
Securing Interaction between Threads and the Scheduler

Alejandro Russo Andrei Sabelfeld
Department of Computer Science and Engineering

Chalmers University of Technology
412 96 Göteborg, Sweden

Abstract

The problem of information flow in multithreaded pro-
grams remains an important open challenge. Existing
approaches to specifying and enforcing information-flow
security often suffer from over-restrictiveness, relying on
non-standard semantics, lack of compositionality, inabil-
ity to handle dynamic threads, scheduler dependence, and
efficiency overhead for code that results from security-
enforcing transformations. This paper suggests a remedy
for some of these shortcomings by developing a novel treat-
ment of the interaction between threads and the scheduler.
As a result, we present a permissive noninterference-like se-
curity specification and a compositional security type sys-
tem that provably enforces this specification. The type sys-
tem guarantees security for a wide class of schedulers and
provides a flexible and efficiency-friendly treatment of dy-
namic threads.

1. Introduction

In Proc. IEEE Computer Security Foundations Workshop, Venice, Italy, July 2006.
c© IEEE

The problem of information flow in multithreaded pro-
grams remains an important open challenge [25]. While
information flow in sequential programs is relatively well
understood, information-flow security specifications and
enforcement mechanisms for sequential programs do not
generalize naturally to multithreaded programs [30]. In
this light, it is hardly surprising that Jif [18] and Flow
Caml [27], the mainstream compilers that enforce secure
information flow, lack support for multithreading.

Nevertheless, the need for information flow control in
multithreaded programs is pressing because concurrency
and multithreading are ubiquitous in modern programming
languages. Furthermore, multithreading is essential in
security-critical systems because threads provide an effec-
tive mechanism for realizing the separation-of-duties prin-
ciple [31].

There are a series of properties that are desired of an ap-
proach to information flow for multithreaded programs:

• Permissiveness The presence of multithreading en-
ables new attacks which are not possible for sequential
programs. The challenge is to reject these attacks with-
out compromising the permissiveness of the model. In
other words, information flow models should accept as
many intuitively secure and useful programs as possi-
ble.

• Scheduler-independence The security of a given pro-
gram should not critically depend on a particular
scheduler [26]. Scheduler-dependent security models
suffer from the weakness that security guarantees may
be destroyed by a slight change in the scheduler policy.
Therefore, we aim at a security condition that is robust
with respect to a wide class of schedulers.

• Standard semantics Following the philosophy of ex-
tensional security [17], we argue for security de-
fined in terms of standard semantics, as opposed to
security-instrumented semantics. If there are some
non-standard primitives that accommodate security,
they should be clearly and securely implementable.

• Language expressiveness A key to a practical security
model is an expressive underlying language. In par-
ticular, the language should be able to treat dynamic
thread creation, as well as provide possibilities for syn-
chronization.

• Practical enforcement Another practical key is a
tractable security enforcement mechanism. Partic-
ularly attractive is compile-time automatic composi-
tional analysis. Such an analysis should nevertheless
be permissive, striving to trade as little expressiveness
and efficiency for security as possible.

This paper develops an approach that is compatible with
each of these properties by a novel treatment of the inter-
action between threads and the scheduler. We enrich the
language with primitives for raising and lowering the secu-
rity levels of threads. Threads with different security lev-
els are treated differently by the scheduler, ensuring that

1

the interleaving of publically-observable events may not de-
pend on sensitive data. As a result, we present a permissive
noninterference-like security specification and a composi-
tional security type system that provably enforces this spec-
ification. The type system guarantees security for a wide
class of schedulers and provides a flexible and efficiency-
friendly treatment of dynamic threads.

In the rest of the paper we present background and re-
lated work (Section 2), the underlying language (Section 3),
the security specification (Section 4), and the type-based
analysis (Section 5). We discuss an extension to cooper-
ative schedulers (Section 6), an example (Section 7), and
implementation issues (Section 8) before we conclude the
paper (Section 9).

2. Motivation and background

This section motivates and exemplifies some key issues
with tracking information flow in multithreaded programs
and presents an overview of existing work on addressing
these issues.

2.1. Leaks via scheduler

Assume a partition of variables into high (secret) and low
(public). Suppose h and l are a high and a low variable,
respectively. Intuitively, information flow in a program is
secure (or satisfies noninterference [4, 9, 33]) if public out-
comes of the program do not depend on high inputs. Typical
leaks in sequential programs arise from explicit flows (as in
assignment l := h) and implicit [5] flows via control flow
(as in conditional if h > 0 then l := 1 else l := 0).

The ability of sequential threads to share memory opens
up new information channels. Consider the following
thread commands:

c1 : h := 0; l := h c2 : h := secret

where secret is a high variable. Thread c1 is secure because
the final value of l is always 0. Thread c2 is secure because
h and secret are at the same security level. Nevertheless,
the parallel composition c1 ‖ c2 of the two threads is not
necessarily secure. The scheduler might schedule c2 after
assignment h := 0 and before l := h is executed in c1. As
a result, secret is copied into l.

Consider another pair of thread commands:

d1 : (if h > 0 then sleep(100) else skip); l := 1
d2 : sleep(50); l := 0

These threads are clearly secure in isolation because 1 is al-
ways the outcome for l in d1, and 0 is always the outcome
for l in d2. However, when d1 and d2 are executed in par-
allel, the security of the threadpool is no longer guaranteed.

In fact, the program will leak whether the initial value of h
was positive into l under many reasonable schedulers.

We observe that program c1 ‖ c2 can be straightfor-
wardly secured by synchronization. Assuming the under-
lying language features locks, we can rewrite the program
as

c1 : lock;h := 0; l := h; unlock
c2 : lock; h := secret ; unlock

The lock primitives ensure that the undesired interleaving
of c1 and c2 is prevented.

Unfortunately, synchronization primitives offer no gen-
eral solution. The source of the leak in program d1 ‖ d2 is
internal timing [32]. The essence of the problem is that the
timing behavior of a thread may affect—via the scheduler—
the interleaving of assignments. As we will see later in
this section, securing interleavings from within the program
(such as with synchronization primitives) is a highly deli-
cate matter.

What is the key reason for these flows? Observe that in
both cases, it is the interleaving of the threads that intro-
duces leaks. Hence, it is the scheduler and its interaction
with the threads that needs to be secured in order to prevent
undesired information disclosure. In this paper, we suggest
a treatment of schedulers that allows the programmer to en-
sure from within the program that undesired interleavings
are prevented.

In the rest of this section, we review existing approaches
to information flow in multithreaded programs that are di-
rectly related to the paper. We refer to an overview of
language-based information security [25] for other, less re-
lated, work.

2.2. Possibilistic security

Smith and Volpano [30] explore possibilistic noninter-
ference for a language with static threads and a purely non-
deterministic scheduler. Possibilistic noninterference states
that possible low outputs of a program may not vary as
high inputs are varied. Program d1 ‖ d2 from above is
considered secure because possible final values of l are
always 0 and 1, independently of the initial value of h.
Because the choice of a scheduler affects the security of
the program, this demonstrates that this definition is not
scheduler-independent. Generally, possibilistic noninterfer-
ence is subject to the well known phenomenon that con-
fidentiality is not preserved by refinement [16]. Work by
Honda et al. [11, 12] and Pottier [19] is focused on type-
based techniques for tracking possibilistic information flow
in variants of the π calculus. Forms of noninterference un-
der nondeterministic schedulers have been explored in the
context of CCS (see [8] for an overview) and CSP (see [22]
for an overview).

2

2.3. Scheduler-specific security

Volpano and Smith [32] have investigated probabilistic
noninterference for a language with static threads. Proba-
bilities in their multithreaded system come from the sched-
uler, which is assumed to select threads uniformly, i.e., each
live thread can be scheduled with the same probability. Vol-
pano and Smith introduce a special primitive in order to help
protecting against internal timing leaks. This primitive is
called protect, and it can be applied to any command that
contains no loops. A protected command protect(c) is
executed atomically, by definition of its semantics. Such a
primitive can be used to secure program d1 ‖ d2 as:

d1 : protect(if h > 0 then sleep(100) else skip);
l := 1

d2 : sleep(50); l := 0

The timing difference is not visible to the scheduler because
of the atomic semantics of protect. The protect prim-
itive is, however, nonstandard. It is not obvious how such
a primitive can be implemented. A synchronization-based
implementation would face some non-trivial challenges. In
the case of program d1 ‖ d2, a possible implementation of
protect could attempt locking all other threads while exe-
cution is inside of the if statement:

d1 : lock; (if h > 0 then sleep(100) else skip);
unlock; lock; l := 1; unlock

d2 : lock; sleep(50); unlock; lock; l := 0; unlock

Unfortunately, such an implementation is insecure. The
somewhat subtle reason is that when the execution is in-
side of the if statement, the other threads do not become
instantly locked. Thread d2 can still be scheduled, which
could result in blocking and updating the wait list for the
lock with d2.

For simplicity, assume that sleep(n) is an abbreviation
for n consecutive skip commands. Consider a scheduler
that picks thread d1 first and then proceeds to run a thread
for 70 steps before giving the control to the other thread. If
h > 0 then d1 will run for 70 steps and, while being in the
middle of sleep(100), the control will be given to thread
d2. Thread d2 will try to acquire the lock but will block,
which will result in d2 being placed as the first thread in the
wait list for the lock. The scheduler will then schedule d1

again, and d1 will release the lock with unlock and try to
grab the lock with lock. However, it will fail because d2 is
the first in the wait list. As a result, d1 will be put behind
d2 in the wait list. Further, d2 will be scheduled to set l to
0, release the lock, and finish. Finally, d1 is able to grab
the lock and execute l := 1, release the lock, and finish.
The final value of l is 1. If, on the other hand, h ≤ 0 then,

clearly, d1 will finish within 70 steps, and the control will
be then given to d2, which will grab the lock, execute l :=
0, release the lock, and finish. The final value of l in this
case is 0, which demonstrates that the program is insecure.
Generally, under many schedulers, chances for l := 0 in d2

to execute before l := 1 in d1 are higher if the initial value
of h is positive. Thus, the above implementation fails to
remove the internal timing leak.

This example illustrates the need for a tighter interac-
tion with the scheduler. The scheduler needs to be able to
suspended certain threads instantly. This motivates the in-
troduction of the hide and unhide constructs in this paper.

Returning to probabilistic scheduler-specific noninterfer-
ence, Smith has continued this line of work [28] to empha-
size practical enforcement. In contrast to previous work, the
security type system accepts while loops with high guards
when no assignments to low variables follow such loops.
Independently, Boudol and Castellani [2, 3] provide a type
system of similar power and show possibilistic noninterfer-
ence for typable programs. This system does not rely on
protect-like primitives but winds up rejecting assignments
to low variables that follow conditionals with high guards.

The approaches above do not handle dynamic threads.
Smith [29] has suggested that the language can be extended
with dynamic thread creation. The extension is discussed
informally, with no definition for the semantics of fork, the
thread creation construct. A compositional typing rule for
fork is given, which allows spawning threads under condi-
tionals with high guards. However, the uniform scheduler
assumption is critical for such a treatment (as it is also for
the treatment of while loops). Consider the following ex-
ample:

e1 : l := 0
e2 : l := 1
e3 : if h > 0 then fork(skip, skip) else skip

This program is considered secure according to [29]. Sup-
pose the scheduler happens to first execute e3 and then
schedule the first thread (e1) if the threadpool has more than
three threads and the second thread (e2) otherwise. This re-
sults in an information leak from h to l because the size of
the threadpool depends on h. Note that the above program is
insecure for many other schedulers. A minor deviation from
the strictly uniform probabilistic choice of threads may re-
sult in leaking information.

A possible alternative aimed at scheduler-independence
is to force threads (created in branches of ifs with high
guards) along with their children to be protected, i.e., to
disable all other threads until all these threads have termi-
nated (this can be implemented by, for example, thread pri-
orities). Clearly, this would take a high efficiency tall on the
encouraged programming practice of placing dedicated po-
tentially time-consuming computation in separate threads.

3

For example, creating a new thread for establishing a net-
work connection is a much recommended pattern [14, 15].

The above discussion is another motivation for a tighter
interaction between threads and the scheduler. A flexible
scheduler would accommodate thread creation in a sensi-
tive context by scheduling such threads independently from
threads with attacker-observable assignments. This moti-
vates the introduction of the hfork construct in this paper.

2.4. Scheduler-independent security

Sabelfeld and Sands [26] introduce a scheduler-
independent security condition (with respect to possibly
probabilistic schedulers) and suggest a type-based analysis
that enforces this condition. The condition is, however, con-
cerned with external timing leaks, which implies that the at-
tacker is powerful enough to observe the actual execution
time. External timing models rely on the underlying oper-
ating system and hardware to preserve the timing properties
of a given program. Furthermore, the known padding tech-
niques [1, 26] might arbitrarily change the efficiency of the
resulting code (and possibly result in a diverging program).
In the present work, we assume a weaker attacker and aim
for a more permissive security condition and analysis.

External timing-sensitive security has been extended to
languages with semaphores [23] and message passing [24].

2.5. Security via low determinism

Inspired by Roscoe’s low-view determinism [20] for se-
curity in a CSP setting, Zdancewic and Myers [34] de-
velop an approach to information flow in concurrent sys-
tems. According to this approach, a program is secure
if its publicly-observably results are deterministic and un-
changed regardless of secret inputs. This avoids refine-
ment attacks from the outset. However, low-view deter-
minism security rejects intuitively secure programs (such
as l := 0 ‖ l := 1), introducing the risk of rejecting useful
programs. Analyses enforcing low-view determinism are
inherently non-compositional because the parallel composi-
tion with a thread assigning to low variables is not generally
secure.

Most recently, Huisman et al. [13] have suggested a tem-
poral logic-based characterization of low-view determinism
security. This characterization enables high-precision secu-
rity enforcement by known model-checking techniques.

3. Language

In order to illustrate our approach, we define a simple
multithreaded language with dynamic thread creation. The
syntax of language commands is displayed in Figure 1. Be-
sides the standard imperative primitives, the language fea-

c :: = stop | skip | v := e | c; c
| if b then c else c | while b do c

| hide | unhide | fork(c, ~d) | hfork(c, ~d)

Figure 1. Command syntax

tures hiding (hide and unhide primitives) and dynamic
thread creation (fork and hfork primitives).

3.1. Semantics for commands

A command c and a memory m together form a com-
mand configuration 〈|c,m|〉. The semantics of configura-
tions are presented in Figure 2. A small semantic step
has form 〈|c,m|〉 α

⇀ 〈|c′,m′|〉 that updates the command and
memory in the presence of a possible event α. Events range
over the set

{
•;,;•, ◦~d, •~d

}
, where ~d is a set of threads.

The sequential composition rule propagates events to the
top level. We describe the meaning of the events in con-
junction with the rules that involve the events.

Two kinds of threads are supported by the semantics, low
and high threads, partitioning the threadpool into low and
high parts. The intention is to hide—via the scheduler—the
(timing of the) execution of the high threads from the low
threads.

The hiding command hide moves the current thread
from the low to the high part of the threadpool. This is
expressed in the semantics by event ;• which communi-
cates to the scheduler to treat the thread as high. The un-
hiding command unhide has the dual effect: it communi-
cates to the scheduler by event •; that the thread should be
treated as low. We define independent commands hide and
unhide instead of forcing them to wrap code blocks syn-
tactically (cf. protect). We expect this choice to be useful
when adding exceptions to the language. For example, an
unhide in an exception handler may refer to several hide
primitives under a try statement.

Commands fork(c, ~d) and hfork(c, ~d) dynamically
spawn a collection of threads ~d while the current thread runs
command c. The difference between the two primitives is in
the generated event. Command fork signals about the cre-
ation of low threads with event ◦~d (where ◦ is read “low”)
while hfork indicates that new threads should be treated as
high by event •~d (where • is read “high”).

3.2. Semantics for schedulers

Figure 3 depicts the semantic rules that describe the be-
havior of the scheduler. A scheduler is, generally, a pro-

4

〈|skip,m|〉 ⇀ 〈|stop,m|〉

〈|e,m|〉 ↓ n

〈|x := e,m|〉 ⇀ 〈|stop,m[x 7→ n]|〉

〈|c1,m|〉 α
⇀ 〈|stop,m′|〉 α ∈

{
•;,;•, ◦~d, •~d

}
〈|c1; c2,m|〉 α

⇀ 〈|c2,m′|〉

〈|c1,m|〉 α
⇀ 〈|c′1,m′|〉 α ∈

{
•;,;•, ◦~d, •~d

}
〈|c1; c2,m|〉 α

⇀ 〈|c′1; c2,m′|〉

〈|e,m|〉 ↓ True
〈|if e then c1 else c2,m|〉 ⇀ 〈|c1,m|〉

〈|e,m|〉 ↓ False
〈|if e then c1 else c2,m|〉 ⇀ 〈|c2,m|〉

〈|e,m|〉 ↓ True
〈|while e do c,m|〉 ⇀ 〈|c; while e do c,m|〉

〈|e,m|〉 ↓ False
〈|while e do c,m|〉 ⇀ 〈|stop,m|〉

〈|hide,m|〉 ;•
⇀ 〈|stop,m|〉

〈|unhide,m|〉 •;⇀ 〈|stop,m|〉

〈|fork(c, ~d),m|〉
◦~d⇀ 〈|c,m|〉

〈|hfork(c, ~d),m|〉
•~d⇀ 〈|c,m|〉

Figure 2. Semantics for commands

gram σ that forms a scheduler configuration 〈|σ, ν|〉 together
with a memory ν. We assume that the scheduler memory
is disjoint from the program memory. The scheduler mem-
ory contains variable q that regulates for how many steps a
thread can be scheduled. Live threads are tracked by vari-
able t that consists of low and high parts. The low part is
named by t◦, while the high part is composed of two sub-
pools named t• and te. Threads in t• are always high, but
threads in te were low in the past, are high at present, and
might eventually be low in the future. Threads are moved
back and forth from t◦ to te by executing the hiding and un-
hiding commands. Variable r represents the running thread.
Variable s regulates whether low threads may be scheduled.
When s is ◦, both low and high threads may be scheduled.
However, when s is •, only high threads may be scheduled,
preventing low threads from observing internal timing in-
formation about high threads. In addition, the scheduler

might have some internal variables.
Whenever a scheduler-operation rule handles an event, it

either corresponds to processing information from the top
level (such as threads creation and termination) or to com-
municating information to the top level (such as thread se-
lection). The rules have the form 〈|σ, ν|〉 α

⇁ 〈|σ′, ν′|〉. By
convention, we refer to the variables in ν as q, t, r and s
and variables in ν′ as q′, t′, r′ and s′. When these variables
are not explicitly mentioned, we adopt the convention that
they remain unchanged after the transition. We assume that
besides event-driven transitions, the scheduler might per-
form internal operations that are not visible at the top level
(and may not change the variables above). We abstract away
from these transitions, assuming that their event labels are
empty. For simplicity, we require that scheduler transitions
are deterministic. We expect a natural generalization of our
results to probabilistic schedulers.

The rules can be viewed as a set of basic assumptions that
we expect the scheduler to satisfy. We abstract away from
the actual scheduler implementation—it can be arbitrary as
long it satisfies these basic assumptions and runs infinitely
long. We discuss an example of a scheduler that conforms
to these assumptions in Section 4.

Rule for event αr
~d

ensures that the scheduler updates the
appropriate part of the threadpool (low or high, depending
on α) with newly created threads. Operation N(~d) returns
thread identifiers for ~d and generates fresh ones when new
threads are spawn by fork or hfork. Rule for event r ;

keeps track of a non-terminal step of thread r; as an ef-
fect, counter q is decremented. A terminal step of thread
r results in a r ;× event, which requires the scheduler
to remove thread r from the threadpool. Events ↑◦ r′ and
↑• r′ are driven by the scheduler’s selection of thread r′.
Note the difference in selecting low and high threads. A
low thread can only be selected if the value of s is ◦, as
discussed above.

Events r ;• and •; r are triggered by the hide and
unhide commands, respectively. The scheduler handles
event r ;• by moving the current thread from the low to
the high part of the threadpool and setting s′ to •. Upon
event •;r, the scheduler moves the thread back to the low
part of the threadpool, setting s′ to ◦.

Events r ;•× and •; r× are triggered by hide and
unhide, respectively, when they are the last commands to
be executed by a thread.

3.3. Semantics for threadpools

The interaction between threads and the scheduler takes
place at the top level, the level of threadpool configura-
tions. These configurations have the form 〈|~c,m, σ, ν|〉 α→
〈|~c′,m′, σ′, ν′|〉 where α ranges over the same set of events
as in the semantics for schedulers.

5

q > 0 q′ = q − 1 t′α = tα ∪N(~d)

〈|σ, ν|〉
αr

~d⇁ 〈|σ′, ν′|〉
α ∈ {•, ◦}

q > 0 q′ = q − 1

〈|σ, ν|〉 r ;
⇁ 〈|σ′, ν′|〉

q > 0 q′ = 0 ∀α ∈ {•, ◦}.t′α = tα\{r}

〈|σ, ν|〉 r ;×
⇁ 〈|σ′, ν′|〉

q = 0 s = ◦ q′ > 0 r′ ∈ t◦ ∪ t•

〈|σ, ν|〉 ↑◦r′

⇁ 〈|σ′, ν′|〉

q = 0 q′ > 0 r′ ∈ t• ∪ te

〈|σ, ν|〉 ↑•r′

⇁ 〈|σ′, ν′|〉

q > 0 q′ = q − 1 s′ = • t′◦ = t◦\{r} t′e = {r}
〈|σ, ν|〉 r;•

⇁ 〈|σ′, ν′|〉

q > 0 q′ = 0 s′ = ◦ t′◦ = t◦ ∪ {r} t′e = ∅
〈|σ, ν|〉 •;r

⇁ 〈|σ′, ν′|〉

q > 0 q′ = 0 s′ = • ∀α ∈ {•, ◦}.t′α = tα\{r} t′e = ∅

〈|σ, ν|〉 r ;•×
⇁ 〈|σ′, ν′|〉

q > 0 q′ = 0 s′ = ◦ ∀α ∈ {•, ◦}.t′α = tα\{r} t′e = ∅

〈|σ, ν|〉 •;r×
⇁ 〈|σ′, ν′|〉

Figure 3. Semantics for schedulers

The semantics for threadpool configurations is displayed
in Figure 4. The dynamic thread creation rule is triggered
when the running thread cr generates a thread creation event
α~d where α is either • or ◦. This event is synchronized with
scheduler event αr

~d
that requests the scheduler to handle the

new threads depending on whether α is high or low.

If cr does not spawn new threads or terminate, then its
command rule is synchronized with scheduler event r;. If
cr terminates in a transition without labels, then scheduler
event r ;× is required for synchronization in order to up-
date the threadpool information in the scheduler memory.
If cr terminates with ;• (resp., •;) then synchronization
with r ;•× (resp., •; r×) is required to record both ter-
mination and hiding (resp., unhiding).

Scheduler event ↑α r′ triggers a selection of a new thread
r′ without affecting the commands in the threadpool or their
memory. Finally, entering and exiting the high part of the
threadpool is performed by synchronizing the current thread
and the scheduler on events r;• and •;r.

Let→∗ stand for the transitive and reflexive closure of→
(which is obtained from α→ by ignoring events). If for some
threadpool configuration cfg we have cfg →∗ cfg ′ where
the threadpool of cfg ′ is empty, then cfg terminates in cfg ′,
denoted by cfg ⇓ cfg ′. Recall that schedulers always run

infinitely; however, according to the above definition, the
entire program terminates if there are no threads to sched-
ule. We assume that m(cfg) extracts the program memory
from threadpool configuration cfg .

3.4. On multi-level extensions

Although the semantics accommodate two security lev-
els for threads, extensions to more levels do not pose signifi-
cant challenges. Assume a security lattice L where security
levels are ordered by a partial order v, with the intention
to only allow leaks from data at level `1 to data at level
`2 when `1 v `2. The low-and-high policy discussed above
forms a two-level lattice with elements low and high so that
low v high but high 6v low .

In the presence of a general security lattice, the thread-
pool is partitioned into as many parts as the number of se-
curity levels. Commands hide`, unhide`, and fork` are
parameterized over security level `. Initially, all threads are
in the ⊥-threadpool. Whenever a thread executes a hide`

command, it enters `-threadpool. The semantics need to
ensure that no threads from `′-threadpools, for all `′ such
that ` 6v `′ may execute until the hidden thread reaches
unhide`. Naturally, command fork` creates threads in `-
threadpool.

6

〈|cr,m|〉
α~d⇀ 〈|c′r,m′|〉 〈|σ, ν|〉

αr
~d⇁ 〈|σ′, ν′|〉

〈|c1 . . . cn,m, σ, ν|〉
αr

~d→ 〈|c1 . . . cr−1c
′
r
~dcr+1 . . . cn,m′, σ′, ν′|〉

α ∈ {•, ◦}

〈|cr,m|〉 ⇀ 〈|c′r,m′|〉 〈|σ, ν|〉 r ;
⇁ 〈|σ′, ν′|〉

〈|c1 . . . cn,m, σ, ν|〉 r;→ 〈|c1 . . . cr−1c
′
rcr+1 . . . cn,m′, σ′, ν′|〉

〈|cr,m|〉 ⇀ 〈|stop,m′|〉 〈|σ, ν|〉 r ;×
⇁ 〈|σ′, ν′|〉

〈|c1 . . . cn,m, σ, ν|〉 r;×→ 〈|c1 . . . cr−1cr+1 . . . cn,m′, σ′, ν′|〉

〈|cr,m|〉 ;•
⇀ 〈|stop,m′|〉 〈|σ, ν|〉 r ;•×

⇁ 〈|σ′, ν′|〉

〈|c1 . . . cn,m, σ, ν|〉 r;•×→ 〈|c1 . . . cr−1cr+1 . . . cn,m′, σ′, ν′|〉

〈|cr,m|〉 •;⇀ 〈|stop,m′|〉 〈|σ, ν|〉 •;r×
⇁ 〈|σ′, ν′|〉

〈|c1 . . . cn,m, σ, ν|〉 •;r×→ 〈|c1 . . . cr−1cr+1 . . . cn,m′, σ′, ν′|〉

〈|σ, ν|〉 ↑αr′

⇁ 〈|σ′, ν′|〉

〈|c1 . . . cn,m, σ, ν|〉 ↑αr′→ 〈|c1 . . . cn,m, σ′, ν′|〉
α ∈ {◦, •}, r′ ∈ {1, . . . , n}

〈|cr,m|〉 α
⇀ 〈|c′r,m′|〉 〈|σ, ν|〉 α

⇁ 〈|σ′, ν′|〉
〈|c1 . . . cn,m, σ, ν|〉 α→ 〈|c1 . . . cr−1c

′
rcr+1 . . . cn,m′, σ′, ν′|〉

α ∈ {r ; •, • ; r}

Figure 4. Semantics for threadpools

We will illustrate how general multi-level security can be
defined and enforced in Sections 4 and 5, respectively.

4. Security specification

We specify security for programs via noninterference.
The attacker’s view of program memory is defined by a low-
equivalence relation =L such that m1 =L m2 if the projec-
tions of the memories onto the low variables are the same
m1|L = m2|L. A program is secure under some scheduler
if for any two initial low-equivalent memories, whenever
the two runs of the program terminate, then the resulting
memories are also low-equivalent.

We generalize this statement to a class of schedulers, re-
quiring schedulers to comply to the basic assumptions from
Section 3 and also requiring that they themselves are not
leaky, i.e., that schedulers satisfy a form of noninterference.

Scheduler-related events have different distinguishabil-
ity levels. Events ◦r

~d
,, r ;, r ;×, ↑◦ r′, r ;•, •; r,

r ;•×, and •; r× (where r and r′ are low threads) op-
erate on low threads and are therefore low events. On the
other hand, events •r

~d
, r ;, r ;×, and ↑• r′ (where r and

r′ are high threads) are high.

With security partition defined on scheduler events, we
specify the indistinguishability of scheduler configurations
via low-bisimulation.

Definition 1 A relation R is a low-bisimulation on sched-
uler configurations if whenever 〈|σ1, ν1|〉 R 〈|σ2, ν2|〉, then

• if 〈|σi, νi|〉
α
⇁ 〈|σ′i, ν′i|〉 where α is high and i ∈ {1, 2},

then 〈|σ′i, ν′i|〉 R 〈|σ3−i, ν3−i|〉;

• if the case above cannot be applied and
〈|σi, νi|〉

α
⇁ 〈|σ′i, ν′i|〉 where α is low and

i ∈ {1, 2}, then 〈|σ3−i, ν3−i|〉
α
⇁ 〈|σ′3−i, ν

′
3−i|〉

and 〈|σ′i, ν′i|〉 R 〈|σ′3−i, ν
′
3−i|〉.

Scheduler configurations are low-indistinguishable if there
is a low-bisimulation that relates them:

Definition 2 Scheduler configurations 〈|σ1, ν1|〉
and 〈|σ2, ν2|〉 are low-indistinguishable (written
〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉) if there is a low-bisimulation
R such that 〈|σ1, ν1|〉 R 〈|σ2, ν2|〉.

Noninterference for schedulers requires low-bisimilarity
under any memory:

7

t◦ := [c]; t• := []; r := c; s := 0; turn := 0;
while (True) do {
q := M ; run(r);
while (q > 0) do {
receive

◦r
~d
: t◦ := append(t◦, N(~d));

•r
~d
: t• := append(t•, N(~d));

r;: skip;
r;× : t◦ := remove(r, t◦); t• := remove(r, t•);

q := 0;
r;• : t◦ := remove(r, t◦); t• := remove(r, t•);

t• := append(t•, [r]); s := 1;
•;r : t◦ := append(t◦, [r]);

t• := remove(r, t•); s := 0; q := 0;
r;•× : t◦ := remove(r, t◦); t• := remove(r, t•);

s := 1; q := 0;
•;r× : t◦ := remove(r, t◦); t• := remove(r, t•);

s := 0; q := 0;
end receive;
q := q − 1
};
turn := (turn + 1)%2;
if ((turn = 1) or (s = 1))
then {r := head(t•); t• := append(tail(t•), [r])}
else {r := head(t◦); t◦ := append(tail(t◦), [r])}
}

Figure 5. Round-robin scheduler

Definition 3 Scheduler σ is noninterferent if 〈|σ, ν|〉 ∼L

〈|σ, ν|〉 for all ν.

Figure 5 displays an example of a scheduler in
pseudocode. This is a round-robin scheduler that keeps
track of two lists of threads: low and high ones. The sched-
uler interchangeably chooses between threads from these
two lists, when possible. It waits for events generated by the
running thread (expressed by primitive receive). Func-
tions head, tail, remove, and append have the standard
semantics for list operations. Operation N(~d), variables t◦,
t•, s, r, and q have the same purpose as described in Sec-
tion 3.2. Constant M is a positive natural number. Variable
turn encodes the interchangeable choices between low and
high threads. Function run(r) launches the execution of
thread r. It is not difficult to show that this schedulers com-
plies to the assumptions from Section 3.2, and that it is non-
interferent.

Suppose the initial scheduler memory is formed accord-
ing to νinit = ν[t◦ 7→ {c} , t• 7→ ∅, te 7→ ∅, r 7→ 1, s 7→
◦, q 7→ 0] for some fixed ν. Security for programs is defined
as a form of noninterference:

Definition 4 Program c is secure if for all σ,m1, and m2

where σ is noninterferent and m1 =L m2, we have

〈|c,m1, σ, νinit |〉 ⇓ cfg1 & 〈|c,m2, σ, νinit |〉 ⇓ cfg2 =⇒
m(cfg1) =L m(cfg2)

A form of scheduler independence is built in the defi-
nition by the universal quantification over all noninterfer-
ent schedulers. Although the universally quantified condi-
tion may appear difficult to guarantee, we will show that
the security type system from Section 5 ensures that any
typable program is secure. Note that this security defini-
tion is termination-insensitive [25] in that it ignores non-
terminating program runs. Our approach can be applied to
termination-sensitive security in a straightforward manner,
although this is beyond the scope of this paper.

As common, noninterference can be expressed for a gen-
eral security lattice L by quantifying over all security levels
` ∈ L and demanding two-level noninterference between
data at levels `1 such that `1 v ` (acting as low) and data at
levels `2 such that `2 6v ` (acting as high).

5. Security type systems

This section presents a security type system that enforces
the security specification from the previous section. We pro-
ceed by going over the typing rules and stating the sound-
ness theorem.

5.1. Typing rules

Figure 6 displays the typing rules for expressions and
commands. Suppose Γ is a typing environment which in-
cludes security type information for variables (whether they
are low or high) and two variables, pc and hc, ranging over
security types (low or high). By convention, we write Γv

for Γ restricted to all variables but v.
Expression typing judgments have the form Γ ` e : τ

where τ is low only if all variables in e (denoted FV(e)) are
low. If there exists a high variable that occurs in e then τ
must be high . Expression types make no use of type vari-
ables pc and hc.

Command typing judgments have the form Γ ` c : τ .
As a starting point, let us see how the rules track sequential-
style information flow. The assignment rule ensures that in-
formation cannot leak explicitly by assigning an expression
that contains high variables into a low variable. Further,
implicit flows are prevented by the program counter mech-
anism [5, 33]. This mechanism ensures that no assignments
to low variables are allowed in the branches of a control
statement (if or while) when the guard of the control state-
ment has type high . (We call such if’s and while’s high.)
This is achieved by the program counter type variable pc

8

∀v ∈ FV(e).Γ(v) = low
Γ ` e : low

∃v ∈ FV(e).Γ(v) = high
Γ ` e : high

Γ ` skip : Γ(hc)
Γ ` e : τ τ t Γ(pc) t Γ(hc) v Γ(x)

Γ ` x := e : Γ(hc)

Γ ` c1 : τ1 Γhc, hc 7→ τ1 ` c2 : τ2

Γ ` c1; c2 : τ2

Γpc, pc 7→ high ` c : τ

Γpc, pc 7→ low ` c : τ

Γ ` e : τe τe v Γ(hc) (Γpc, pc 7→ τe t Γ(pc) t Γ(hc) ` ci : Γ(hc))i=1,2

Γ ` if e then c1 else c2 : Γ(hc)

Γ ` e : τe τe v Γ(hc) Γpc, pc 7→ τe t Γ(pc) t Γ(hc) ` c : Γ(hc)
Γ ` while e do c : Γ(hc)

Γ(pc) = low Γ(hc) = low
Γ ` hide : high

Γ(pc) = low Γ(hc) = high
Γ ` unhide : low

Γ ` c : low Γ(hc) = low Γ ` ~d : low

Γ ` fork(c, ~d) : low

Γpc, pc 7→ Γ(hc) ` c : high Γ(hc) = high Γpc, pc 7→ Γ(hc) ` ~d : high

Γ ` hfork(c, ~d) : high

Figure 6. Security type system

from the typing context Γ. The intended guarantee is that
whenever Γpc, pc 7→ high ` c : τ then c may not assign to
low variables. The typing rules ensure that branches of high
if’s and while’s may only be typed in a high pc context.

Security type variables hc (that describes hiding context)
and τ (that describes the command type) help track infor-
mation flow specific to the multithreaded setting. The main
job of these variables is to record whether the current thread
is in the high part of the threadpool (hc = high) or is in the
low part (hc = low). Command type τ reflects the level of
the hiding context after the command execution.

The type rules for hide and unhide raise and lower the
level of the thread, respectively. Condition τe v Γ(hc) for
typing high if’s and while’s ensures that high control com-
mands can only be typed under high hc, which enforces the
requirement that high control statements should be executed
by high threads.

The type system ensures that there are no fork (but pos-
sibly some hfork) commands in high control statements.
This is entailed by the rule for fork, which requires low hc.

By removing the typing rules for hide, unhide, hfork,
and the security type variables hc and τ from Figure 6, we
obtain a standard type system for securing information flow
in sequential programs (cf. [33]). This illustrates that our

type provides a general technique for modular extension of
systems that track information flow in a sequential setting.

Extending the type system to an arbitrary security lattice
L is straightforward: the main modification is that security
levels ` in hide`, unhide`, and fork` may be allowed only
if the level of hc is also `.

5.2. Soundness

We enlist some helpful lemmas for proving the sound-
ness of the type system. We only give proof sketches due to
the lack of space. Extended proofs are available in the full
version of the paper.

The first lemma states that high control commands must
be typed with high hc.

Lemma 1 If Γ ` c : τ , where c = if e then c1 else c2 or
c = while e do c, and Γ ` e : high , then Γ(hc) = high .

Proof. By inspection of typing rules for if and while. 2

Another important lemma is that commands hide and
unhide are matched in pairs.

Lemma 2 If Γhc, hc 7→ low ` hide; c : low , then there
exist commands c′ and p such that c = c′; unhide; p, where
c′ has no unhide commands, or c = unhide; p.

9

Proof. By induction on the size of command c. 2

In order to establish the security of typable commands,
we need to firstly identify the following subpools of threads
from a given configuration.

Definition 5 Given a scheduler memory ν and a thread
pool ~c, we define the following subpools of threads:
L(~c, ν) = {ci}i∈t◦∩N(~c), H(~c, ν) = {ci}i∈t•∩N(~c), and
EL(~c, ν) = {ci}i∈te∩N(~c).

These three subpools of threads, L(~c) (low), H(~c) (high)
and EL(~c) (eventually low), behave differently when the
overall threadpool is run with low-equivalent initial mem-
ories. Threads from the low subpool match in the two runs,
threads from the high subpool do not necessarily match (but
they cannot update low memories in any event), and threads
from the eventually low subpool will eventually match. The
above intuition is captured by the following theorem. First,
we define what “eventually match” means.

Definition 6 We define the relation eventually low, written
∼el,p, on empty or singleton sets of threads as follows:

• ∅ ∼el,p ∅;

• {c} ∼el,p {d} if N(c) = N(d), and there exist com-
mands c′ and d′ without unhide instructions such
that c = unhide; p (resp., c = c′; unhide; p), and
d = unhide; p (resp., d = d′; unhide; p).

Two traces that start with low-indistinguishable memo-
ries might differ on commands (although keeping the com-
mand type). We need to show that this difference will
not affect the sequence of low-observable events and low-
observable memory changes. In order to show this, we de-
fine an unwinding [10] property, which is similar to the low-
bisimulation property for schedulers. This unwinding prop-
erty below establishes an invariant on two configurations
that is preserved by low steps in lock-step and is unchanged
by high steps with any of the configurations.

Theorem 1 Given a command p and configura-
tions 〈|~c1,m1, σ1, ν1|〉 and 〈|~c2,m2, σ2, ν2|〉 so that
m1 =L m2, written as R1(m1,m2), N(~c1) =
H(~c1, ν1) ∪ L(~c1, ν1) ∪ EL(~c1, ν1), written as R2(~c1, ν1),
R2(~c2, ν2), sets H(~c1, ν1), L(~c1, ν1), and EL(~c1, ν1) are
disjoint, written as R3(~c1, ν1), R3(~c2, ν2), L(~c1, ν1) =
L(~c2, ν2), written as R4(~c1, ν1, ~c2, ν2), EL(~c1, ν1)
∼el,p EL(~c2, ν2), written as R5(~c1, ν1, ~c2, ν2, p),
(Γ[hc 7→ low] ` ci : low)i∈L(~c1,ν1), written as R6(~c1, ν1),
(Γ[hc 7→ high, pc 7→ high] ` ci : high)i∈H(~c1,ν1)∪H(~c2,ν2),
written as R7(~c1, ν1, ~c2, ν2), (Γ[hc 7→ high] ` ci :
low)i∈EL(~c1,ν1)∪EL(~c2,ν2), written as R8(~c1, ν1, ~c2, ν2),
and 〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉, written as R9(σ1, ν1, σ2, ν2),
then:

• if 〈|~ci,mi, σi, νi|〉
α→ 〈|~c ′i,m′

i, σ
′
i, ν

′
i|〉 where α is

high and i ∈ {1, 2}, then there exists p′ such
that R1(m′

i,m3−i), R2(~c ′i, ν
′
i), R2(~c3−i, ν3−i),

R3(~c ′i, ν
′
i), R3(~c3−i, ν3−i), R4(~c ′i, ν

′
i,~c3−i, ν3−i),

R5(~c ′i, ν
′
i,~c3−i, ν3−i, p

′), R6(~c ′i, ν
′
i), R7(~c ′i, ν

′
i,

~c3−i, ν3−i), R8(~c ′i, ν
′
i,~c3−i, ν3−i), and R9(σ′i, ν

′
i,

σ3−i, ν3−i);

• if the above case cannot be applied, and if
〈|~ci,mi, σi, νi|〉

α→ 〈|~c ′i,m′
i, σ

′
i, ν

′
i|〉 where α is

low and i ∈ {1, 2}, then 〈|~c3−i,m3−i, σ3−i, ν3−i|〉
α→

〈|~c ′3−i,m
′
3−i, σ

′
3−i, ν

′
3−i|〉 where there exists p′ such

that R1(m′
i,m

′
3−i), R2(~c ′i, ν

′
i), R2(~c ′3−i, ν

′
3−i),

R3(~c ′i, ν
′
i), R3(~c ′3−i, ν

′
3−i), R4(~c ′i, ν

′
i,~c

′
3−i, ν

′
3−i),

R5(~c ′i, ν
′
i,~c

′
3−i, ν

′
3−i, p

′), R6(~c ′i, ν
′
i), R7(~c ′i, ν

′
i,

~c ′3−i, ν
′
3−i), R8(~c ′i, ν

′
i,~c

′
3−i, ν

′
3−i), and R9(σ′i, ν

′
i,

σ′3−i, ν
′
3−i).

Proof. By case analysis on command/scheduler steps. The
interesting cases are fork and hfork, where the dynamic
creation of threads is handled; and hide and unhide, where
the notion of eventually low is used. These cases are elabo-
rated in the full version of the paper. Briefly, the hc mech-
anism of the type system together with the low-bisimilarity
〈|σ1, ν1|〉 ∼L 〈|σ2, ν2|〉 allows us to propagate the invariant
according to the high and low cases. 2

Corollary 1 (Soundness) If Γhc, hc 7→ low ` c : low then
c is secure.

Proof. For arbitrary σ,m1, and m2 so that m1 =L m2 and
σ is noninterferent, assume 〈|c,m1, σ, νinit |〉 ⇓ cfg1 &
〈|c,m2, σ, νinit |〉 ⇓ cfg2. By inductive (in the number of
transition steps of the above configurations) application of
Theorem 1, we propagate invariant m1 =L m2 to the ter-
minating configurations. 2

6. Extension to cooperative schedulers

It is possible to extend our model to cooperative sched-
ulers. This is done by a minor modification of the semantics
and type system rules. One can show that the results from
Section 5 are preserved under these modifications.

The language is extended with primitive yield whose
semantics are as follows:

〈|yield,m|〉 ;/
⇀ 〈|stop,m|〉

The semantics for commands also need to propagate label
6; in the sequential composition rules.

Event 6; signals to the scheduler that the current thread
yields control. The scheduler semantics need to react to

10

such an event by reseting counter q′ to 0:

q > 0 q′ = 0

〈|σ, ν|〉 r;/
⇁ 〈|σ′, ν′|〉

q > 0 q′ = 0
∀α ∈ {•, ◦}.t′α = tα\{r}

〈|σ, ν|〉 r;/×
⇁ 〈|σ′, ν′|〉

We need to ensure that the only possibility to schedule an-
other thread is by generating event 6;. Hence, we add
premise q′ = ∞ to the semantics rules for schedulers that
handle events ↑• r′ and ↑◦ r′. Additionally, the last rule in
Figure 4 now allows α to range over {r ; •, • ; r, r 6;},
which propagates yielding events 6; from threads to the
scheduler. Similar to scheduler events r ;•× and •; r×,
a new transition is added to the threadpool semantics to in-
clude the case when yield is executed as the last command
by a thread.

At the type-system level, yielding control while inside
a high control command, as well as inside hide/unhide
pairs, is potentially dangerous. These situations are avoided
by a type rule for yield that restricts pc and hc to low:

Γ(pc) = low Γ(hc) = low
Γ ` yield : Γ(hc)

A theorem that implies soundness for the modified type sys-
tem can be proved similarly to Theorem 1.

Recently, we have suggested a mechanism to enforcing
security under cooperative scheduling [21]. Besides check-
ing for explicit and implicit flows, the mechanism ensures
that there are no yield commands in high context. Simi-
larly, the rule above implies that yield may not appear in
high context. On the other hand, the mechanism from [21]
allows no dynamic thread creation in high context. This is
improved by the approach sketched in this section, because
it retains the flexibility that is offered by hfork.

7. Ticket purchase example

In Section 2, we have argued that a flexible treatment of
dynamic thread creation is paramount for a practical secu-
rity mechanism. We illustrate, by an example, that the se-
curity type system from Section 5 offers such a permissive
treatment without compromising security.

Consider the code fragment in Figure 7. This fragment
is a part of a program that handles a ticket purchase. Vari-
ables have subscripts indicating their security levels (l for
low and h for high). Suppose fl contains public data for the
flight being booked (including the class and seat details),
ph contains secret data for the passenger being processed.
Variable nl is assigned the (public) number of frequent-flier
miles for flight fl. Variable mh is assigned the current num-
ber of miles of passenger ph, which is secret. Variable sh

is assigned the (secret) status (e.g., BASIC or GOLD) of
passenger ph. The value of sh is then stored in oh.

. . .
nl := computeMilesFor(fl);
mh := miles(ph);
sh := statusOf (ph);
oh := sh;
if (mh + nl > 50000)

then fork(sh := GOLD , updateStatus);
dl := getTimeStamp();
printTicket(ph, fl, dl);
. . .
updateStatus :
if (oh 6= GOLD) then changeStatus(ph,GOLD);
eh := extraMiles(mh, nl, sh);
mh := updateMiles(ph,mh + nl + eh)

Figure 7. Ticket purchase code

The next line is a control statement: if the updated num-
ber mh + nl of miles exceeds 50000 then a new thread is
spawn to perform a status update updateStatus for the pas-
senger. The status update code involves a computation for
extra miles (due to the passenger status) and might involve a
request changeStatus to the status database. As potentially
time-consuming computation, it is arranged in a separate
thread. The final computation in the main thread assigns
the time stamp of the purchase to (public) variable dl and
prints the ticket.

This program creates threads in a high context because
the guard of the if in the main thread depends on mh. Fur-
thermore, the main thread contains an assignment to a low
variable (dl) after the instructions that branches on secrets.
Nevertheless, a minor modification of the program (which
can, generally, be easily automated) by replacing if (mh +
nl > 50000) then fork(sh := GOLD , updateStatus)
with

hide;
if(mh + nl > 50000) then

hfork(sh := GOLD , updateStatus)
else skip;

unhide

results in a typable (and therefore secure) program.

8. Implementation issues

As discussed in Section 2, it is important that the pro-
posed security mechanism for regulating the interaction be-
tween threads and the scheduler is feasible to put into effect
in practice.

11

We have analyzed two well-known thread libraries: the
GNU Pth [7] and the NPTL [6] libraries for the cooperative
and preemptive concurrent model, respectively. Generally,
the cooperative model has been widely used in, for instance,
GUI programming when few computations are performed,
and most of the time the system waits for events. The pre-
emptive model is popular in operating systems where pre-
emption is essential for resource management. We have not
analyzed the libraries in full detail, focusing on a feasibility
study of the presented interaction between threads and the
scheduler.

The GNU Pth library is well known by its high level of
portability and by only using threads in user space. We
have modified this library to allow the implementation of
the primitives hide and unhide as well as a noninterferent
scheduler based on the round-robin policy from Section 4.
The scheduler consists of one list of threads for each se-
curity level, in this case, low and high. The scheduler in-
terchangeably chooses between elements of those lists de-
pending on the value of s (i.e., low and high threads when
s = ◦, and only high ones otherwise).

The NPTL library, on the other hand, is more complex
than the previous one. It maps threads in user space to
threads in kernel space by using low-level primitives in the
code. Nevertheless, it is possible to apply a similar pro-
cedure to that we have applied to the GNU Pth library.
The interaction between threads and the scheduler becomes
more subtle in this model due to the operations performed
at the kernel space. The responsiveness of the kernel for the
whole system would depend on temporal properties of code
wrapped by hide and unhide primitives.

9. Conclusion

We have argued for a tight interaction between threads
and the scheduler in order to guarantee secure information
flow in multithreaded programs. In conclusion, we revisit
the goals set in the paper’s introduction and report the de-
gree of success meeting these goals.

Permissiveness A key improvement over previous ap-
proaches is a permissive, yet secure, treatment of dynamic
thread creation. Even if threads are created in a sensitive
context, the flexible scheduling mechanism allows these
threads to perform useful computation. This is particularly
satisfying because it is an encouraged pattern to perform
time-consuming computation (such as establishing network
connections) in separate threads [14, 15].

Scheduler-independence In contrast to known ap-
proaches to internal timing-sensitive approaches, the under-
lying security specification is robust with respect to a wide

class of schedulers. However, the schedulers supported by
the definition need to satisfy a form of noninterference that
disallows information transfer from threads created in a sen-
sitive context to threads with publicly observable effects.
Sections 4 and 8 argue that such scheduler properties are
not difficult to achieve.

Standard semantics The underlying semantics does not
appeal to the nonstandard protect construct. The seman-
tics, however, feature additional hide, unhide, and hfork
primitives. In contrast to protect, these features are di-
rectly implementable, as discussed in Section 8.

Language expressiveness As discussed earlier, a flexi-
ble treatment of dynamic thread creation is a part of our
model. Input/output and synchronization are also desir-
able features. We expect a natural extension of our model
with input/output primitives on channels labeled with secu-
rity levels, as well as synchronization primitives (such as
semaphores) that operate on different security levels. For
the two-point security lattice, we imagine the following ex-
tension of the type system. Low channels would allow
low threads to input to low variables and to output low ex-
pressions. Low semaphores s would permit low threads
to execute both P(s) and V(s) operations. High channels
would allow high threads to input/output data and allow low
threads to output data. High semaphores would allow high
threads s to perform both P(s) and V(s) operations and al-
low low threads to perform V(s). Formalizing this intuition
is subject to our future work.

Practical enforcement We have demonstrated that secu-
rity can be enforced for both cooperative and preemptive
schedulers using a compositional type system. The type
system accommodates permissive programming. We have
illustrated by an example in Section 7 that the permissive-
ness of dynamic thread creation is not majorly restricted by
the type system. The type system does not involve padding
to eliminate timing leaks at the cost of efficiency. Our future
work plans include adapting the type system to unstructured
languages (such as languages with exceptions and byte-
code) and facilitating tool support for it.

Acknowledgments

We wish to thank our colleagues in the ProSec group
at Chalmers and partners in the Mobius project for helpful
feedback. This work was funded in part by the Informa-
tion Society Technologies program of the European Com-
mission, Future and Emerging Technologies under the IST-
2005-015905 MOBIUS project.

12

References

[1] J. Agat. Transforming out timing leaks. In Proc. ACM
Symp. on Principles of Programming Languages, pages 40–
53, Jan. 2000.

[2] G. Boudol and I. Castellani. Noninterference for concurrent
programs. In Proc. ICALP’01, volume 2076 of LNCS, pages
382–395. Springer-Verlag, July 2001.

[3] G. Boudol and I. Castellani. Non-interference for concur-
rent programs and thread systems. Theoretical Computer
Science, 281(1):109–130, June 2002.

[4] E. S. Cohen. Information transmission in sequential pro-
grams. In R. A. DeMillo, D. P. Dobkin, A. K. Jones, and
R. J. Lipton, editors, Foundations of Secure Computation,
pages 297–335. Academic Press, 1978.

[5] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. Comm. of the ACM, 20(7):504–
513, July 1977.

[6] U. Drepper and I. Molnar. The native posix thread library
for linux. http://people.redhat.com/drepper/
nptl-design.pdf, Jan. 2003.

[7] R. S. Engelschall. Gnu pth - the gnu portable
threads. http://www.gnu.org/software/pth/,
Nov. 2005.

[8] R. Focardi and R. Gorrieri. Classification of security proper-
ties (part I: Information flow). In R. Focardi and R. Gorrieri,
editors, Foundations of Security Analysis and Design, vol-
ume 2171 of LNCS, pages 331–396. Springer-Verlag, 2001.

[9] J. A. Goguen and J. Meseguer. Security policies and security
models. In Proc. IEEE Symp. on Security and Privacy, pages
11–20, Apr. 1982.

[10] J. A. Goguen and J. Meseguer. Unwinding and inference
control. In Proc. IEEE Symp. on Security and Privacy, pages
75–86, Apr. 1984.

[11] K. Honda, V. Vasconcelos, and N. Yoshida. Secure infor-
mation flow as typed process behaviour. In Proc. European
Symp. on Programming, volume 1782 of LNCS, pages 180–
199. Springer-Verlag, 2000.

[12] K. Honda and N. Yoshida. A uniform type structure for se-
cure information flow. In Proc. ACM Symp. on Principles of
Programming Languages, pages 81–92, Jan. 2002.

[13] M. Huisman, P. Worah, and K. Sunesen. A temporal logic
characterisation of observational determinism. In Proc.
IEEE Computer Security Foundations Workshop, July 2006.

[14] J. Knudsen. Networking, user experience,
and threads. Sun Technical Articles and Tips
http://developers.sun.com/techtopics/
mobility/midp/articles/threading/, 2002.

[15] Q. H. Mahmoud. Preventing screen lockups of block-
ing operations. Sun Technical Articles and Tips
http://developers.sun.com/techtopics/
mobility/midp/ttips/screenlock/, 2004.

[16] D. McCullough. Specifications for multi-level security and
hook-up property. In Proc. IEEE Symp. on Security and Pri-
vacy, pages 161–166, Apr. 1987.

[17] J. McLean. The specification and modeling of computer se-
curity. Computer, 23(1):9–16, Jan. 1990.

[18] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Ny-
strom. Jif: Java information flow. Software release. Located
at http://www.cs.cornell.edu/jif, July 2001–
2006.

[19] F. Pottier. A simple view of type-secure information flow in
the pi-calculus. In Proc. IEEE Computer Security Founda-
tions Workshop, pages 320–330, June 2002.

[20] A. W. Roscoe. CSP and determinism in security modeling.
In Proc. IEEE Symp. on Security and Privacy, pages 114–
127, May 1995.

[21] A. Russo and A. Sabelfeld. Security for multithreaded pro-
grams under cooperative scheduling. In Proc. Andrei Ershov
International Conference on Perspectives of System Infor-
matics, LNCS. Springer-Verlag, June 2006.

[22] P. Ryan. Mathematical models of computer security—
tutorial lectures. In R. Focardi and R. Gorrieri, editors,
Foundations of Security Analysis and Design, volume 2171
of LNCS, pages 1–62. Springer-Verlag, 2001.

[23] A. Sabelfeld. The impact of synchronisation on secure in-
formation flow in concurrent programs. In Proc. Andrei Er-
shov International Conference on Perspectives of System In-
formatics, volume 2244 of LNCS, pages 225–239. Springer-
Verlag, July 2001.

[24] A. Sabelfeld and H. Mantel. Static confidentiality enforce-
ment for distributed programs. In Proc. Symp. on Static
Analysis, volume 2477 of LNCS, pages 376–394. Springer-
Verlag, Sept. 2002.

[25] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE J. Selected Areas in Communications,
21(1):5–19, Jan. 2003.

[26] A. Sabelfeld and D. Sands. Probabilistic noninterference for
multi-threaded programs. In Proc. IEEE Computer Security
Foundations Workshop, pages 200–214, July 2000.

[27] V. Simonet. The Flow Caml system. Software release. Lo-
cated at http://cristal.inria.fr/∼simonet
/soft/flowcaml/, July 2003.

[28] G. Smith. A new type system for secure information flow.
In Proc. IEEE Computer Security Foundations Workshop,
pages 115–125, June 2001.

[29] G. Smith. Probabilistic noninterference through weak prob-
abilistic bisimulation. In Proc. IEEE Computer Security
Foundations Workshop, pages 3–13, 2003.

[30] G. Smith and D. Volpano. Secure information flow in a
multi-threaded imperative language. In Proc. ACM Symp.
on Principles of Programming Languages, pages 355–364,
Jan. 1998.

[31] J. Viega and G. McGraw. Building Secure Software: How
to Avoid Security Problems the Right Way. Addison-Wesley,
2001.

[32] D. Volpano and G. Smith. Probabilistic noninterference in
a concurrent language. J. Computer Security, 7(2–3):231–
253, Nov. 1999.

[33] D. Volpano, G. Smith, and C. Irvine. A sound type system
for secure flow analysis. J. Computer Security, 4(3):167–
187, 1996.

[34] S. Zdancewic and A. C. Myers. Observational determinism
for concurrent program security. In Proc. IEEE Computer
Security Foundations Workshop, pages 29–43, June 2003.

13

