
JSFlow: Tracking Information Flow in
JavaScript and its APIs

Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld
Chalmers University of Technology

{daniel.hedin, arnar.birgisson, bello, andrei}@chalmers.se

ABSTRACT
JavaScript drives the evolution of the web into a powerful
application platform. Increasingly, web applications combine
services from different providers. The script inclusion mech-
anism routinely turns barebone web pages into full-fledged
services built up from third-party code. Such code provides
a range of facilities from helper utilities (such as jQuery)
to readily available services (such as Google Analytics and
Tynt). Script inclusion poses a challenge of ensuring that the
integrated third-party code respects security and privacy.

This paper presents JSFlow, a security-enhanced JavaScript
interpreter for fine-grained tracking of information flow.
We show how to resolve practical challenges for enforcing
information-flow policies for the full JavaScript language, as
well as tracking information in the presence of libraries, as
provided by browser APIs. The interpreter is itself written
in JavaScript, which enables deployment as a browser exten-
sion. Our experiments with the extension provide in-depth
understanding of information manipulation by third-party
scripts such as Google Analytics. We find that different sites
intended to provide similar services effectuate rather different
security policies for the user’s sensitive information: some
ensure it does not leave the browser, others share it with
the originating server, while yet others freely propagate it to
third parties.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—in-
formation flow controls; D.3.4 [Programming Languages]:
Processors—Interpreters

Keywords
JavaScript, information flow, dynamic analysis

1. INTRODUCTION
Increasingly, web applications combine services from dif-

ferent providers. The script inclusion mechanism routinely
turns barebone web pages into full-fledged services, often
utilizing third-party code. Such code provides a range of
facilities from utility libraries (such as jQuery) to readily
available services (such as Google Analytics and Tynt). Even
stand-alone services such as Google Docs, Microsoft Office

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00
http://dx.doi.org/10.1145/2554850.2554909.

365, and DropBox offer integration into other services. Thus,
the web is gradually being transformed into an application
platform for integration of services from different providers.

Motivation: Securing JavaScript At the heart of this
lies JavaScript. When a user visits a web page, even a simple
one like a loan calculator or a newspaper website, JavaScript
code from different sources is downloaded into the user’s
browser and run with the same privileges as if the code came
from the web page itself. This opens up for abusing the trust,
either by direct attacks from the included scripts or, perhaps
more dangerously, by indirect attacks when a popular service
is compromised and its scripts are replaced by an attacker.
A recent empirical study [32] of script inclusion reports high
reliance on third-party scripts. As an example, it shows how
easy it is to get code running in thousands of browsers simply
by acquiring some stale or misspelled domains.
This poses a challenge: how do we guarantee that the

integrated third-party code respects the security and privacy
of web applications? At the same time, the business model of
many of the online service providers is to give away a service
for free while gathering information about their users and
their behavior in order to, e.g., sell user profiles or provide
targeted ads. How do we draw a line between legitimate
information gathering and unsolicited user tracking?

Background: State of the art in securing JavaScript
Today’s browsers enforce the same-origin policy (SOP) in
order to limit access between scripts from different Internet
domains. SOP offers an all-or-nothing choice when including
a script: either isolation, when the script is loaded in an
iframe, or full integration, when the script is included in the
document via a script tag. SOP prevents direct communica-
tion with non-origin domains but allows indirect communi-
cation. For example, sensitive information from the user can
be sent to a third-party domain as part of an image request.
Although loading a script in an iframe provides secure

isolation, it severely limits the integration of the loaded
code with the main application. Thus, the iframe-based
solution is a good fit for isolated services such as context-
independent ads, but it is not adequate for context-sensitive
ads, statistics, utility libraries, and other services that require
tighter integration.

Loading a script via a script tag provides full privileges for
the included script and, hence, opens up for possible attacks.
The state of the art in research on JavaScript-based secure
composition [35] consists of a number of approaches ranging
from isolation of components to their full integration. Clearly,
as much isolation as possible for any given application is a
sound rationale in line with the principle of least privilege [37].
However, there are scenarios where isolation incapacitates
the functionality of the application.
As an example, consider a loan calculator website. The

calculator requires sensitive input from the user, such as
the monthly income or the total loan amount. Clearly, the

application must have access to the sensitive input for proper
functionality. At the same time, the application must be con-
strained in what it can do with the sensitive information. If
the user has a business relationship with the service provider,
it might be reasonable for this information to be sent back
to the provider but remain confidential otherwise. However,
if this is not the case, it is more reasonable that sensitive
information does not leave the browser. How do we ensure
that these kinds of fine-grained policies are enforced?
As another example, consider a third-party service on a

newspaper site. The service appends the link to the original
article whenever the user copies a piece of text from it. The
application must have access to the selected text for proper
functionality (there is no way of appending to the clipboard -
the data must be read, modified and written back). However,
with the current state of the art in web security, any third-
party code can always send information to its own originating
server, e.g. for tracking. When this is undesired, how do
we guarantee that this trust is not abused to leak sensitive
information to the third party?
Unfortunately, access control is not sufficient to guaran-

tee information security in these examples. Both the loan
calculator and newspaper code must be given the sensitive
information in order to provide the intended service. The us-
age of sensitive information needs to be tracked after access
to it has been granted.

Goal: Securing information flow in the browser Those
scenarios motivate the need of information-flow control to
track how information is used by such services. Intuitively,
an information-flow analysis tracks how information flows
through the program under execution. By identifying sources
of sensitive information, an information-flow analysis can
limit what the service may do with information from those
sources, e.g., ensuring that the information does not leave
the browser, or is not sent to a third party.

The importance of tracking information flow in the browser
has been pointed out previously, e.g., [24, 41]. Further,
several empirical studies [39, 18, 14, 12] (discussed in detail
in Section 6) provide clear evidence that privacy and security
attacks in JavaScript code are a real threat. The focus of
these studies is breadth: trying to analyze thousands of pages
against simple policies.

Complementary to previous work, our goal is to provide a
practical mechanism for fine-grained enforcement of secure in-
formation flow for JavaScript. This paper takes a significant
step towards this goal with the implementation of a proof-of-
concept interpreter for JavaScript that dynamically tracks in-
formation flow. The interpreter is implemented in JavaScript
which allows us to effectively replace the JavaScript engine
of Firefox through the means of a browser extension. This
has enabled us to perform experiments on real web-pages
using the interpreter to execute the scripts on the pages, and
allowed us to pursue two important subgoals: (i) a study of
possibilities and limitations of dynamic information-flow en-
forcement, and (ii) an in-depth understanding of information
flow in practical JavaScript.

In addition, while progress has been made at understand-
ing the foundational tensions between static and dynamic
information-flow control [34], practical trade-offs have not
been explored. Hence, we set off to explore the practical
trade-offs related to the permissiveness of the analysis.

Our work focuses on dynamic enforcement, since JavaScript
is a highly dynamic language with features such as dynamic
objects and dynamic code evaluation. This dynamism puts

severe limitations on static analysis methods [38]. These
limitations are of particular concern when it is desirable to
pinpoint the source of insecurity. While static analysis can be
reasonable for empirical studies with simple security policies,
the situation is different for more complex policies. Because
dynamic tracking has access to precise information about
the program state in a given run, we show that it is more
appropriate for in-depth understanding of information flow in
JavaScript. The starting point for our work is a formalization
of information-flow tracking for a a core of JavaScript [16].
This formalization provides sound information-flow tracking
for a language with records and exceptions.

The implementation is intended to investigate the suitabil-
ity of dynamic information-flow control, and lay the ground
for a full scale extension of the JavaScript runtime in browsers.
A high-performance monitor would ideally be integrated in
an existing JavaScript runtime, but they are fast moving
targets and focused on advanced performance optimizations.
For this reason we have instead chosen to implement our
prototype in JavaScript. We believe that our JavaScript
implementation finds a sweetspot between implementation
effort and usability for research purposes. Thus, performance
optimization is a non-goal in the scope of the current work
(while a worthwhile direction for future work).

Implementing the monitor in JavaScript allows for flexi-
bility in the deployment. In addition to the possibility of
deploying via a browser extension, the interpreter can also
be deployed by a proxy, as a suffix proxy or as a security
library. We have explored the different architectures for
inlining security monitors in web applications in a separate
study [25]. Further, in addition to being used to enforce
secure information flow on the client side, our implementa-
tion can be used by developers as a security testing tool,
e.g., during the integration of third-party libraries. This
can provide developers with detailed analysis of information
flows on custom fine-grained policies, beyond the analysis
from empirical studies [39, 18, 14, 12] on simple policies.

Challenges: JavaScript and libraries The above goal
leads us to the following three concrete challenges. The first
challenge is covering the full non-strict JavaScript language,
as described by the ECMA-262 (v.5) standard [10]. Our work
draws on the sound analysis for the core of JavaScript [16],
and so the challenge is whether the rich security label mecha-
nism and key concepts such as read and write contexts scale
to the full language.

The second challenge is covering libraries, both JavaScript’s
builtin objects as well as ones provided by browser APIs. The
Document Object Model (DOM) API, a standard interface
for JavaScript to interact with the browser, is particularly
complex. This challenge is substantial due to the stateful
nature of the DOM tree. Attempts to provide “security
signatures” to the API result in missing security-critical side
effects in the DOM. The challenge lies in designing a more
comprehensive approach.
The third challenge is implementing the JavaScript in-

terpreter in JavaScript. This allows the interpreter to be
deployed as a Firefox extension by leveraging the ideas of
Zaphod [30]. The interpreter keeps track of the security
labels and, whenever possible, it reuses the native JavaScript
engine and standard libraries for the actual functionality.

This paper This paper presents JSFlow, an information-
flow interpreter for full non-strict ECMA-262 (v.5). JSFlow
is itself implemented in JavaScript. This enables the use of

JSFlow as a Firefox extension, Snowfox, as well as on the
server side, e.g., by running on top of node.js [19].
The interpreter passes all standard compliant non-strict

tests in the SpiderMonkey test suite [29] passed by Spider-
Monkey and V8. In addition to the core language we have
implemented extensive stateful information-flow models for
the standard API, e.g., Object, and Array, and the API
present in a browser environment, including the DOM, navi-
gator, location and XMLHttpRequest. Section 3 and 4 report
on the challenges on the language and libraries, respectively.

To the best of our knowledge, this is the first implementa-
tion of dynamic information-flow enforcement for such a large
platform as JavaScript together with stateful information-
flow models for its standard execution environment.

Addressing the first subgoal, we report on the implementa-
tion of the interpreter and our experience in modeling native
libraries, i.e. the builtin ECMA-262 objects and the DOM. A
distinction is made between shallow and deep models, which
represent different trade-offs between reimplementing native
code and maintaining a model of its information flow. Fur-
ther, Section 5 also reports practical trade-offs of dynamic
information-flow enforcement.
With respect to the second subgoal, we report on our

experience with JSFlow/Snowfox for in-depth understanding
of existing flows in web pages. Rather than experimenting
with a large number of web sites for simple policies (as done
in previous work [39, 18, 14, 12]), we focus on in-depth
analysis of two case studies. These are presented in Section 5.
The case studies show that different sites intended to provide
similar service (a loan calculator) enforce rather different
security policies for possibly sensitive user input. Some
ensure it does not leave the browser, others share it only with
the originating server, while yet others freely share it with
third party services. The empirical knowledge gained from
running such case studies on actual web pages and libraries
has been invaluable in order to understand the possibilities
and limitations of dynamic information-flow tracking, and
to set the directions for future research.

2. DYNAMIC INFORMATION FLOW
Dynamic information-flow analysis is similar to dynamic

type analysis. Each value is labeled with a security label
representing the confidentiality of the value. By default
information is considered public unless it originates from the
user, e.g., information read from an input field, in which case
it is labeled user. The default labeling can be overridden by
explicit annotations in the HTML document. At runtime,
the labels are updated to reflect the computation effects and
checked to ensure that the computation adheres to some
security policy. It is common to use a lattice as the set of
labels. In this work we use the subset-lattice over sets of
strings.

There are several compelling reasons for using a dynamic
analysis for JavaScript over a static one. Features like dy-
namic code evaluation, dynamic typing, and dynamic object
modification limit the accuracy of static analysis. For in-
stance, consider static analysis of the common operation of
indexing an object e1[e2], which requires precise informa-
tion about the objects that e1 may evaluate to, as well the
values that e2 can result in. Both are related to the problem
of doing precise alias analysis for languages like JavaScript,
which is a well-known hard problem [21]. Similar challenges
are posed by eval and dynamic object modification such as
creating and deleting new object properties.

From now on, in all the examples of the paper, assume
that h refers to a confidential (or secret) value, and that the
initial values of all other variables are non-confidential (or
public). An information-flow analysis must take both explicit
and implicit flows into account. Explicit flows happen in
direct assignments, as in var l = h;. Since l depends on the
value of h, the monitor labels l as secret as well. Implicit
flows arise through the control flow of the program, as in
var l=0; if (h) l=1;. In this case the resulting value of l
also depends on the value of h. In order to handle implicit
flows, a security label associated with the control flow is intro-
duced, called the program counter label, or pc for short. The
pc reflects the confidentiality of guard expressions controlling
branch points in the program, and governs side effects in
their branches by preventing modification of less confidential
values. For soundness, security violations force execution
to halt [16]. Note that halting the program might intro-
duce information leaks via its termination behavior, which is
consistent with termination-insensitive noninterference [40,
36]. In a sequential batch-job setting, termination leaks are
limited to one bit, since they cannot be amplified without
restarting the program [2]. In a reactive setting, buffering
output helps controlling the leakage bandwidth [33].

3. TACKLING FULL JAVASCRIPT
The interpreter extends the work of Hedin and Sabelfeld

[16] to the full non-strict ECMA-262 (v.5) standard (referred
to as the standard henceforth). Although strict mode may
simplify information-flow tracking, its adoption is rather
limited. Further, since it does not introduce obstacles for
information-flow security and it is possible to run strict code
using non-strict semantics, we have opted not to support it.
Hedin and Sabelfeld model a core of JavaScript including
eval, exceptions, higher-order functions and the Function
object, the somewhat uncommon semantics of JavaScript
variables and scoping, including variable hoisting and the with
statement, and a representative selection of the statements
and expressions of JavaScript. Below we report on the most
interesting contributions of our extension: full support for
functions, accessor properties, labeled statements, and the
pc handling. Section 4 focuses on the extension made to
provide full API support. A prototype implementation of
the interpreter and its test suite are available at online [15].

Functions Function support is extended to the full stan-
dard, including function hoisting and proper creation of an
arguments object. Further, to allow for free use of return we
introduce a return label. This label is similar to the exception
label [16], in that it defines an upper bound on the control
contexts in which return can be executed. Consider this
example, which returns from a secret control context.

l = true;
function f() {
if (h) { return 1; }
l = false;

}

For the return to be allowed, the return label must be secret
before entering the conditional. The assignment l = false is
then in a secret control context, correctly preventing it if l
is public. The return label of a function is initialized to the
pc of the calling context. Changing the return label can be
facilitated by program annotations, see Section 5.

Labeled statements JavaScript contains labeled state-
ments and allows jumping to them using break and continue.

As with conditional statements, such transfer of control may
result in implicit flows. We handle this by associating labeled
statements with a security label, in addition to their usual
program label. The security label defines an upper bound
on the control contexts in which jumping to the statement is
allowed. The security label is also a part of the control con-
text for the labeled statement itself. In the example below,
the security label associated with L1 is part of the control
context of the do/while loop:

l=true;
L1: do {
if (h) { continue L1; }
l=false;
} while(0);

To allow continue L1 to execute, the label of L1 must be
secret, causing the whole code to be run with a secret control
context. The labels in the above program are not security
labels, but standard statement labels. Unlabeled statements
and unlabeled break and continue are assigned default state-
ment labels. When execution reaches a labeled statement
the associated statement labels inherits the security label
from the current pc, where it remains unless changed with
some form of program annotations, see Section 5.

Accessor properties JSFlow supports accessor properties,
as described by the standard. Accessor properties allow
overriding property reads and writes with user functions.
When reading, the return value of the getter function of the
property is returned, and similarly, writing to a property
invokes the setter function associated with the property.
Section 4 shows how getters and setters can be used in
complicated interplay with libraries, opening the door for
non-obvious information flows.

The pc handling Implicit flows may be caused by more
than the control flow of the program itself. When the in-
terpreter branches internally on security labeled values, the
control flow inside the interpreter may result in implicit
flows. A ubiquitous example of this is implicit type con-
versions: Many expressions, statements and API functions
of JavaScript convert their parameters to primitive types.
JavaScript objects may override this conversion process with
user functions. To appreciate the complexity of the interac-
tion between internal control flow and program control flow,
consider the following example which attempts to copy the
value of h into l.

l = false;
x = { valueOf : function ()

{ return h ? {} : 1; },
toString : function()

{ l = true; return 1; } };
h = x + 1;

The addition operation tries to convert its parameters to
primitive values. For an object, the conversion first invokes
its valueOf method, if present. If this returns a primitive
value, it is used. If not, the toString method is invoked
instead. In the example, valueOf is chosen so that toString

is invoked only when h is true, which must therefore be
reflected in its control context.
We solve this by replacing the notion of a program pc

with a pc stack and whenever the interpreter branches on a
security labeled value, its label is pushed onto the pc stack,
where it remains until execution reaches a join point in the
interpreter. Any side effects are governed by the join of all
labels on the pc stack. Note that the novelty of this approach

is not in the use of a stack for storing the pc (e.g., [22]), but
the fact that it is the interpreter-internal information flow
that is pushed onto the stack. Since all direct and indirect
information flows in the interpreted program are induced by
direct or indirect information flows in the interpreter, this
generalizes and subsumes the standard notion of a program
pc. For example, just as the type of a value decides which
conversion methods to call, so does the value of the guard of
a conditional statement decide which subprogram to execute.
In both cases, the label of the value is pushed. See the
implementation of ToString in Section 4.2 for an example of
how the pc stack is used in the implementation.

4. LIBRARIES
Scripts on a web page typically rely on a rich set of li-

braries and APIs provided by the JavaScript runtime envi-
ronment and the browser. While we could reimplement all of
JavaScript’s builtins, it is more reasonable to defer as much
work as possible to the underlying JavaScript engine in which
the interpreter itself runs. For browser APIs such as the
DOM, doing this is necessary: DOM manipulations must be
performed on the actual DOM for them to have an effect on
the rendered page. In such cases we must model the informa-
tion flow that those APIs incur and enforce information-flow
policies before invoking them. In general, such modeling is
useful for any kind of library code we wish to invoke, but
not track information flow during its execution in detail.
The problem of modeling information flow in libraries is

largely unexplored. Statically, libraries are typically handled
by giving some form of boundary types to the interface of
the library [31]. The precision and permissiveness of the
enforcement of information-flow policies then depends on the
expressive power of such boundary types. In this work, we
have instead developed dynamic models that make use of
actual runtime values to increase their precision.

4.1 Information-flow models
In designing an information-flow model for a library, its

precision must be balanced with its complexity and usability.
Increased precision allows more permissive enforcement, but
typically adds to the complexity of using the library. For
example, the user may need to supply security annotations,
or otherwise be aware of the model itself. This results in a
system that is harder to use and understand. On the other
hand, being too imprecise risks having the enforcement reject
too many secure programs, thus losing permissiveness. This
also places a burden on the programmer, as she will have to
work around the false positives.

Shallow vs. deep models We categorize information-flow
models for libraries into two different types: shallow models
and deep models.

Shallow models describe the operations on labels and label
state in terms of the boundary values and types of the pa-
rameters to the library function, whereas deep models may
compute internal, intermediate values such as private at-
tributes of objects or local variables inside library code. The
model may perform or replicate a part of the computation
done by the library, in order to obtain a more precise model.
In the remainder of this section we discuss key insights

gained from modeling the builtin JavaScript API, as well as
browser APIs. In particular, we give examples where deep
models are necessary to yield useful precision.

4.2 JavaScript builtin API

In addition to the core language, JSFlow implements the
builtin API defined by the standard. The models of the
standard API range from simple shallow models to more
advanced deep models. Below we use String and Array to
illustrate shallow and deep models, respectively.

String object The String object acts as a wrapper around
a primitive string providing a number of useful operations,
including accessing a character by index. We model the
internal label state of String objects with a single label,
matching the security model of its primitive string.
All the methods of String objects are essentially shallow

models: After converting the parameters, they are passed
to the corresponding native method. The slice method
described below is a typical representative of String methods.
slice takes two indices and returns the slice of the string
between them. We highlight the implementation of slice by
means of examples.
First, consider the following program, which passes an

object to slice whose valueOf method will return a secret.

ix = { valueOf : function() { return h; }};
var l = ’0123456789’.slice(ix,ix+1);

This example tries to exploit the conversion to numbers
that slice performs on its arguments, which invokes valueOf

when they are objects. In order to model this flow properly,
the security label of the value returned by valueOf must be
taken into account in the result of slice. In the example
above, slice would return a secret value.
In addition, it is important that the security context of

the calls made by slice include the labels of the indices.
Otherwise, side effects in valueOf may leak. In the following
example, assume that ix is secret and chosen to be either an
object or a number depending on h.

var ix; var l = false;
if (h) {
ix = { valueOf :

function() { l = true; return 0; } }
} else { ix = 0; }
’0123456789’.slice(ix,ix+1);

Here, the security context of the call to valueOf when
converting ix must reflect the label of ix. We ensure this in
the internal functions ToString and ToInteger, used by slice.
For example, the actual security context increase occurs in
ToString on line 5, where the argument label is pushed onto
the pc stack:

1 function ToString(x) {
2 if (typeof x.value !== ’object’) {
3 return new Value(String(x.value),x.label);
4 }
5 monitor.context.pushPC(x.label);
6 var primValue = ToPrimitive(x, ’string’);
7 monitor.context.popPC();
8 return new Value(String(primValue.value), x.label);
9 }

Array Array objects are list-like objects that map numerical
indices to values. Arrays have a special link between the
length property and the mapped values: Writing an element
past the length of the array will increase the length property
accordingly, and decreasing the length property will remove
elements from the end of the array. We model the internal
state of the array as an ordinary object, while catering for the
connection between the length property and the indices. Ar-
rays are mutable and equipped with methods for performing

different operations on the elements of the array in different
orders. This allows for complicated interplays with accessor
properties, which calls for the use of deep models. Consider,
for instance, the following example.

x = [h]; l = false;
Object.defineProperty(x,1,
{ get : function() { l = true; return 0}});

x.every(function (x) { return x; });

The every method of arrays invokes a function on each
element, until either the list is exhausted or it returns a
value convertible to false. Since all values are convertible
to one of true or false, knowing that an element with index
greater than 0 is read reveals that the function returned a
true-convertible value for all lower indices. By populating
an array with a secret followed by a getter, the “truthiness”
of the secret could be observed. In the example, the first
element contains the secret boolean h and the second element
is a getter that sets l to true. Since the getter is only invoked
in case h is true, this effectively copies h to l. For this reason,
a shallow model cannot be used. Each successive call of the
iterator function must be called in the accumulated context
of the previous results, which is not possible if we simply
delegate the computation to the primitive every method.
Instead, we must use a deep model, illustrated below with
an excerpt of the inner loop of every.

1 var testResult = fn.Call(_this, [kValue, k, O]);
2 var b = conversion.ToBoolean(testResult);
3 monitor.context.labels.pc.lubWith(b.label);
4 label.lubWith(b.label);
5

6 if (!b.value) {
7 monitor.context.popPC();
8 return new Value(false,label);
9 }

Note how line 2 converts the result of the function to a
boolean, how line 3 uses the label of the result to accumu-
latively increase the top of the pc stack, and how line 4
accumulates the label used for the returned value at line 8.

4.3 Browser APIs
The execution environment provided by browsers is an

extension of the builtin JavaScript environment. To a certain
extent, what is provided is browser specific, while some parts
are standardized by the World Wide Web Consortium (W3C).
Although many of the extensions are fairly straightforward to
model from an information-flow perspective, offering similar
challenges as the standard library, a notable exception is
the implementation of the Document Object Model (DOM)
API [17]. The DOM is a standard describing how to represent
and interact with HTML documents as objects. The DOM is
a central data structure to all web applications. A large part
of a web application typically deals with shuttling data to and
from the DOM and responding to events generated by the
DOM as the user interacts with it. Tracking information flows
to and from the DOM is thus vital to having information-flow
tracking that is useful for real web applications. However, in
addition to acting as a data structure, the DOM also provides
a rich set of behaviors. In particular, several features of the
DOM force information-flow models to be non-local, i.e.,
operations on a certain element in the tree may require
updates to the model of other elements in the tree. A prime
example of such a feature is live collections.

Non-local models: live collections The DOM stan-
dard [17] specifies a number of methods for querying the

DOM for a collection of certain elements. Collections are
represented as objects that behave much like arrays, with one
big exception: as the DOM is modified, collections update
to reflect the current state of the DOM.

For example, getElementsByName returns a live collection of
elements with a particular name attribute. If a script changes
the name attribute of an element in the page, the correspond-
ing live collections automatically reflect the change. To
appreciate this, consider the following example based on a
web page containing a div element with id and name ’A’.

<div id=’A’ name=’A’></div>

When the following code is executed in the context of
this page, it encodes the value of h in the length of the live
collection returned by getElementsByName.

c = document.getElementsByName(’A’);
if (h) { document.getElementById(’A’).name = ’B’; }

This is achieved by conditionally changing the name of the
div from ’A’ to ’B’. Initially, the collection stored in c has
length 1, since there is one element in the document named
’A’. After the name change, however, the collection contains
no elements. Importantly, this is done without any direct
interaction with the collection itself; only the div element is
referenced and modified.
The security model of live collections must interact with

the model for the DOM tree, making it non-local. We keep in
each tree node a map from queries generating live collections,
such as getElementsByName(’A’), to the label representing
how that node’s subtree affects that query.

Going back to the above example, the document (the root
node of the DOM tree) maintains a map from names to labels.
If this map associates ’A’ with public, the interpreter will
stop execution on the attempted name change, since it would
be observable on existing public live collections. On the other
hand, if this map associates ’A’ with secret, the name change
is allowed. In this case, however, any live collection affected
is already considered secret.

Live collections are just one example of non-local behavior
in the DOM. For another example, several DOM elements
expose properties that are actually computed from state
stored elsewhere in the DOM. For instance, a form element
exposes values of nested input fields as properties on the
form element itself. Also, some element attributes, which are
DOM nodes of their own, are exposed as properties on the
containing element. The security model of DOM nodes must
properly model these cases and label the result appropriately.
If we blindly accessed the properties in the underlying API,
we could return secret values stripped of their security label.

5. EVALUATION
This section starts by reporting on two types of experi-

ments, one to explore different policies for user data and the
other to govern user tracking by third-party scripts. We then
go on to discuss general security considerations, trade-offs for
dynamic enforcement and going beyond dynamic analysis.
For the case studies we created Snowfox, a Firefox exten-

sion that uses JSFlow as the execution engine for web pages.
Snowfox is based on Zaphod [30] and turns off Firefox’s na-
tive JavaScript engine. Instead, the extension traverses the
page as it loads and executes scripts using JSFlow.
This provides a proof-of-concept implementation that al-

lows us to study the suitability of dynamic information flow
on actual JavaScript code. When an information-flow policy

is violated, the extension can respond in various ways, such
as simply logging the leak, silently blocking offensive HTTP
requests or stopping script execution altogether.
While performance is not a goal for this paper, we found

that the speed of JSFlow did not hinder us in manually inter-
acting with web pages. Compared to a fully JITed JavaScript
engine, JSFlow is slower by two orders of magnitude on the
tested pages.

User input processing We have evaluated the interpreter
on several web applications that calculate loan payments,
given input provided by the user. Such applications do not
rely on external data. Running the interpreter under different
policies reveals some security-relevant differences between
applications and demonstrates our interpreter’s ability to
enforce them on real JavaScript code. As a baseline policy,
we use a stricter version of SOP, where communication via
requests such as creating image and script tags is not allowed
if it involves information derived from user inputs.

We found three main classes of loan calculators: (i) Scripts
that do all calculations in the browser: no data is submitted
anywhere. (ii) Scripts that submit user data to the original
host for processing, but not to third parties. (iii) Scripts that
submit data to a third party, e.g., for collecting statistics, or
allow third-party scripts to access user data. At the time of
writing, example web pages for each class are (i) http://www.
halifax.co.uk/loans/loan-calculator/ and http://www.
asksasha.com/loan-interest-calculator.html; (ii) http:
//www.tdcanadatrust.com/loanpaymentcalc.form; and (iii)
http://mlcalc.com/. A calculator of the first class works
under a policy that allows no data to leave the browser. On
the other hand, the second class needs to send data to its
origin server, but still works under the strict SOP policy.
The third class requires a more liberal policy.

Web pages commonly use Google Analytics to analyze
traffic. To do so, the web page loads a script provided by
that service. This script triggers an image request conveying
tracking information to Google. As long as no data about
user input is contained in the request, scripts of type (i) and
(ii) can still use Google Analytics under our interpreter. A
calculator in class (iii) that tries to log user inputs, or any
derived values, to Google Analytics is prevented from doing
so by our interpreter. Flows are correctly tracked inside the
Google Analytics script, and the interpreter does not allow
creating an image element with such data in the source URL.
One of the sites in our tests, mlcalc.com, did send user

inputs to Google Analytics, but indirectly. The user inputs
were first submitted to mlcalc.com, but the following page
included JavaScript code that logged them to Google Analyt-
ics. The flow in this case was essentially server-side, so some
server-side support is needed to track them. Our monitor
supports upgrade annotations, i.e. a server can explicitly
label some of its data as being derived from sensitive user
inputs. We note that JSFlow can also be run on the server
side, e.g. via node.js, for an end-to-end solution.

When the host is not trusted for user data, a still stricter
policy can be utilized, namely that no user data should leave
the browser. Under this policy the interpreter correctly stops
even the submission of a form. This still allows calculators
of type (i), which compute everything client-side.

Behavior tracking via JavaScript Users are often un-
aware of information sent from their browser, e.g., for track-
ing purposes. As an example, the service Tynt offers a script
to inject links back to the including website, into content

copied to the system clipboard. This service is used on popu-
lar web sites such as the Financial Times (www.ft.com). As
the clipboard API in JavaScript does not provide append
functionality, this script relies on having read access to the
copied data, constituting a source of information. However,
transparent to the user, the script also creates a request
via an image to tynt.com, constituting an information sink,
where it logs the copied data, together with a tracking cookie
unique to the user across different websites using Tynt.
Our implementation supports all the necessary browser

APIs used by Tynt’s script and is able to detect this behavior.
Since the selection is chosen by the user, the data copied is
considered secret. When the script attempts to communicate
this data back to Tynt, the interpreter detects the leak and
throws a security error.

Security considerations At the core of JSFlow is a for-
malization of information-flow tracking for a language with
records and exceptions [16]. The formalization includes a
dynamic type system for a core of JavaScript that has been
proven sound. Much of the extension to full JavaScript is via
sound primitive constructions from [16], while extensions not
expressed in sound primitive constructions are built using a
small number of core principles also used in [16].
For now, the correctness of JSFlow is only verified using

testing. This is true both for the functional correctness as
well as for the soundness of the information flow. However,
the connection between the interpreter-internal information
flow and the information flow of the interpreted language
provides an indication of a potential way of verifying the
implementation of JSFlow using a specialized static type
system. The basic idea is that any direct or indirect flow in
the interpreted language is manifested as an direct or indirect
flow in the interpreter. By connecting the representation
of labeled values to a type system tailor made for checking
JSFlow it would be possible to make sure that all such flows
were properly taken into account.

Trade-offs for dynamic enforcement A key question is
whether it is possible to implement an interpreter with enough
precision for the enforcement to be usable and permissive.
Our interpreter indicates that tracking flows in real-world
applications is feasible. JavaScript is a flexible language,
and provides many implicit ways for information to flow, in
particular when combined with the rich APIs of the browser
environment. Our interpreter successfully addresses such
features, while being reasonably precise to allow real scripts
to maintain their utility.

However, dynamic enforcement comes at a price of inherent
limitations. In particular, there are limits on sound and
precise propagation of labels under secret control [34], leading
to a common restriction of enforcement known as no sensitive
upgrade [43, 3]. We found that legacy scripts sometimes
encounter such situations, even if they do not always leak
confidential data. In such scripts, upgrade statements must
be injected [5]. For two of the scripts used in our experiments,
we have done so manually via a proxy. In particular, two
upgrade annotations were added to Google Analytics and
three to Tynt.

We also discovered two cases where the interpreter detected
flows that originated from a nullity check on user input. Since
those checks were performed relatively early in the execution,
they resulted in much derived data to be labeled as secret.
However, in both cases, we found the checks did not leak,
since no action of the user can cause the checked values to be

null. The checks were only safeguards to prevent failures due
to browser differences or bugs in the scripts. We thus added
declassification annotations to allow these benign flows.

Beyond dynamic analysis In summary, purely dynamic
analysis is a reasonable fit for tracking information in real-
world examples. However, under some circumstances, we
have manually aided the analysis with upgrade annotations,
in order to increase the accuracy of the dynamic approach.
Although only a few annotations were needed in the case stud-
ies under consideration, it is still desirable to have automatic
support for generating the annotations.

One promising approach is to use a hybrid analysis, where
a static information flow analysis is used to approximate the
locations in need of upgrade before entering a secret context.
A limited form of such an analysis is already present in
JSFlow. The analysis statically approximates the need to
upgrade variables, which reduces the amount of upgrades that
have to be inserted manually. We expect a full hybrid analysis
to perform well on actual code and intend to investigate this
in future work.

6. RELATED WORK
Web tracking is subject to much debate, involving both

policy and technology aspects. We refer to Mayer and
Mitchell [26] for the state of the art. In this space, the
Do Not Track initiative, currently being standardized by
World Wide Web Consortium (W3C), is worth pointing out.
Supported by most modern browsers, Do Not Track is imple-
mented as an HTTP header that signals to the server that
the user prefers not to be tracked. However, there are no
guarantees that the server (or third-party code it includes)
honors the preference.
While there is much work on safe sub-languages, e.g,

Caja [28], ADSafe [7], Gatekeeper [13], and work on re-
fined access control for JavaScript, as in, e.g. ConScript [27]
and JSand [1], we recall our motivation from Section 1 for the
need of information-flow control beyond access control. In
the rest, we focus on information-flow tracking for JavaScript.
Vogt et al. [39] modify the source code of the Firefox

browser to include a hybrid information-flow tracker. How-
ever, their experiments show that it is often desirable for
JavaScript code to leak some information outside the domain
of origin: they identify 30 domains such as google-analytics.
com that should be allowed some leaks. Their solution is to
white-list these domains, and therefore allow any leaks to
these domains, opening up possibilities for laundering.
Mozilla’s ongoing project FlowSafe [11] aims at giving

Firefox runtime information-flow tracking, with dynamic
information-flow reference monitoring [3] at its core. Our
coverage of JavaScript and its APIs provides a base for
fulfilling the promise of FlowSafe in practice.
Chugh et al. [6] present a hybrid approach to handling

dynamic execution. Their work is staged where a dynamic
residual is statically computed in the first stage, and checked
at runtime in the second stage.
Yip et al. [42] present a security system, BFlow, which

tracks information flow within the browser between frames.
In order to protect confidential data in a frame, the frame
cannot simultaneously hold data marked as confidential and
data marked as public. BFlow not only focuses on the client-
side but also on the server-side in order to prevent attacks
that move data back and forth between client and server.

Mash-IF, by Li et al. [23], is an information-flow tracker for
client-side mashups. With policies defined in terms of DOM

objects, the enforcement mechanism is a static analysis for a
subset of JavaScript and treats as blackboxes the language
constructs outside this subset. Executions are monitored
by a reference monitor that allows deriving declassification
rules from detected information flows. An advantage of this
approach is fine-grained control at the level of individual
DOM objects. At the same time, the imprecision of the static
analysis leads to both false positives and negatives, opening
up for attackers to bypass the security mechanism.
Extending the browser always carries the risk of security

flaws in the extension. To this end, Dhawan and Ganap-
athy [9] develop Sabre, a system for tracking the flow of
JavaScript objects as they are passed through the browser
subsystems. The goal is to prevent malicious extensions from
breaking confidentiality. Bandhakavi, et al. [4] propose a
static analysis tool, VEX, for analyzing Firefox extensions
for security vulnerabilities.
Jang et al. [18] focus on privacy attacks: cookie stealing,

location hijacking, history sniffing, and behavior tracking.
Similar to Chugh et al. [6], the analysis is based on code
rewriting that inlines checks for data produced from sensitive
sources not to flow into public sinks. They detect a number
of attacks present in popular web sites, both in custom code
and in third-party libraries.

Guarnieri et al. [14] present Actarus, a static taint analysis
for JavaScript. An empirical study with around 10,000 pages
from popular web sites exposes vulnerabilities related to
injection, cross-site scripting, and unvalidated redirects and
forwards. Taint analysis focuses on explicit flows, leaving
implicit flows out of scope.
Just et al. [20] develop a hybrid analysis for a subset of

JavaScript. A combination of dynamic tracking and intra-
procedural static analysis allows capturing both explicit and
implicit flows. However, the static analysis in this work does
not treat implicit flows due to exceptions.
De Groef et al. [12] present FlowFox, a Firefox extension

based on secure multi-execution [8]. Multi-execution runs
the original program at different security levels and carefully
synchronizes communication among them. Multi-execution
provides information-flow security by design since the run
that computes public input only gets access to public input.
At the same time, secure multi-execution does not track in-
formation flow in the original program: instead, it silently
converts the execution to be independent of secrets. This
makes it less suitable for in-depth understanding of informa-
tion manipulation by JavaScript code. Instead, the empirical
study by De Groef et al. focuses on studying the deviation
in user experience when browsing with FlowFox and Firefox
in the presence of simple policies.
The empirical studies above [39, 18, 14, 12] provide clear

evidence that privacy and security attacks in JavaScript code
are a real threat. As mentioned earlier, the focus is the
breadth: trying to analyze thousands of pages against simple
policies. Complementary to this, our goal is in-depth studies
of information flow in critical third-party code (which, like
Google Analytics, might be well used by a large number of
pages). Hence, the focus on dynamic enforcement, based on
a sound core [16], and the careful approach in fine-tuning the
security policies to match application-specific security goals.
As mentioned before, the starting point for our work is

a formalization of information-flow tracking for a a core of
JavaScript [16]. This formalization provides sound information-
flow tracking for a language with records and exceptions.
Recently, we have explored different architectures for inlining

security monitors in web applications [25]. The architectures
allow deploying any monitors, implemented in JavaScript in
the form of security-enhanced JavaScript interpreters, under
different architectures. We have investigated the pros and
cons of deployment as a browser extension, as a proxy, as
a service, and an integrator-driven deployment. The pros
and cons reveal security trade-offs and usability trade-offs.
We have shown how to instantiate the general deployment
approach with the JSFlow monitor.

7. CONCLUSIONS AND FUTURE WORK
We have presented JSFlow, a security-enhanced JavaScript

interpreter, written in JavaScript. To the best of our knowl-
edge, this is the first implementation of dynamic information-
flow enforcement for such a large platform as JavaScript
together with stateful information-flow models for its stan-
dard execution environment.

In line with our goals, we have demonstrated that JSFlow
enables in-depth understanding of information flow in prac-
tical JavaScript, including third-party code such as Google
Analytics, jQuery, and Tynt.

We have conducted a practical study of possibilities and
limitations of dynamic information-flow enforcement. The
study has identified the trade-offs of static and dynamic
security enforcement. The trade-offs provide a roadmap for
further work in the area. Hybrid information-flow tracking
is a particularly promising direction, where we have the
possibility to combine the best of static and dynamic analysis.

A major feature of our interpreter is tracking information
flow in the presence of libraries. We have demonstrated how
to model the libraries, as provided by browser APIs, by a
combination of shallow and deep modeling. Our findings
lead to possibilities of generalization: future work will pur-
sue automatic generation of library models from abstract
functional specifications.

Acknowledgements This work was funded by the Eu-
ropean Community under the ProSecuToR and WebSand
projects and the Swedish agencies SSF and VR. Arnar Bir-
gisson is a recipient of the Google Europe Fellowship in
Computer Security, and this research is supported in part by
this Google Fellowship.

8. REFERENCES
[1] Agten, P., Acker, S. V., Brondsema, Y., Phung,

P. H., Desmet, L., and Piessens, F. JSand:
complete client-side sandboxing of third-party
JavaScript without browser modifications. In ACSAC
(2012), R. H. Zakon, Ed., ACM, pp. 1–10.

[2] Askarov, A., Hunt, S., Sabelfeld, A., and Sands,
D. Termination-insensitive noninterference leaks more
than just a bit. In Proc. ESORICS (Oct. 2008),
vol. 5283 of LNCS, Springer-Verlag, pp. 333–348.

[3] Austin, T. H., and Flanagan, C. Efficient
purely-dynamic information flow analysis. In Proc.
ACM PLAS (June 2009).

[4] Bandhakavi, S., Tiku, N., Pittman, W., King,
S. T., Madhusudan, P., and Winslett, M. Vetting
browser extensions for security vulnerabilities with vex.
Commun. ACM 54, 9 (2011), 91–99.

[5] Birgisson, A., Hedin, D., and Sabelfeld, A.
Boosting the permissiveness of dynamic
information-flow tracking by testing. In ESORICS
(2012), S. Foresti, M. Yung, and F. Martinelli, Eds.,

vol. 7459 of Lecture Notes in Computer Science,
Springer, pp. 55–72.

[6] Chugh, R., Meister, J. A., Jhala, R., and Lerner,
S. Staged information flow for JavasCript. In PLDI
(2009), M. Hind and A. Diwan, Eds., ACM, pp. 50–62.

[7] Crockford, D. Making JavaScript Safe for
Advertising. adsafe.org, 2009.

[8] Devriese, D., and Piessens, F. Non-interference
through secure multi-execution. In SSP (May 2010).

[9] Dhawan, M., and Ganapathy, V. Analyzing
information flow in javascript-based browser extensions.
In ACSAC (2009), IEEE Computer Society,
pp. 382–391.

[10] ECMA International. ECMAScript Language
Specification, 2009. Version 5.

[11] Eich, B. Flowsafe: Information flow security for the
browser. https://wiki.mozilla.org/FlowSafe, Oct.
2009.

[12] Groef, W. D., Devriese, D., Nikiforakis, N., and
Piessens, F. Flowfox: a web browser with flexible and
precise information flow control. In ACM CCS (2012).

[13] Guarnieri, S., and Livshits, B. Gatekeeper: mostly
static enforcement of security and reliability policies for
javascript code. In Proc. USENIX security (USA,
2009), SSYM’09, USENIX Association.

[14] Guarnieri, S., Pistoia, M., Tripp, O., Dolby, J.,
Teilhet, S., and Berg, R. Saving the world wide web
from vulnerable JavaScript. In ISSTA (2011), M. B.
Dwyer and F. Tip, Eds., ACM, pp. 177–187.

[15] Hedin, D., Bello, L., Birgisson, A., and
Sabelfeld, A. JSFlow. Software release. Located at
http://chalmerslbs.bitbucket.org/jsflow, Sept.
2013.

[16] Hedin, D., and Sabelfeld, A. Information-flow
security for a core of JavaScript. In Proc. IEEE CSF
(June 2012), pp. 3–18.

[17] Hors, A. L., and Hegaret, P. L. Document Object
Model Level 3 Core Specification. Tech. rep., The
World Wide Web Consortium, 2004.

[18] Jang, D., Jhala, R., Lerner, S., and Shacham, H.
An empirical study of privacy-violating information
flows in JavaScript web applications. In ACM CCS
(Oct. 2010), pp. 270–283.

[19] Joyent, Inc. Node.js. http://nodejs.org/.

[20] Just, S., Cleary, A., Shirley, B., and Hammer, C.
Information Flow Analysis for JavaScript. In Proc.
ACM PLASTIC (USA, 2011), ACM, pp. 9–18.

[21] Landi, W. Undecidability of static analysis. ACM
LOPLAS 1, 4 (Dec. 1992), 323–337.

[22] Le Guernic, G., Banerjee, A., Jensen, T., and
Schmidt, D. Automata-based confidentiality
monitoring. In Proc. ASIAN (2006), vol. 4435 of LNCS,
Springer-Verlag.

[23] Li, Z., Zhang, K., and Wang, X. Mash-IF: Practical
information-flow control within client-side mashups. In
DSN (2010), pp. 251–260.

[24] Magazinius, J., Askarov, A., and Sabelfeld, A. A
lattice-based approach to mashup security. In Proc.
ACM ASIACCS (Apr. 2010).

[25] Magazinius, J., Hedin, D., and Sabelfeld, A.
Architectures for inlining security monitors in web
applications. In ESSoS (2014), Lecture Notes in

Computer Science, Springer.

[26] Mayer, J. R., and Mitchell, J. C. Third-party web
tracking: Policy and technology. In IEEE SP (2012),
IEEE Computer Society, pp. 413–427.

[27] Meyerovich, L. A., and Livshits, V. B. ConScript:
Specifying and Enforcing Fine-Grained Security
Policies for JavaScript in the Browser. In IEEE SP
(2010), IEEE Computer Society, pp. 481–496.

[28] Miller, M., Samuel, M., Laurie, B., Awad, I., and
Stay, M. Caja: Safe active content in sanitized
JavaScript, 2008.

[29] Mozilla Developer Network. SpiderMonkey –
Running Automated JavaScript Tests. https://
developer.mozilla.org/en-US/docs/SpiderMonkey/
Running_Automated_JavaScript_Tests, 2011.

[30] Mozilla Labs. Zaphod add-on for the Firefox browser.
http://mozillalabs.com/zaphod, 2011.

[31] Myers, A. C., Zheng, L., Zdancewic, S., Chong,
S., and Nystrom, N. Jif: Java information flow.
Software release. Located at
http://www.cs.cornell.edu/jif, July 2001.

[32] Nikiforakis, N., Invernizzi, L., Kapravelos, A.,
Van Acker, S., Joosen, W., Kruegel, C., Piessens,
F., and Vigna, G. You are what you include:
large-scale evaluation of remote javascript inclusions. In
ACM CCS (Oct. 2012), pp. 736–747.

[33] Rafnsson, W., and Sabelfeld, A. Limiting
information leakage in event-based communication. In
Proc. ACM PLAS (USA, 2011), ACM, pp. 4:1–4:16.

[34] Russo, A., and Sabelfeld, A. Dynamic vs. static
flow-sensitive security analysis. In Proc. IEEE CSF
(July 2010), pp. 186–199.

[35] Ryck, P. D., Decat, M., Desmet, L., Piessens, F.,
and Joose, W. Security of web mashups: a survey. In
NORDSEC (2010), LNCS.

[36] Sabelfeld, A., and Myers, A. C. Language-based
information-flow security. IEEE J. Selected Areas in
Communications 21, 1 (Jan. 2003), 5–19.

[37] Saltzer, J. H., and Schroeder, M. D. The
protection of information in computer systems. Proc. of
the IEEE 63, 9 (Sept. 1975), 1278–1308.

[38] Taly, A., Erlingsson, U., Miller, M., Mitchell,
J., and Nagra, J. Automated analysis of
security-critical JavaScript APIs. In Proc. IEEE SP
(May 2011).

[39] Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E.,
Kruegel, C., and Vigna, G. Cross-site scripting
prevention with dynamic data tainting and static
analysis. In Proc. NDSS (Feb. 2007).

[40] Volpano, D., Smith, G., and Irvine, C. A sound
type system for secure flow analysis. J. Computer
Security 4, 3 (1996), 167–187.

[41] Yang, E., Stefan, D., Mitchell, J., Mazières, D.,
Marchenko, P., and Karp, B. Toward principled
browser security. In Proc.HotOS (2013).

[42] Yip, A., Narula, N., Krohn, M., and Morris, R.
Privacy-preserving browser-side scripting with bflow. In
EuroSys (USA, 2009), ACM, pp. 233–246.

[43] Zdancewic, S. Programming Languages for
Information Security. PhD thesis, Cornell University,
July 2002.

