/ mobility/midp/articles/threading/.

Köpf, B. and Mantel, H. 2006. Eliminating implicit information leaks by transformational
typing and unification. In Formal Aspects in Security and Trust, Third International Workshop
(FAST’05). LNCS, vol. 3866. Springer-Verlag, 47–62.

Mahmoud, Q. H. 2004. Preventing screen lockups of blocking operations. Sun Technical Articles
and Tips http://developers.sun.com/techtopics/ mobility/midp/ttips/screenlock/.

Medel, R., Compagnoni, A., and Bonelli, E. 2005. A typed assembly language for non-
interference. In Proceedings of ICTCS 2005, M. Coppo, E. Lodi, and G. Pinna, Eds. LNCS,
vol. 3701. Springer-Verlag, 360–374.

Morrisett, G., Walker, D., Crary, K., and Glew, N. 1999. From System F to typed assembly
language. ACM TOPLAS 21, 3 (May), 528–569.

Myers, A. C. 1999. JFlow: Practical mostly-static information flow control. In Proc. ACM Symp.
on Principles of Programming Languages. 228–241.

Myers, A. C., Zheng, L., Zdancewic, S., Chong, S., and Nystrom, N. 2001. Jif: Java infor-
mation flow. Software release. http://www.cs.cornell.edu/jif.

Necula, G. C. 1997. Proof-carrying code. In Proc. ACM Symp. on Principles of Programming
Languages. 106–119.

Pottier, F. 2002. A simple view of type-secure information flow in the pi-calculus. In Proc.
IEEE Computer Security Foundations Symposium. 320–330.

Pottier, F. and Simonet, V. 2003. Information flow inference for ML. ACM TOPLAS 25, 1
(Jan.), 117–158.

Rezk, T. 2006. Verification of confidentiality policies for mobile code. Ph.D. thesis, Université
de Nice Sophia-Antipolis.

Russo, A., Hughes, J., Naumann, D., and Sabelfeld, A. 2007. Closing internal timing channels
by transformation. In Asian Computing Science Conference (ASIAN’06). LNCS. Springer-
Verlag.

Russo, A. and Sabelfeld, A. 2006a. Securing interaction between threads and the scheduler.
In Proc. IEEE Computer Security Foundations Symposium. 177–189.

Russo, A. and Sabelfeld, A. 2006b. Security for multithreaded programs under cooperative
scheduling. In Proc. Andrei Ershov International Conference on Perspectives of System Infor-
matics. LNCS. Springer-Verlag.

Ryan, P. 2001. Mathematical models of computer security—tutorial lectures. In Foundations
of Security Analysis and Design, R. Focardi and R. Gorrieri, Eds. LNCS, vol. 2171. Springer-
Verlag, 1–62.

Sabelfeld, A. 2001. The impact of synchronisation on secure information flow in concurrent
programs. In Proc. Andrei Ershov International Conference on Perspectives of System Infor-
matics. LNCS, vol. 2244. Springer-Verlag, 225–239.

Sabelfeld, A. and Mantel, H. 2002. Static confidentiality enforcement for distributed programs.
In Proc. Symp. on Static Analysis. LNCS, vol. 2477. Springer-Verlag, 376–394.

Sabelfeld, A. and Myers, A. C. 2003. Language-based information-flow security. IEEE J.
Selected Areas in Communications 21, 1 (Jan.), 5–19.

Sabelfeld, A. and Sands, D. 2000. Probabilistic noninterference for multi-threaded programs.
In Proc. IEEE Computer Security Foundations Symposium. 200–214.

Simonet, V. 2003. The Flow Caml system. Software release. Located at
http://cristal.inria.fr/∼simonet/soft/flowcaml/.

Smith, G. 2001. A new type system for secure information flow. In Proc. IEEE Computer Security
Foundations Symposium. 115–125.

Smith, G. 2003. Probabilistic noninterference through weak probabilistic bisimulation. In Proc.
IEEE Computer Security Foundations Symposium. 3–13.

Smith, G. and Volpano, D. 1998. Secure information flow in a multi-threaded imperative lan-
guage. In Proc. ACM Symp. on Principles of Programming Languages. 355–364.

Terauchi, T. 2008. A type system for observational determinism.

30

Tsai, T. C., Russo, A., and Hughes, J. 2007. A library for secure multi-threaded information
flow in Haskell. In Proc. of the 20th IEEE Computer Security Foundations Symposium.

van der Meyden, R. and Zhang, C. 2008. Information flow in systems with schedulers.

Volpano, D. and Smith, G. 1999. Probabilistic noninterference in a concurrent language. J.
Computer Security 7, 2–3 (Nov.), 231–253.

Volpano, D., Smith, G., and Irvine, C. 1996. A sound type system for secure flow analysis. J.
Computer Security 4, 3, 167–187.

Zanardini, D. 2006. Abstract non-interference in a fragment of java bytecode. In SAC, H. Had-
dad, Ed. ACM, 1822–1826.

Zdancewic, S. and Myers, A. C. 2003. Observational determinism for concurrent program
security. In Proc. IEEE Computer Security Foundations Symposium. 29–43.

A. APPENDIX

Proof of soundness of concurrent type system

Proofs of unwinding lemmas.

Lemma 6.1 (Concurrent locally respects unwinding). Assume s ∼ t and
hs

hist∼ ht and pickt(s, hs) = pickt(t, ht) = ctid and s.pc(ctid) = t.pc(ctid). If
s, hs ;conc s′, hs′ and t, ht ;conc t′, ht′ , and s′.lowT = t′.lowT, then s′ ∼ t′ and
hs′

hist∼ ht′ .

Proof. We only prove that s′ ∼ t′, since hs′
hist∼ ht′ is a direct consequence of the

hypotheses and of the definition of secure scheduler. We distinguish two cases:

(1) The instruction to be executed is a sequential instruction. By definition of the
semantics: 〈s(ctid), s.gmem〉 ;seq 〈s′(ctid), s′.gmem〉 and 〈t(ctid), t.gmem〉 ;seq

〈t′(ctid), t′.gmem〉. By hypothesis, we have s
gmem∼ t and s(ctid) ∼l t(ctid).

Thus by the sequential LR unwinding hypothesis, we have s′
gmem∼ t′ and

s′(ctid) ∼l t′(ctid). Since s′.lowT = t′.lowT, we conclude that s′
lmem∼ t′ and

hence s′ ∼ t′ by definition of state equivalence.
(2) The instruction to be executed is of the form start pc. By the hypotheses and

the definition of state equivalence, it is sufficient to show that freshtk(s) =
freshtk(t) = ntid , where se(pc) = k and σinit(pc) ∼l σinit(pc). This follows from
equivalence of local initial states.

Lemma 6.2 (Concurrent step consistent unwinding). Assume s ∼ t and
hs

hist∼ ht and pickt(s, h) = ctid and s.pc(ctid) = i and High lmem(s(ctid)) and H(i).
If s, hs ;conc s′, hs′ and s′.lowT = t.lowT, then s′ ∼ t and hs′

hist∼ ht.

Proof. We only prove that s′ ∼ t′, since hs′
hist∼ ht′ is a direct consequence of the

hypotheses and of the definition of secure scheduler. We distinguish two cases:

(1) The instruction to be executed is a sequential instruction. By definition of
the semantics: 〈s(ctid), s.gmem〉 ;seq 〈s′(ctid), s′.gmem〉. By hypothesis, we
have s

gmem∼ t and s(ctid) ∼l t(ctid). Thus by the sequential SC unwinding
hypothesis, we have s′

gmem∼ t and s′(ctid) ∼l t(ctid). We conclude from s
lmem∼ t

31

and from s′.lowT = t.lowT that s′
lmem∼ t, and that s′ ∼g t by definition of state

equivalence.

(2) The instruction to be executed is of the form start pc. By the hypotheses and the
definition of state equivalence, it is sufficient to notice that the created thread
is not observable, i.e., H(pc) which follows from se(i) ≤ se(pc) by typability,
and H(i).

Lemma 7.1. Hypotheses 1, 2, 3, 4 and 5 hold for all programs p such that `ssl p.

Proof. Hypothesis 1. is an instance of the low lemma of [Barthe and Rezk 2005].
The lemma can be formulated as:

s
•∼S,S′ s′

s ;seq t
s′ ;seq t′

s.pc = s′.pc = i
i ` S ⇒ T
i ` S′ ⇒ T ′

⇒ t

•∼T,T ′ t′ ∧ (t.pc = t′.pc ∨ Φt,t′,T,T ′)

where

Φt,t′,T,T ′ = highos(t, T) ∧ highos(t′, T ′) ∧ (H(t.pc) ∨H(t′.pc))

Indeed, assume that se,S ` P and define S = S′ = Si. Applying the lemma, we
conclude that t

•∼T,T ′ t′ for T ≤ Sj and T ′ ≤ Sj′ , where j = t.pc and j′ = t.pc′.
There are two cases to consider: either j = j′, in which case we can apply the
double monotony lemma, see [Barthe et al. 2007b], to conclude, or j 6= j′, in which
case Sj and Sj′ are high, in which case we conclude by definition of operand stack
indistinguishability.

Hypothesis 2. is a trivial consequence of the definition of σinit(i) = 〈ε, i〉 and of
the fact that stack types should be empty at initial program points.

Hypothesis 3. is an instance of the high lemma of [Barthe and Rezk 2005]. The
lemma can be formulated as:

s
•∼S,S′ s′

s ;seq t
highos(s, S)

H(s.pc)
s.pc ` S ⇒ T

 ⇒ t
•∼T,S′ s′ ∧ highos(t, T)

Indeed, assume that se,S ` P and define S = Si. Applying the lemma, we conclude
that t

•∼T,S′ s′ for T ≤ Sj , where j = t.pc. We can apply the single monotony
lemma, see [Barthe et al. 2007b], to conclude.

Hypothesis 4. follows from unfolding the definition and from the low lemma.
Indeed, we have to show that one of the following holds: either s′(ctid).pc =
t′(ctid).pc, or H(s′(ctid).pc) or H(t′(ctid).pc). By the low lemma, we conclude.

32

s, h ;conc s′, h′ GH0(s) GH0(s
′)

s, h ;vis
conc s′, h′

s, h ;conc s′, h′ GH1(s) GH1(s
′)

s, h ;hid
conc s′, h′

s, h ;hid
conc s′, h′ s′, h′ ;hid

conc s′′, h′′

s, h ;hid
conc s′′, h′′

s, h ;conc s′, h′ s′, h′ ;hid
conc s′′, h′′ s′′, h′′ ;conc s′′′, h′′′ GH0(s) GH0(s

′′′)

s, h ;vis
conc s′′′, h′′′

Fig. 8. Auxiliary execution relations

Hypothesis 5. (1) and (3) are immediate consequences of the definition of ini-
tial states and operand stack indistinguishability. Item (2) follows from a simple
analysis of the type system.

Execution traces. To conclude the proof of noninterference, we introduce an aux-
iliary function ;vis

conc that collapses execution steps on hidden threads: intuitively,
s ;vis

conc s′ iff neither s or s′ have a hidden thread, and s ;conc s′ or s ;?
conc s′ and

all intermediate states have a hidden state. The formal definition of s ;vis
conc s′ is

given in Figure 8; the definition relies on the following four predicates on concurrent
states, where #X denotes the cardinal of X:

GH(s) ⇔ ∀tid ∈ s.highT. High lmem(s(tid))
GH≤1(s) ⇔ GH(s) ∧#(s.hidT) ≤ 1
GH1(s) ⇔ GH(s) ∧#(s.hidT) = 1
GH0(s) ⇔ GH(s) ∧#(s.hidT) = 0

and two execution relations ;vis
conc and ;hid

conc defined by the clauses of Figure 8;
informally, s ;vis

conc s′ iff s ;?
conc s′ and GH0(s) and GH0(s′), and all intermediate

steps si verify GH1(si).

Lemma A.1. If P, µ1 ⇓ µ′1, then sinit(µ1), εhist(;vis
conc)

?s with s.lowT = ∅ and
s.gmem = µ′1.

Proof. First, we prove that GH≤1 is an invariant of program execution, using the
GH hypotheses and the hypothesis that the scheduler is secure. Then, we prove
that final states must verify GH0. It is then easy to conclude.

Next, we prove the invariance of next under high steps in presence of a hidden
thread. Below, we extend next as a function to states s such that GH1(s), and
define next(s) as s.pc(tid), where s.hidT = {tid}.

Lemma A.2. If s, hs ;hid
conc s′, hs′ and s ∼ t and s

pc∼ t then s′ ∼ t and hs
hist∼ hs′ ,

and s′
pc∼ t, and next(s) = next(s′).

Proof. The proof proceeds by induction over the derivation of s, hs ;hid
conc s′, hs′

and uses the fact that the scheduler is secure, and that by definition of ;hid
conc,

GH1(s) and GH1(s′).
33

If s, h ;conc s′, h′. Since s, hs ;hid
conc s′, hs′ , we have s.lowT = s′.lowT; besides,

s.lowT = t.lowT as s
pc∼ t. Hence s′.lowT = t.lowT. Let pickt(s, hs) = ctid

and s.pc(ctid) = i. As GH1(s), we have H(i) (since the scheduler is secure),
and thus High lmem(s(ctid)). Item i) follows from the concurrent SC unwinding
lemma (Lemma 6.2). Item ii) follows from the fact that s

pc∼ s′, and item iii)
follows from the observation that if i ∈ Dom(next), i.e., s.hidT = {ctid}, then
s′.pc(ctid) = i′ ∈ Dom(next), and hence by NeP1, next(i) = next(i′), hence
next(s) = next(s′); otherwise, if i 6∈ Dom(next), then next(s) = next(s′) holds
trivially.
If s, h ;hid

conc s0, h0 and s0, h0 ;hid
conc s′, hs′ , then we can apply the induction

hypothesis to both reduction sequences, using the conclusions of the first ap-
plication of the induction hypothesis to apply the second one, to conclude that
s0 ∼ t and h

hist∼ h0 and s0
pc∼ t and next(s) = next(s0) and s′ ∼ t and h0

hist∼ hs′

and s′
pc∼ t and next(s0) = next(s′). We are done by transitivity of history

equivalence and pc equivalence and equality.

Next, we prove a locally respects lemma for ;vis
conc by using Lemma A.2.

Lemma A.3. If s, hs ;vis
conc s′, hs′ and t, ht ;vis

conc t′, ht′ and s ∼ t and s
pc∼ t and

hs
hist∼ ht then s′ ∼ t′ and s′

pc∼ t′ and h′s
hist∼ h′t.

Proof. Let ks = se(is), where is = s(ctids).pc and ctids = pickt(s, hs) and kt =
se(it) where it = t(ctid t).pc and ctid t = pickt(t, ht). By definition of ;vis

conc, there
are four cases to treat; we only consider two cases:

if s, hs ;conc s′, hs′ and t, ht ;conc t′, ht′ . Note that s.lowT = t.lowT follows
from s

pc∼ t. Hence, by definition of secure scheduler, there are two cases to
treat: either ctids = ctid t and ks = kt, or else ks 6≤ k and kt 6≤ k.
In the first case, observe that necessarily s′.lowT = s.lowT and t′.lowT = t.lowT,
and thus s′.lowT = t′.lowT. Furthermore, is = it. Item i) follows by Lemma 6.1;
item ii) follows from Hypothesis 4; item iii) follows from the fact that hs′ =
〈ctids, ks〉 :: hs and ht′ = 〈ctid t, kt〉 :: ht.
In the second case, the result is a direct consequence of the definitions.
if s, hs ;conc s1, hs1 ;hid

conc s2, hs2 ;conc s′, hs′ and t, ht ;conc t1, ht1 ;hid
conc

t2, ht2 ;conc t′, ht′ . In this case, we must have ctids = ctid t (so we drop
subscripts) and ks = kt, and furthermore s1.lowT = t1.lowT and is = it.
We apply Lemma 6.1 to s and t to conclude that s1 ∼ t1 and hs1

hist∼ ht1 .
Furthermore, s1

pc∼ t1, and by NeP3, next(s1) = next(t1).
By applying Lemma A.2 to s1, s2 and t1, we conclude that s2 ∼ t1, and
hs1

hist∼ hs2 , and s2
pc∼ t1, and next(s1) = next(s2). Using these facts and by

applying Lemma A.2 on t1, t2 and s2, we conclude that t2 ∼ s2, and ht1
hist∼ ht2 ,

and t2
pc∼ s2, and next(t1) = next(t2).

To prove that s′ ∼ t′, we apply Hypothesis 3 to conclude that s2(ctid) ∼l

s′(ctid) and s2
gmem∼ s′. Likewise, t2(ctid) ∼l t′(ctid) and t2

gmem∼ t′. By
Hypothesis 5, we also have s2(ctid) ∼l t2(ctid), and hence s′(ctid) ∼l t′(ctid),

34

from which it is easy to conclude.
To conclude that s′

pc∼ t′, we use the fact that next(s2) = next(t2) and apply
NeP2.
To conclude that hs′

hist∼ ht′ , we use the fact that hs1

hist∼ ht1 and that hs1

hist∼ hs′

and ht1
hist∼ ht′ .

We can now conclude the proof of soundness (Theorem 6.1) by repeatedly apply-
ing Lemma A.3, and by Lemma A.1.

Soundness of the instantiation

Definition A.1 (Source labels and control flows). Natural numbers are added as
labels to the source syntax to identify program points where control flow can branch.
Therefore, commands are described by the following grammar:

c ::= [x := e]n | c; c | [if e then c else c]n | [while e do c]n | [fork(c)]n

Definition A.2 (Branching commands). The branching commands are those of
the form if e then c else c and while e do c . The set LL# consists on all the
labels of branching commands in the program.

We define a notion of contexts to refer to instructions inside of programs.

Definition A.3 (Contexts). A context C for commands is defined as an element
of the following grammar:

C ::=• | [x := e]n | [if e then c else C]n | [if e then C else c]n |
[while e do C]n | c;C | C; c | [fork(C)]n

where e is an expression, c is a command, c is a single command, and C is a context
denoting a single command.

The definition of contexts for unlabeled commands is very similar to Definition
A.3. Therefore, we abuse of notation and denote C as contexts for labeled or
unlabeled commands. We define the size of context as follows.

Our compilation function S takes two arguments: the code to compiled and the
compiled code belonging to different threads. For technical reasons, it is neces-
sary to identify what is the value of the second argument when the compilation of
commands are performed. We then introduce the following judgment.

Definition A.4. Given commands c and c′, and sequences of compiled instructions
T , and T ′, the judgment S(c, T) ::` S(c′, T ′) is defined by the following rules.

S(c, T) ::` S(c, T)
[REFL]

S(c1, T) ::` S(c′, T ′)
S(c1; c2, T) ::` S(c′, T ′)

[SEQ1]

35

(lc1, T1) = S(c1, T) S(c2, T1) ::` S(c′, T ′)
S(c1; c2, T) ::` S(c′, T ′)

[SEQ2]

S(c1, T) ::` S(c, T)
S([if e then c1 else c2]n, T) ::` S(c, T)

[IF1]

(lc1, T1) = S(c1, T) S(c2, T1) ::` S(c, T)
S([if e then c1 else c2]n, T) ::` S(c, T)

[IF2]

S(c, T) ::` S(c′, T ′)
S([while e do c]n, T) ::` S(c′, T ′)

[WHL]
S(c, T) ::` S(c′, T ′)

S(fork(c), T) ::` S(c′, T ′)
[FRK]

S(c, T) ::` S(c′, T ′) S(c′, T ′) ::` S(c′′, T ′′)
S(c, T) ::` S(c′′, T ′′)

[TRANS]

Intuitively, S(c, T) ::` S(c′, T ′) denotes the fact that when compiling the com-
mand c, the function S receives T ′ as a second argument when compiling c′. For
simplicity, we write S(c, []) ::` S(c′, T ′) as C(c) ::` S(c′, T ′).

We assume that two instructions are the same iff they are located in the same
position of in the compiled code. The following function is useful to define regions
at the target code.

Definition A.5 (Function �). Given a program P and its compilation lp = C(P),
the function � :: lp → [1..#lp] is defined as �(i) = the position of the instruction i
in the sequence lp.

We then define regions in the target code.

Definition A.6 (Compiler regions). Given a branching command [c]n in a source
program P . Then, we define tregion(n) as follow:

. [c]n = [if e then c1 else c2]n)

tregion(n) = (
[

n′∈sregion(n)

{�i |∃T. i ∈ fst(S([c′]n
′
, T)), C(P) ::` S([c′]n

′
, T)})

[
{�goton

else}

where goton
else denotes the goto instructions placed after the compilation of com-

mand c2 – see Figure 6.
. [c]n = [while e do c]n)

tregion(n) = (
S

n′∈sregion(n){�i |∃T. i ∈ fst(S([c′]n
′
, T)), C(P) ::` S([c′]n

′
, T)})S

{�(ifeqn
w)}

S
{�i|i ∈ en

w}

where en
w and ifeqn

w denote the sequence of instructions obtaining by compiling the
guard e and the ifeq instruction generated by compiling the while itself, respectively
– see Figure 6.

We indicate how to determine security environment se from the functions E and
F described in Figure 7.

36

Definition A.7 (se determined by E and F). Given a program P and an instruc-
tion i ∈ C(P), we define se(�(i)) as follows:

If i = start and �(i) = 1, then se(�(i)) = L.
If i = return and �(i) = #C(P), then se(�(i)) = L.
If i = return and [fork(c)]n is the smallest fork such that i ∈ snd(S([fork(c)]n, T))
and C(P) ::` S([fork(c)]n, T), then se(�(i)) = E(n).
If i = goton

else , then se(�(i)) = F (n).
If i = ifeqn

w , then se(�(i)) = F (n).
If i ∈ en

w , then se(�(i)) = F (n).
Otherwise, se(�(i)) = E(n), where [c]n is the smallest command in P such
that i ∈ fst(S([c]n, T)) and C(P) ::` S([c]n, T).

The following two lemmas are important to prove NePd. The first one indicates
that it is always possible to reach a low instruction after getting out of a conditional
whose guard contains secrets.

Lemma A.4. Given se obtained as described in Definition A.7, program P , a
context C, a branching command [c]n such that P = C[[c]n], `L P , `L [c]nH is in the
type derivation of P , lp = C(P), i ∈ tregion(n); then ∃j ∈ lp.i 7→∗ �(j)∧se(�(j)) =
L

The next lemma indicates that instructions, which their security environment is
high, are placed inside of high branches.

Lemma A.5 (From inside of top-level-branches). Given commands d and c, and
label n such that `L d, `H [c]nH is in the type derivation of `L d and n ∈ labels(d),
then there exists a command c′ and a label k such that k ∈ labels(d), `L [c′]kH is in
the type derivation of `L d, and n ∈ labels(c′).

Theorem A.1 (NePd). Dom(next) = {i ∈ P|H(i) ∧ ∃j ∈ P. i 7→? j ∧ ¬H(j)}

Proof. In order to prove this equality, we need to prove inclusion of sets. Firstly,
Dom(next) ⊆ {i ∈ P|H(i) ∧ ∃j ∈ P. i 7→? j ∧ ¬H(j)}) is proved by inspecting
Definition 7.4, and Lemma A.4. Lastly, {i ∈ P|H(i) ∧ ∃j ∈ P. i 7→? j ∧ ¬H(j)} ⊆
Dom(next)) is proved by contradiction. We assume that k ∈ {i ∈ P|H(i) ∧ ∃j ∈
P. i 7→? j ∧ ¬H(j)} ∧ k /∈ Dom(next). Then, we do case analysis on the command
which compilation generated the instruction i such that �(k) = i, and based on
Lemma A.5, contradictions are obtained.

We show a property regarding next that is important to prove NeP1.

Lemma A.6 (next is not defined for join points). Given a branching point [c]n in
the typable source program `L P such that `L [c]nH , then next(jun(n)) is undefined.

Proof. By contradiction.

Theorem A.2 (NeP1). i, j ∈ Dom(next) ∧ i 7→ j ⇒ next(i) = next(j)

Proof. Since i ∈ Dom(next), there exists a command ci and a number ni such that
`L [ci]ni

H and ∀k ∈ tregion(ni).next(k) = jun(ni). On the other hand, since j ∈
Dom(next), there exists another command cj and a number nj such that `L [cj]

nj

H

37

and ∀k ∈ tregion(nj).next(k) = jun(nj). By instantiating SOAP 1 with i and j, we
have that i 7→ j ∧(i = ni ∨ i ∈ tregion(ni)) ⇒ j ∈ tregion(ni) ∨j = jun(ni), which
we split into:

i 7→ j ∧ i = ni ⇒ j ∈ tregion(ni) ∨ j = jun(ni) ∨ (1)
i 7→ j ∧ i ∈ tregion(ni) ⇒ j ∈ tregion(ni) ∨ j = jun(ni) (2)

Since i ∈ Dom(next), we have that i ∈ tregion(ni). We proceed by doing case
analysis on i.

i = ni). Observe that this can happen when ci is a while-loop. By (1), we have
that j ∈ tregion(ni) ∨ j = jun(ni).

j ∈ tregion(ni)). By definition of tregion(ni), we have that next(j) = jun(ni),
which implies that next(i) = next(j).

j = jun(ni)). By Lemma A.6, next(j) is undefined. However, j ∈ Dom(next) by
Hypothesis, which implies that next(j) is defined. Contradiction.

i ∈ tregion(ni)). By (2), we have that j ∈ tregion(ni) ∨ j = jun(ni).
j ∈ tregion(ni)). By definition of tregion(ni), we have that next(j) = jun(ni),

which implies that next(i) = next(j).
j = jun(ni)). By Lemma A.6, next(j) is undefined. However, j ∈ Dom(next) by

Hypothesis, which implies that next(j) is defined. Contradiction.

Theorem A.3 (NeP2). i ∈ Dom(next) ∧ j 6∈ Dom(next) ∧ i 7→ j ⇒ next(i) = j

Proof. Since i ∈ Dom(next), there exists a command c and a number n such that
`L [c]nH and ∀k ∈ tregion(n).next(k) = jun(n). We also know that i ∈ tregion(n).
By instantiating SOAP 1 with i and j, we have that i 7→ j ∧(i = n∨ i ∈ tregion(n))
⇒ j ∈ tregion(n) ∨ j = jun(n), which we split into:

i 7→ j ∧ i = n ⇒ j ∈ tregion(n) ∨ j = jun(ni) ∨ (3)
i 7→ j ∧ i ∈ tregion(n) ⇒ j ∈ tregion(n) ∨ j = jun(n) (4)

We proceed by doing case analysis on i.

i = ni). Observe that this can happen when ci is a while-loop. By (3), we have
that j ∈ tregion(n) ∨ j = jun(n).

j ∈ tregion(n)). It cannot happen. Observe that we assume that j /∈ tregion(n)
by Hypothesis.

j = jun(n)). Since i ∈ tregion(n), we know that next(i) = jun(n) and j = jun(n),
which implies that next(i) = j as expected.

i ∈ tregion(ni)). It proceeds similarly as when i = ni but applying (4) instead.

In order to prove NeP3, we firstly need to show that the compilation function
in Figure 6 preserves inclusion of regions. More precisely, we have that

Lemma A.7. Given a command cp with two branching instructions [c1]n1 [c2]n2 ,
where n1 6= n2, and two contexts C1 and C2 with only a hole each one. If cp =
C1[[c1]n1] and cp = C2[[c2]n2], then

38

If sregion(n1) ⊂ sregion(n2), then tregion(n1) ⊂ tregion(n2).
If sregion(n2) ⊂ sregion(n1), then tregion(n2) ⊂ tregion(n1).
If sregion(n1) ∩ sregion(n2) = ∅, then tregion(n1) ∩ tregion(n2) = ∅.

The following two lemmas are very similar to the statement of NeP3, but they
include some assumptions about the typing of branching point [c]n.

Lemma A.8. Given program P and command [c]i such that `α [c]iα is in the type
derivation of `LP , j, k ∈ Dom(next), i 6∈ Dom(next), i 7→ j, i 7→ k, and j 6= k, where
α ∈ {L,H }, then next(k) = next(j).

Proof. It consists on proving that the hypothesis does not hold. To do that, we
consider, based on Lemma A.7, how target regions associated to k and i are in-
cluded.

Lemma A.9. Given program P and command [c]i such that `L [c]iH is in the type
derivation of `LP , j, k ∈ Dom(next), i 6∈ Dom(next), i 7→ j, i 7→ k, and j 6= k, then
next(k) = next(j).

Proof. By case analysis on [c]i.

Theorem A.4 (NeP3). j, k ∈ Dom(next) ∧ i 6∈ Dom(next) ∧ i 7→ j ∧ i 7→ k ∧ j 6=
k ⇒ next(j) = next(k)

Proof. We have that i is a branching command. Consequently, [c]i can be typed as
`L [c]iL, `H [c]iH , or `L [c]iH in the type derivation of the program. By case analysis
on the typing of [c]i, the result follows based on Lemmas A.8 and A.9.

Theorem A.5 (NeP4). i, j ∈ Dom(next) ∧ k 6∈ Dom(next) ∧ i 7→ j ∧ i 7→ k ∧ j 6=
k ⇒ next(j) = k

Proof. By applying Theorem A.2 with i and j, we obtain that next(i) = next(j).
By applying Theorem A.3 with i and k, we obtain that next(i) = k. Therefore, we
have that next(j) = next(i) = k.

Theorem 6.1 Definition 7.4 satisfies properties NePd and NeP1–4.

Proof. The proof easily follows from Theorems A.1, A.2, A.3, A.4, and A.5.

Typability Preservation

The following lemma claims that a source expression typable compiles to typable
target code. Besides the conclusion of typability for the target code, the lemma
also states that the final security operand stacks are of the form k : st, with k being
the type of the source expression, and st being the initial operand stack used in the
transfer rules for the compiled code. Since the new concurrent features of source
and target languages in this paper do not include new expressions, this lemma is
equivalent to previous work for sequential languages, and a proof can be found in
[Rezk 2006].

Lemma A.10. Let e be an expression in [c]n such that [c]n is the inner-most
command that encloses e and Γ ` c : E,F and Γ ` e : k, and S(c)[i..j] = E(e). Let
se be the security environment determined by E,F . Then for any sti ∈ ST there
exist sti+1, ..stj such that the following hold:

39

(1) for every l 7→ l′ in i..j then l, se ` stl ⇒ stl′ ;
(2) j, se ` stj ⇒ (k t se(i)) :: sti.

Theorem 6.2 For a given source-level program c, assume nf (c) is obtained from
c by replacing all occurrences of fork(d) by d. If command nf (c) is typable under
the Volpano-Smith-Irvine type system [Volpano et al. 1996] then se,S ` C(c) for
some se and S.

Proof. First we define how to obtain intermediate typing from the high level typing
as follows: Let D be a typing derivation for a source program SP in the high level
type system. Define security environments E and F as follows:

If n belongs to some region of a branching label n′ of a command c′ in SP such
that the intro judgement for c′ types it with write effect H, then E(n) and
F (n) are defined as the write level of the intro judgement for [c]n in D. That
is, if D ::` c : H then F (n) = E(n) = H.
Otherwise, E(n) = L. If n is a branching label not contained in any region
such that its intro judgement for types it with write effect H, then F (n) = H.

By induction in the structure of the source commands.
Case: c ≡ [x := e]n. We have to prove that if [x := e]n is typable:

Γ ` e : k k ≤ Γ(x)

Γ ` x := e : Γ(x)

then the constraint k t E(n) ≤ Γ(x) from its corresponding intermediate typing
rule holds. By definition of E above, if Γ(x) = H and n is inside a high region then
E(n) = H. Otherwise E(n) = L. So the constraint k t E(n) ≤ Γ(x) is satisfied
because of the contraint of the (Assign) high level typing rule for, k ≤ Γ(x). By
Definition A.7, for all program points j included in the compilation of [x := e]n, then
se(j) = E(n). By Lemma A.10, we have that typability of compilation of expression
e leads to an security operand stack of the form (k t se(i)) :: sti. Typability of
the store instruction in n follows by constraint k t E(n) ≤ Γ(x) and the fact that
E(n) = se(j) for all j in n.

Case: c ≡ [if e then c1 else c2]n. In the high level type system:

Cond
` e : k ` c1 : k ` c2 : k

` [if e then c else c′]n : k

We need to show that the if command is typable by the intermediate type system
with the definition of E,F given above. We need to show that if ` ci : H then
`α ci : E,F . This follows by inductive hypothesis. Furthermore if n does not belong
to any high region, then we need to show the hypothesis of the TOP −H−COND
rule on E, that is F (n) = L. This follows by definition of F above. To prove that
compilation of command n is typable, recall that by definition of source regions, c1

and c2 are included in the region of n and then by definition of E above F (n′) =
E(n′) = H for all program points n′ inside a high region. By Definition A.7,
se(j) = H for all instructions j inside the high region of n. Thus the constraint
of the target typing rule se = liftk(se) holds. By Lemma A.10, we have that

40

typability of compilation of expression e leads to an security operand stack of the
form (k t se(i)) :: ε. By semantics of the if instruction, the operand stack is empty.
Thus the lift of the security operand stack holds and we conclude.

Case: c ≡ [while e do c1]n. The proof is analog to the if case.
Case: c ≡ c′; c′′. By inductive hypothesis.
Case: c ≡ [fork d]n. By hypothesis, fork d is tranformed into command d. Typability
in the intermediate type system follows by inductive hypothesis. Recall that com-
pilation of fork d gives a start instruction for the current thread and compilation of
d for another thread. Typability of d follows by the fact that d is typable applying
inductive hypothesis. To prove typability of compilation of start, we need to verify
the following typing rule:

P [i] = start pc se(i) ≤ se(pc)
se, i ` st ⇒ st

By Definition A.7, se(�(start)) = E(n), where n corresponds to a skip command.
Since i belongs to the compilation of n then E(n) = se(i). We have that se(i) ≤
se(pc) and we conclude.

41

