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ABSTRACT
Recent years have seen a proliferation of research on information
flow control. While the progress has been tremendous, it has also
given birth to a bewildering breed of concepts, policies, conditions,
and enforcement mechanisms. Thus, when designing information
flow controls for a new application domain, the designer is con-
fronted with two basic questions: (i) What is the right security
characterization for a new application domain? and (ii) What is the
right enforcement mechanism for a new application domain?

This paper puts forward six informal principles for designing
information flow security definitions and enforcement mechanisms:
attacker-driven security, trust-aware enforcement, separation of policy
annotations and code, language-independence, justified abstraction,
and permissiveness. We particularly highlight the core principles of
attacker-driven security and trust-aware enforcement, giving us a
rationale for deliberating over soundness vs. soundiness. The prin-
ciples contribute to roadmapping the state of the art in information
flow security, weeding out inconsistencies from the folklore, and
providing a rationale for designing information flow characteriza-
tions and enforcement mechanisms for new application domains.

CCS CONCEPTS
• Security and privacy → Formal methods and theory of se-
curity;
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1 INTRODUCTION
Information flow control tracks the flow of information in systems.
It accommodates both confidentiality, when tracking information
from secret sources (inputs) to public sinks (outputs), and integrity,
when tracking information from untrusted sources to trusted sinks.
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Motivation. Recent years have seen a proliferation of research
on information flow control [16, 17, 19, 39, 49, 55, 67, 70, 72, 73],
leading to applications in a wide range of areas including hard-
ware [8], operating system microkernels [59] and virtualization
platforms [32], programming languages [36, 37], mobile operating
systems [44], web browsers [12, 43], web applications [13, 45], and
distributed systems [50]. A recent special issue of Journal of Com-
puter Security on verified information flow [60] reflects an active
state of the art.

While the progress has been tremendous, it has also given birth
to a bewildering breed of concepts, policies, conditions, and en-
forcement mechanisms. These are often unconnected and ad-hoc,
making it difficult to build on when developing new approaches.
Thus, when designing information flow controls for a new applica-
tion domain, the designer is confronted with two basic questions,
for which there is no standard recipe in the literature.

Question 1. What is the right security characterization for a new
application domain?

A number of information flow conditions has been proposed in
the literature. For confidentiality, noninterference [22, 28], is a com-
monly advocated baseline condition stipulating that secret inputs
do not affect public outputs. Yet noninterference comes in differ-
ent styles and flavors: termination-(in)sensitive [67, 79], progress-
(in)sensitive [3], and timing-sensitive [2], just to name a few. Other
characterizations include epistemic [4, 35], quantitative [73], and
conditions of information release [70], as well as weak [78], ex-
plicit [71], and observable [9] secrecy. Further, compositional se-
curity conditions [53, 61, 69] are often advocated, adding to the
complexity of choosing the right characterization.

Question 2. What is the right enforcement mechanism for a new
application domain?

The designer might struggle to select from the variety of mecha-
nisms available. Information flow enforcement mechanisms have
also been proposed in various styles and flavors, including static [20,
23, 79], dynamic [25, 26, 33], hybrid [14, 58], flow-(in)sensitive [41,
65], and language-(in)dependent [11, 24]. Further, some track pure
data flows [72] whereas others also track control flow dependen-
cies [67], adding to the complexity of choosing the right enforce-
ment mechanism.

Contributions. This paper puts forward principles for designing
information flow security definitions and enforcement mechanisms.
The goal of the principles is to help roadmapping the state of the art
in information flow security, weeding out inconsistencies from the
folklore, and providing a rationale for designing information flow
characterizations and mechanisms for new application domains.

The rationale rests on the following principles: attacker-driven
security, trust-aware enforcement, separation of policy annotations
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and code, language-independence, justified abstraction, and permis-
siveness.

Scope. Given the area’s maturity, this work is deliberately not a
literature survey. There are several excellent surveys overviewing
different aspects of information flow security [16, 17, 19, 39, 49, 55,
67, 70, 72, 73], further discussed in Section 3. Rather, we seek to
empower information flow control mechanism designers by illu-
minating key principles we believe are important when designing
new mechanisms.

2 DESIGN PRINCIPLES
We begin by presenting two core principles: attacker-driven security
and trust-aware enforcement, followed by four additional principles.
The core principles can be viewed as instantiations of the two
broader principles on “defining threat models” and “defining the
trusted computing base” [48, 56]. The instantiation to information
flow control is non-trivially different from instantiations in other
security areas, in particular in the case where trusted annotations
are required on untrusted code.

Principle 1 (Attacker-driven security). Security characterizations
benefit from directly connecting to a behavioral attacker model,
expressing (un)desirable behaviors in terms of system events that
attackers can observe and trigger.

Key to this principle is a faithful attacker model, representing
what events the attacker can observe and trigger. Focusing on
attacker-driven security enables a systematic way to view the rich
area of information flow characterizations. Figure 1 depicts a bird’s-
eye view. The common attacker-driven conditions, such as the
above-mentioned noninterference [22, 28] and epistemic security [4,
35], appear on the upper right. For systems that interact with an
outside environment, it is important tomodel input/output behavior
and its security implications. In this space, attacker-driven security
is captured by so-called progress-sensitive security [57, 63, 64], in
contrast to progress-insensitive security [3] that ignores leaks due
to computation progress.

Throughout the paper, we will leverage the JSFlow [38] tool to
illustrate the principles on JavaScript code fragments. We use high
and low labels for secret and public data, respectively. JSFlow is a
JavaScript interpreter that tracks information flow labels. JSFlow
constructor lbl is used for assigning a high label to a value. As is
common, JSFlow accommodates information release via declassifi-
cation [70]. Primitive declassify is used for declassifying a value
from high to low. Primitive print is used for output. We consider
print statements to be public.
Example 1 (Based on Program 2 [3]).

i = 0;
while (i < Number.MAX_VALUE) {

print(i);
if (i == secret) { while (true) {} }
i = i + 1;

}

In the above example, if the attacker is assumed to be able to
observe the intermediate outputs of the computation, then the pro-
gram is progress-sensitive insecure, otherwise is progress-insensitive
secure. As JSFlow enforces progress-insensitive noninterference, it
will accept the program.

Attacker-driven security is also represented by relaxations of
noninterference to quantitative information flow [73] and infor-
mation release [70], capturing scenarios of intended information
release.

Example 2 (Simple password checking [70]).
guess = lbl(getUserInput ());
result = declassify(guess == pwd);

The above example checks whether the user input retrieved via
function getUserInput() matches the stored password pwd. The
user input and variable pwd are assumed to be high, and result to
be low, as an attacker should be only allowed to learn whether the
user’s guess matches the stored password, but not the actual guess,
nor the actual password.

When the attacker model combines confidentiality and integrity,
their interplay requires careful treatment. For example, the goal
of robust declassification [83] is to prevent untrusted data from
affecting declassification decisions.

Further relaxations of noninterference bring us to soundiness,
inspired by a recent movement in the program analysis community.
In their manifesto, Livshits et al. advocate soundiness [51] of pro-
gram analysis, arguing that it is virtually impossible to establish
soundness for practical whole program analysis. While soundiness
breaks soundness, its goal is to explain and limit the implications
of unsoundness.

In this sense, popular relaxations of noninterference like termina-
tion-insensitive [67, 79] and progress-insensitive [3] noninterfer-
ence are soundiness. Termination- and progress-insensitive con-
ditions are often used to justify permissive handling of loops that
branch on secrets by enforcement. However, this justification alone
would exclude these conditions from being attacker-driven, unless
the impact of unsoundness with respect to a behavioral attacker
is characterized. Indeed, limiting implications of unsoundness for
these conditions have been studied, e.g., by giving quantitative
bounds on how much is leaked via the termination and progress
channels [3].

The conditions of observable [9], weak [78], and explicit [71]
secrecy are depicted in the lower right of Figure 1. These condi-
tions are fundamentally different from attacker-driven definitions,
clearly falling into the category of soundiness. Rather than char-
acterizing an attacker, they are tailored to describe properties of
enforcement, catering to mechanisms like taint tracking [72], pure
data dependency analysis that ignores leaks due to control flow,
and its enhancements with so-called observable [9] implicit flow
checks.

Finally, in contrast to attacker-driven definitions, we distinguish
verification conditions, such as those provided by compositional se-
curity [53, 61, 69], invariants [62], and unwinding conditions [29].
We bring up verification conditions in order to point out that they
are not suitable to be used as definitions of security. Indeed, while
compositionality is essential for scaling the reasoning about secu-
rity enforcement [48, 52], compositionality per se is inconsequential
for characterizing security against a concrete attacker [39]. We thus
argue that it is valuable to aim at compositional verification condi-
tions, as long as they are sufficient for implying security against a
clearly specified attacker-driven characterization. The verification



From enforcement for untrusted code. . .
• Information flow control
• Secure multi-execution
• Blackbox mitigation
• Observable tracking
• Taint tracking
. . . to trusted
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Figure 1: Bird’s-eye view: enforcement, verification conditions, and security characterizations

conditions are depicted in the middle of the figure. The arrows
between the boxes illustrate logical implication, from enforcement
to verification conditions (justifying the usefulness of verification
conditions) and from verification conditions to security conditions
(justifying the soundness of the verification conditions).

Principle 2 (Trust-aware security enforcement). Security enforce-
ment benefits from explicit trust assumptions, making clear the
boundary between trusted and untrusted computing base and guid-
ing the enforcement design in accord.

Figure 1 illustrates this principle by listing the different enforce-
ment mechanisms in the order of what code it is suitable for: from
untrusted to trusted. This order loosely aligns untrusted code with
attacker-driven security and trusted code with soundiness. The
rationale is that security enforcement for untrusted code needs
to cover flows with respect to a given attacker-driven security,
as the attacker has control over which flows to try to exploit. In
contrast, trusted code can be harder to exploit. For example, in a
scenario of injection attacks on a web server, the code is trusted
while user-provided inputs are not. In this scenario, taint tracking
is often sufficient, because the code does not contain malicious
patterns that exploit control flows to mount attacks [72]. In other
scenarios with trusted code, it is possible to establish security by
a lightweight combination of an explicit-flow and graph-pattern
analyses [66]. Overall, the permissiveness of mechanisms increases
with the degree of trust to the code.

Trade-offs between taint tracking and fully-fledged information
flow control have been subject to empirical studies [46]. The mid-
dle ground between tracking explicit and some implicit flows has
been explored in implementations [9, 77] and formalizations [9] via
observable tracking [9] that disregards control flows in the branches
that are not taken by a monitoring mechanism.
Example 3 (Based on Program 3 [9]).

l = true;
k = true;
if (h) {l = false ;}
if (l) {k = false ;}
print (42);

While the above example encodes the value of high variable h

into variable k through observable implicit flows, the program is
accepted by observable tracking, as k is never output, but rejected
by fully-fledged information flow control. If h is true, JSFlow blocks
the execution of the program, but accepts it otherwise.

While the permissiveness of mechanisms generally increases
with the degree of trust to the code, there is need for a systematic
approach on choosing the right enforcement. We bring up two im-
portant aspects: (i) considerations of integrity and (ii) terminology
inconsistencies.

For the integrity aspect, some literature doubts the importance
of implicit flows for integrity. For example, Haack et al. suggest
that “somehow implicit flows seem to be less of an issue for in-
tegrity requirements” [34]. To understand the root of the problem,
it is fruitful to consider that integrity has different facets: integrity
via invariance and via information flow [18]. The former is gener-
ally about safety properties, from data and predicate invariance to
program correctness. It is often sufficient to enforce this facet of
integrity with invariant checks and/or taint tracking (e.g., ensuring
that tainted data has been sanitized before output). On the other
hand, the latter is dual to confidentiality. Thus, implicit flows cannot
be ignored for the information flow facet of integrity. Examples of
implicit flows that matter for integrity (and forms of availability)
are the inputs of coma [21] and crashed regular expression match-
ing [80], where trusted code is fed untrusted inputs with the goal
of corrupting the execution.

Interestingly, tainting and information flow tracking are some-
times used interchangeably in the literature, making it unclear what
type of dependencies is actually tracked. For example, “information
flow” approaches to Android app security are often taint trackers
that do not track implicit flows [20, 25, 30]. Conversely a “taint
tracker” for JavaScript is actually a mechanism that also tracks ob-
servable implicit flows [77]. In this paper, we distinguish between
fully-fledged information flow tracking of both explicit and implicit
flows versus taint tracking that only tracks explicit flows.

Trust-aware enforcement accommodates systematic selection
of enforcement. Trusted, non-malicious, code with potentially un-
trusted inputs can be subject to vulnerability detection techniques
like taint tracking. Untrusted, potentially malicious code, is subject
to a more powerful analysis that takes into account attacker capa-
bilities in a given runtime environment. Other considerations, like
particular trust assumptions of a target domain and whether en-
forcement is decentralized, further affect the choice of trust-aware
enforcement.

We discuss further prudent principles of general flavor, from the
perspective of applying them to information flow control.



Principle 3 (Separation of policy annotations and code). Security
policy annotations and code benefit from clear separation, espe-
cially when the policy is trusted and code is untrusted.

This principle governs syntactic policies as expressed by develop-
ers for a given program in terms of security labels, declassification
annotations, and similar. We illustrate this principle on policies
for information release, or declassification, using dimensions of
declassification, with respect to what information is declassified,
where (in the code), when (at what point of execution) and by whom
(by what principal) [70].

The where dimension of declassification is concerned with poli-
cies that limit information release to specially marked locations in
code (with declassification annotations). The principle implies that
code annotated with declassification policies (e.g., [4, 10]) cannot
be part of purely untrusted code, where the attacker can abuse
annotations to release more information than intended.

If code of Example 2 were untrusted, an attacker could place the
declassification annotation on the password pwd, and not on the
result of equating pwd with the user input:

Example 4.
result = declassify(pwd);

In a case like this, there is need to strengthen declassification
policies with other dimensions, such as what, when, and by whom,
all specified separately from untrusted code.

Other cases such as delimited release [68] specify an external
security policy via “escape hatches”, separating policy from code.
At the same time, type systems for delimited release [68] can still
allow declassify statements inside the syntax to help the program
analysis accept the code. Programs with overly liberal declassifi-
cation statements will be then rejected, as they are unsound with
respect to external escape hatches. Since release of information is
allowed only through the escape hatch expressions mentioned in
the policy, declassifications as in Example 5 are accepted, while
declassifications as in Examples 4 and 6 are not. JSFlow will accept
all three snippets, as the monitor enforces only thewhere dimension
of declassification.

Example 5 (Based on Example 1 (Avg) [68]).
avg = declassify ((h1 + ... + hn )/n);

Example 6 (Based on Example 1 (Avg-Attack) [68]).
h1 = hi ; ... hn = hi ;

avg = declassify ((h1 + ... + hn )/n);

Principle 3 is related to the previous principle of trust-aware en-
forcement, in the sense that an enforcement mechanism that relies
on annotations needs to have strong assurance that the integrity of
these annotations can be trusted, i.e. that they cannot be provided
by the attacker in the form of annotated untrusted code, and that
the execution engine can be trusted to preserve the integrity of the
annotations.

Principle 4 (Language-independence). Language-independent se-
curity conditions benefit from abstracting away from the constructs
of the underlying language. Language-independent enforcement
benefits from simplicity and reuse.

While the challenges in information flow enforcement are often
in the details of handling rich language constructs, these constructs
are often inconsequential to the actual security. It is thus prudent
to formulate security in an end-to-end fashion, on “macroflows”
between sources and sinks, thus focusing on the interaction of the
system with the environment, rather than on “microflows” between
language constructs.

This principle tightly connects to Principle 1 on attacker-driven
security. It also has beneficial implications for enforcement. For
example, secure multi-execution [24] enforces security by execut-
ing a program multiple times, one run per security level, while
carefully dispatching inputs and outputs to the runs with sufficient
access rights. The elegance of secure multi-execution is its blackbox,
language-independent, view of a system. This enables information
flow control mechanisms like FlowFox [31] for the complex lan-
guage of JavaScript, sidestepping a myriad of problems such as
dynamic code evaluation, type coercion, scope, and sensitive up-
grade [6, 82], which challenge JavaScript-specific information flow
trackers [15, 37]. Language-independence makes FlowFox more
robust to changes in the JavaScript standards.

Recall Example 3. Its execution is blocked by JSFlow when h is
true, but accepted otherwise. In contrast, FlowFox produces the
low output irrespective of the value of h.

Faceted values [7] show that ideas from information flow control
and secure multi-execution can be combined in a single mechanism.

Principle 5 (Justified abstraction). The level of abstraction in the
security model benefits from reflecting attacker capabilities.

Also connecting to Principle 1, this principle focuses on the level
of abstraction that is adequate to model a desired attack surface. It
relates to “integrative pluralism” [74] and not relying on a single
ontology in the quest for the Science of Security. It also relates to the
problems with “provable security” [40], when security is proved
with respect to an abstraction that ignores important classes of
attacks. Thus, it is important to reflect attacker capabilities in the
attacker model and provide a strong connection between concrete
and abstract attacks.

A popular line of work is on information flow control for timing
attacks [47]. Timing is often modeled by timing cost labels [2] in the
semantics. However, modeling time in a high-level language places
demands on carrying the assumptions over to low-languages and
hardware, as to take into account low-level attacks, for example,
via data and instruction cache [75]. Thus, this principle emphasizes
low-level security models that reflect attackers’ observations of
time. Mantel and Starostin study the effects of non-justified timing
abstractions on multiple security-establishing program transforma-
tions [54].
Example 7.

if (h == 1) { h′ = h1; }

else { h′ = h2; }
h′ = h1;

An attacker capable of analyzing the time it takes to execute
the snippet above can infer information about the secret h. The
execution timewill be shorter if h = 1, as the value of h1 will already
be present in the cache by the time the last assignment is performed.



The program is accepted by JSFlow, as it does not assume such
attackers.

Principle 5 is particularly important for security-critical systems,
where even a low bandwidth of leaks can be devastating. For exam-
ple, information flow analysis for VHDL by Tolstrup et al. [76] is in
line with this principle by faithfully modeling time at circuit level.
Zhang et al. [84] propose a hardware design language SecVerilog
and prove that it enforces timing-sensitive noninterference. Work
on blackbox timing mitigation for web application by Askarov et
al. [5] is also interesting in this space. Their blackbox mechanism
relies on no high-level abstractions of time because mitigation is
performed on the endpoints of the system. The timing leak band-
width is controlled by appropriately delaying attacker-observable
events.

Principle 6 (Permissiveness). Enforcement for untrusted code par-
ticularly benefits from reducing false negatives (soundness), while
enforcement for trusted code particularly benefits from reducing
false positives (high permissiveness).

This principle further elaborates consequences of treating un-
trusted and trusted code. While it is crucial to provide coverage
against attacks by untrusted code (soundness), for trusted code the
focus is on reducing false alarms (high permissiveness). Indeed, it
makes sense to prioritize security for potentially malicious code
and to prioritize reducing false alarms for trusted code. The latter
is a key consideration for adopting vulnerability detection tools by
developers.

Consider again the program in Example 3. While a false positive
for a fully-fledged information flow tracker such as JSFlow, the
snippet is accepted by both observable flow and taint trackers.

It is interesting to apply Principle 6 to the setting of Android
apps, a typical setting of potentially malicious code. Currently, the
state of the art is largely taint tracking mechanisms like Taint-
Droid [25], DroidSafe [30], and HornDroid [20], failing to detect
implicit flows [27]. Interestingly, there is evidence of implicit flows
in malicious code on the web [42]. We anticipate implicit flows
to be exercised by malicious Android apps whenever there arises
a need to bypass explicit flow checks. Thus, we project a trend
for taint trackers in this domain to be extended into fully-fledged
information flow trackers, with first steps in this direction already
being made [81].

3 RELATEDWORK
Our principles draw inspiration from Abadi and Needham’s infor-
mal principles for designing cryptographic protocols [1].

Prior work has focused on different aspects of information flow
security. Sabelfeld and Myers [67] roadmap language-based infor-
mation security definitions and static enforcement mechanisms. Le
Guernic [49] overviews dynamic techniques. Sabelfeld and Sands [70]
outline principles and dimensions of declassification, roadmapping
the area of intended information release. Smith [73] gives an ac-
count of foundations for quantitative information flow. Schwartz
et al. [72] survey dynamic taint analysis and symbolic execution
for security. Hedin and Sabelfeld [39] give a uniform presentation
of dominant security conditions by gradually refining the indistin-
guishability relation thatmodels the attacker. Bielova [16] roadmaps

JavaScript security policies and their enforcement in a web browser.
Mastroeni [55] gives an overview of information flow techniques
based on abstract interpretation. Broberg et al. [19] give a systematic
view of dynamic information flow. Bielova and Rezk [17] provide a
rigorous taxonomy of information flow monitors. A recent special
issue of Journal of Computer Security [60] showcases a current
snapshot of work on verified information flow.

4 CONCLUSION
We have presented prudent principles for designing information
flow control for emerging domains. The core principles of attacker-
driven security and trust-aware enforcement provide a rationale
for deliberating over soundness vs. soundiness, while the additional
principles of separation of security policies from code, language-
independent security conditions, justified abstraction, and permis-
siveness help design information flow control characterizations and
enforcement mechanisms.
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