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Abstract

The HTTP and HTTPS protocols are the corner stones of the
modern web. From a security point of view, they offer an all-or-
nothing choice to web applications: either no security guarantees
with HTTP or both confidentiality and integrity with HTTPS. How-
ever, in many scenarios confidentiality is not necessary and even
undesired, while integrity is essential to prevent attackers from
compromising the data stream.

We propose GlassTube, a lightweight approach to web applica-
tion integrity. GlassTube guarantees integrity at application level,
without resorting to the heavyweight HTTPS protocol. GlassTube
prevents man-in-the-middle attacks and provides a general method
for integrity in web applications and smartphone apps. GlassTube
is easily deployed in the form of a library on the server side, and
offers flexible deployment options on the client side: from dynamic
code distribution, which requires no modification of the browser,
to browser plugin and smartphone app, which allow smooth key
predistribution. The results of a case study with a web-based chat
indicate a boost in the performance compared to HTTPS, achieved
with no optimization efforts.

Categories and Subject Descriptors [Security and privacy]: Web
application security

General Terms Security, integrity, man-in-the-middle-attacks

Keywords web application security, data integrity, lightweight en-
forcement, application-level security policies

1. Introduction

With the overwhelming expansion of the World Wide Web and in-
creasing reliance on it by the society, the security of web applica-
tions is a crucial challenge to be addressed.

1.1 Integrity in Web Applications

Information integrity is a vital security property in a variety of
applications. In general, integrity is a versatile property. Indeed,
security textbooks [16, 30] agree that it is hard to pin down the
essence of integrity, and surveys [26, 32, 33], tutorials [18], and
papers [4, 24] identify a range of integrity flavors.
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In the setting of web applications, data integrity is particularly
crucial. Data integrity, or simply integrity in the rest of this paper,
requires that data sent over the network must be accurate and con-
sistent with the intended message. This inherently means that infor-
mation sent cannot be modified, and that the consignor is authentic.
In contrast, confidentiality requires that sensitive information must
not be leaked to an unauthorized party. Passive attackers are able
to eavesdrop on the network and reuse any obtained sensitive in-
formation such as session tokens to impersonate the client for the
server, and vice versa. Active attackers pose additional challenges
for integrity as they are able to suppress and modify messages in
transit and mount fully-fledged man-in-the-middle attacks.

The treatment of sessions is important for web application in-
tegrity. Sessions in web applications, intended to personalize user
experience, are typically implemented by passing session identi-
fiers via cookies between the server and the client. The cookies are
sent with each request over the stateless HTTP protocol. A range of
attacks such as replay attacks [35], cross-site request forgery [2],
and session fixation [20] target stealing and abusing the session
credentials in order to hijack sessions and impersonate users to-
wards the server. The communication of session credentials in clear
text has lead to the common misconception that confidentiality is
needed in order to have a secure session towards a web server, in
order to achieve integrity.

The only other standard alternative to HTTP for web applica-
tions is to use HTTPS, a web protocol that encrypts all communica-
tion using TLS/SSL. TLS/SSL provide encryption of all data traffic
at the transport layer, relying on asymmetric cryptography for key
exchange, symmetric encryption for confidentiality, and message
authentication codes (MAC) for message integrity. Achieving both
confidentiality and integrity comes at a price of performance on
both the sending and receiving ends.

1.2 TImportance of Integrity

Browsers indicate to users whenever they access a site over an un-
encrypted connection. However, many users associate encryption
with security, and not with confidentiality. It is intuitive to most
users that their connection to the bank should be encrypted. How-
ever, users are commonly far less aware about when the data they
send and receive can be distorted by an unauthorized party. If in-
tegrity was maintained by default, we claim that the web would
uphold the intuitive amount of security for a general web page.
Ubiquitous open wi-fi networks exacerbate the problem. Under
an open configuration of a wi-fi network, as frequently used at ho-
tels, airports, and restaurants, the traffic between the user’s device
and base station is unprotected. Open wi-fi networks are suscepti-
ble to both passive and active attackers. This creates an ideal sce-
nario for session hijacking attacks, as popularized by tools such as



Firesheep [5], a Firefox extension to impersonate users logged on
to social networks such as Facebook. This type of vulnerability that
can be exploited by script kiddies must be viewed as severe.

While it is essential that an attacker does not impersonate a
user, hijacking sessions is extremely simple with many web popular
services such as Wikipedia. This can be done using such popular
tools as Wireshark for network monitoring and, for example, Opera
to open a session with a user specified cookie. A successful attack
can be mounted by non-experts in a matter of minutes. A man-in-
the-middle can then freely modify any information sent between
the server to the client. A victim service provider might suffer
a damaged brand, reduced sales and general sabotage. A victim
user might be infected with malware or provided with incorrect
information.

We argue that integrity is vital for any web application, regard-
less of whether the application utilizes sessions. Clearly, there is a
cost to maintain integrity, and in many cases the chances of a breach
may not be so high as to weigh heavier than that cost. However, to
neglect integrity implies both disregarding what a user sees on a
site and disregarding what the server perceives that a user posts. To
put it boldly, why communicate if you do not care if the content
transferred between the two parties is arbitrarily modified?

1.3 Scenarios

From a security point of view HTTP and HTTPS offer an all-or-
nothing choice to web applications; either no security guarantees
with HTTP or both confidentiality and integrity with HTTPS at the
price of performance. However, in many scenarios confidentiality
is not necessary and even undesired, while integrity is essential
to prevent attackers from compromising the data stream. Example
scenarios include:

Public web site browsing. Open web sites such as Wikipedia
allow users to manipulate public data. Data confidentiality is not
needed, while attempts of malicious modification of content and
impersonating users need to be thwarted.

Open source projects. Large volumes of data are transferred for
publishing and downloading open source software projects. Since
the data is public from the outset, confidentiality is not necessary.
Integrity is however a must to prevent malicious modification of the
code.

Provider or authority disruption. Even though in many cases a
full-fledged man-in-the-middle attack may seem unlikely, they do
exist even outside the scope of an unprotected wi-fi. For example,
a service provider has all the relevant tools and may have reason
to interfere with their users traffic. Indeed, some ISPs are known to
inject code into their user’s web traffic on a regular basis [10].

1.4 Goals

Motivated by the above scenarios, our goal is to create an approach
to integrity in web applications designed to authenticate both the
client and the server towards each other. While we focus on the
mutual authentication and integrity towards both the client and
the server for each message within a session, we note that the
authentication of users is an orthogonal issue [21], which we leave
to the application. Both parties must be able to check that all
packets originate from the other party in the conversation, and
must also be able to verify the integrity of each message. Users
and servers will thus be protected from session hijacking. A key
goal is to protect against man-in-the-middle attacks, thwarting any
attempts of modifying the data stream by the adversary.

We aim at specifying a general yet practical approach for in-
tegrity in web applications. It is thus important to support the ap-
proach with a proof-of-concept implementation, in order to evalu-
ate programming overhead for the developer as well as indicative
performance overhead.

The performance of an integrity approach for web applications
is vital: if it does not relieve the server compared to HTTPS, there
is no tangible reason to choose it over HTTPS. Hence, an important
goal is performance boost compared to HTTPS, decreasing the cost
per client. When bandwidth, database access, and/or other I/O form
a bottleneck, the costs are still reduced in terms of computational
resources on the server side. It is particularly interesting to study
the overhead in an entire application, because optimizing the build-
ing blocks for cryptographic primitives does not necessarily mean
overall performance improvement [31].

The final goal is a flexible framework that allows extensions
where the degree of integrity can be tuned in an application-specific
way. This is in contrast with application-agnostic HTTPS where
the encryption method is set to null, as discussed in Section 6.
GlassTube will function well for singular services, without requir-
ing global support by browsers.

1.5 Contributions

With the goals above in mind, we propose GlassTube, a lightweight
approach to web application integrity. GlassTube guarantees in-
tegrity at application level, without resorting to the heavyweight
HTTPS protocol. The design will protect web applications against
man-in-the-middle attacks where the attacker has complete control
of the network. GlassTube guarantees protection against the fol-
lowing:

1. Modification of the data stream
2. Session hijacking

3. Reordering and replay attacks

GlassTube provides a general method for integrity in web appli-
cations and smartphone apps. GlassTube includes an initial setup
phase, including a key exchange phase, where the server and client
collaborate to establish a session key, to be later used for creat-
ing and verifying message authentication codes (MACs). The setup
phase requires a connection which guarantees end-to-end integrity
and the authenticity of the server; this can be accomplished with the
help of HTTPS. Once set up, the following messages in the session
are sent over HTTP, with integrity assured by GlassTube MACs on
per-message level.

GlassTube is easily deployed in the form of a library on the
server side, and, as mentioned above, it offers flexible deployment
options on the client side: from dynamic code distribution, which
requires no modification of the browser, to browser plugin and
smartphone app, which allows smooth key predistribution.

To evaluate GlassTube in practice, we have implemented a sim-
ple web chat service that uses GlassTube as library for integrity.
The chat service requires minimal efforts from the developer to en-
able secure GlassTube sessions. Further, our experiments indicate
a boost in performance compared to HTTPS, achieved even when
no optimization efforts were made.

GlassTube opens up new possibilities for web application secu-
rity. Application-level support implies flexibility in customizing the
level of cryptographic protection suitable for different applications.
It also opens up new avenues for application-specific confidential-
ity, where only selected information is encrypted, useful when the
bulk of communicated data is public.

2. The GlassTube Approach

GlassTube is designed to provide integrity over insecure connec-
tion, preventing manipulation of the data stream. This section spec-
ifies the GlassTube approach. The approach consists of two phases.
The GlassTube Setup is the first phase. It maintains distribution of
code and the key exchange. The second phase of the approach is the



GlassTube Data Transfer (GTDT), which ensures integrity between
the web server and the client.

2.1 GlassTube Setup

GTDT requires that the code running on the client is not modified
by an attacker, and that a session key is shared between the client
and the application server, henceforth called the data site, which
is secret except to the data site and the client. GlassTube can
be initialized in any fashion that meets these requirements. This
section describes some options to distribute code and how keys can
be exchanged, independently from each other.

2.1.1 Client Code Distribution

Since web applications are not present on the client per default, the
client-side code often needs to be sent at the beginning of the ses-
sion. If an attacker can alter the client’s code at this stage, following
packets must be considered compromised as e.g. script injection at
this stage can change how transfers are made in the future. It is
therefore vital that the code’s integrity can be guaranteed. Client
code can be distributed either statically or dynamically. Statically
distributed code is previously present at the client (e.g. a browser
plugin). Dynamically distributed code is sent when the web appli-
cation is accessed by the web browser. Examples of both are pre-
sented in the following paragraphs.

Static distribution of client code refers to the installation and use
of browser plugins or applications for smartphones. In this case, for
an end user to communicate with a web server running GlassTube,
he or she needs to acquire and install additional software prior to
making the first request.

Dynamic distribution is the most common type for web appli-
cations, as it is used by almost every page on the web. Typically
dynamic code consists of JavaScript, Flash, Silverlight, or Java ap-
plets embedded within the page. Dynamic code distribution for
GlassTube must be done by a host which guarantees end-to-end
integrity, and for which the client is able to verify the server’s iden-
tity. This host is henceforth called the secure site. The secure site
only communicates with the client during the setup of a GlassTube
session. If code is dynamically distributed, the goal is that the client
is reinitialized as rarely as possible, to boost performance by limit-
ing the reliance on HTTPS. Instead, all content can be fetched with
AJAX from the data site, and only the bare bones of the application
are sent from the secure site.

2.1.2 Key Exchange

GTDT relies on a session key to be shared between the client and
the data site, in order for both of them to be able to create and
verify MACs. A new session key is negotiated at the beginning of
each session. It is not possible to reuse keys negotiated during TLS;
JavaScript, and many server frameworks, does not provide access
to transport layer information.

We propose the use of a known protocol, the Authenticated
Diffie-Hellman protocol [12-14] (ADHE) to exchange keys, an
authenticated version of the classical Diffie-Hellman key ex-
change [13]. The scheme requires that the client possess a public
key belonging to the data site. The public key can be acquired ei-
ther by distributing the key with the code or by fetching it from a
secure site after code distribution.

The Diffie-Hellman protocol uses two domain parameters, a
generator g and a prime number p. The domain parameters are
not necessarily secret. The two parties within a Diffie- Hellman
key exchange each generate a random number to be their pri-
vate key, « and y respectively. They then create their public key
as X = g"modp and Y = ¢Y mod p, which they send to
the other party. Both parties can now compute their shared key
Z = ¢ modp = XYmodp = Y mod p. An eavesdropper

knows both X and Y, but neither of z and y, and thus cannot find
Z [13]. The shared key will be called Z and session key interleaving
throughout the paper.

Under the Authenticated Diffie-Hellman key exchange, the
server’s public key is signed using a DSA or RSA certificate. The
client’s public key can also be signed in the same manner, if client
certificates can be distributed in a feasible manner. The client is
thus able to verify the server’s public key’s integrity, preventing
man-in-the-middle attacks [12, 14].

Random numbers are needed in the above key exchange. It is
possible that the client does not have enough entropy to provide
secure random number generation. In that case, the client can be
supplied with random numbers by the secure site. It is possible for
the server to compute the entire key as well as to simply generate
a random number. It is preferred to let the client compute the keys
instead, to relieve the server from the extra work. Random numbers
sent from the secure site requires both integrity and confidentiality,
as well as authentication of the secure site. In dynamic code dis-
tribution, the random numbers can be sent to the client embedded
in the code. In that case, the code will need to be encrypted, as the
numbers must remain secret. However, since the only practical pro-
tocol to securely distribute code is HTTPS, this would typically be
done without any performance loss or modifications of the secure
site.

2.2 GlassTube Data Transfer

Data transfers done with GTDT guarantees data integrity. The
authenticity of the sender of each message is be verified, and
messages are prevented from being replayed. This section details
how this is accomplished.

2.2.1 Message Identifier

In order to prevent replay attacks it must be possible to distinguish
each request from other requests containing the same data. The
receiver must be able to determine whether a message identifier
is valid. GlassTube addresses this by appending a unique identifier
to each message, called message identifier or Ifor the remainder
of this paper. I can be any entity using which the following two
properties can be guaranteed:

e An attacker must not be able to forge messages by replaying
them

e An adversary must not be able to reorder messages within a
session

There are several common ways to guarantee freshness proper-
ties, each with their respective strengths and weaknesses. Times-
tamps are very common, as they are easy to implement and very
efficient. As no additional information needs to be stored to verify
if a timestamp is fresh, it is also a very scalable design. Times-
tamps does not, however, uphold either of the above properties.
Unique nonces are also a common design, as they do not allow for a
window in which messages can be replayed, and thus protect com-
pletely against eavesdroppers. However, nonces can be reordered if
the attacker has sufficient access to the network. Sequence numbers
provide desired security and can be efficiently implemented, mak-
ing them a particularly suitable message identifier for GlassTube.
Each party must for the duration of the session remember their own
current sequence number, and which number is expected from the
other party with the next message. When either party sends a mes-
sage, they increment their own number by one. When receiving a
message, the message identifier is verified by comparing the stored
number with the received number; the received number must be
equal to the stored number in order for the message identifier to be
valid.



222 MAC

The data which is authenticated by the MAC in GlassTube in-
cludes all application-level information that defines the request or
response, in the sense that if it is changed it will modify the data
stream. A message should not be substitutable by a message which
is not equivalent to the original. GlassTube must guarantee that the
receiving end can verify the following based on the MAC, on ap-
plication level:

1. The message has been delivered to the correct handler

2. No data used by the application has been modified, including
headers values

3. This is the first time the message has been received

4. Messages are not being reordered

For a request, the defining data includes the complete URL (1),
the request method (1), request parameters (2), and the message
identifier (3, 4). For a response, defining data includes the response
code (2), the response data (2), finally the message identifier (3, 4),
and also the MAC for the request being responded to (1).

By including the URL in the MAC, the server can trivially verify
which handler was intended to receive the request. For the client,
there is no data in ordinary HTTP information which specifies a
handler, as they are not apparent in traditional web applications.
As a browser may execute multiple AJAX requests simultaneously,
mapping responses to the correct handler is only possible by look-
ing at port numbers, which is how the web browser determines the
fact. GlassTube enables this to be done by the application by in-
cluding the request’s MAC in the response’s MAC.

All header fields can not be included in the MAC, as content in
header fields is frequently modified by intermediate hosts. Instead,
the application can specify which headers it makes use of. Applica-
tion headers included in the MAC are specified per request by the
application using the X-GlassTube-Extra-Headers header field.

Reordering request parameters or header fields will produce a
different MAC. Thus, the order of these are explicitly defined by
the GlassTube protocol, rather than by the order in which they
are received by the application. Both header fields and request
parameters in HTTP are constructed as key-value pairs, and both
are henceforth called message variables. A response cannot contain
request parameters, and message variables in a response will thus
only consist of header fields. We denote a message variable as
Vi = (ki, v;), for it’s key k; and value v;. The union of all message
variables are sorted alphabetically, resulting in a list w, in order to
deterministically determine the order on an arbitrary platform. The
list of alphabetically ordered message variables w are concatenated
as follows while preparing the MAC, resulting in the string 7:

7 = cat(ko, =", vo) (€))
7 = cat(r, cat(k:,”=",v;,&”)) Vie 0. |w]] (2

Where cat() performs string concatenation of all input param-
eters, with respect to order, and returns the result, while not mod-
ifying the parameters. The algorithm will result in a string which
looks very much like GET request parameters.

As HTTP is an asymmetric protocol, the MAC is constructed
slightly differently by both parties. The server will compute the
MAC using a keyed-hash function ©, 7 as computed above, the
session key Z, the message identifier I, the response body body,
and the response code rc as:

MAC = ©(Z, concat(re, T, body, reqg-mac, I)) 3)

The client computes the MAC using 7, the message identifier /,
the request method method, and the URL url as:

MAC = ©(Z, concat(method, url,7,I)) “)

Message variables, the response body, and the response code
are sent by the web application as usual. The MAC and the mes-
sage identifier are included in each request and each response us-
ing two header fields, for the message identifier the header field
is called X-GlassTube-Message-Identifier and for the MAC it is
called X-GlassTube-MAC.

The HMAC-SHA1 MAC algorithm is particularly suitable for
use with GlassTube as it is efficient and secure [28]. Cipher suite
negotiations are common in similar protocols, but are not feasible
in GlassTube web application, or smartphone app. In both cases,
the client and the server are parts of a specifically designed system.
The smartphone app is designed to work with a specific web service
as a back-end, and the web app is sent by the web service by the
beginning of the session. Thus, the programmer will decide ciphers
as they construct the service. The browser plugin is more compli-
cated, as it can be used towards several, different web services. In
order for it to conform to the GlassTube protocol, browser plugins
are restricted to HMAC-SHA1. Servers must announce GlassTube
support to browser plugins unless they support HMAC-SHA1. Cur-
rently, only HMAC-SHALI is supported by the GlassTube libraries.

2.2.3 Verifying a Message

Upon receiving a message, the recipient first calculates the MAC
for the message, as described in Section 2.2.2. In the case that the
MAC does not match the received MAC, the message is discarded.
Otherwise, the message identifier must be verified. If the message
identifier is valid, the message is accepted and sent to the applica-
tion, and if it is not, it is discarded The procedure is illustrated in
Figure 1.

Message MSSeSaacé]e Valid | Deliver to
Received |dentifier Itentifier? application

Calculate
MAC

Matching

MAC? Discard

Figure 1. The verification process

Whenever the server discards a message, it must send an error
message to the client, indicating what went wrong, so that a proper
error message may be displayed to the end user. The error message
is authenticated with GlassTube, as a normal message. Whenever
the client discards a message, it must restart the session. The client
is always able to address problems gracefully. If the client’s mes-
sage is faulty, it will receive an error message from the server, and
resets the session. If the server’s message is faulty (including if an
error message is faulty, in the case that both the server’s and the
client’s messages are being altered), the client resets the session.

3. GlassTube Instances

GlassTube offers a range of setup and deployment choices. This
section outlines three different GlassTube instances to illustrate
practical applications of the concepts presented in the previous
section. Note that although all examples describe how a service
may support GlassTube, the service may still choose to support
HTTPS and HTTP for some pages at the site, in parallel with
GlassTube.

However, it is important that the programmer is well aware
that any HTTP transfers within a GlassTube session may void
the integrity of messages later in the session, if used carelessly.
For instance, many web applications depend on third parties to



collect statistical data about how users traverse their sites. One
such example is Google Analytics. Google Analytics is set up
with a very short code snippet, which fetches another JavaScript
file from Google’s servers. It is vital that all transfers are all done
using HTTPS, even when initiated by an included library or plugin.
Otherwise, the site will be susceptible to man in the middle attacks.
In the case of Google Analytics the request is done with SSL, and
there is no need to worry.

3.1 Web Application

This section describes a setup for a web application which uses dy-
namic code distribution and server-side random number generation,
illustrated in Figure 2.
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Figure 2. GlassTube for a generic web application

To start the session the client sends a Page Request to the se-
cure site. The response from the secure site consists of four parts:
a URL to the data site, Code that consist of GlassTube functional-
ity and the web page’s static elements and layout, the data site’s
Public Key and the client’s private key x to be used in the ADHE
key exchange. While sending the entire user interface from the data
server might be somewhat cheaper, the user will experience some
flicker and extra loading time, and thus sending a first view from
the secure site will create a much smoother rendering of the page.
When the client has interpreted the received code it will initiate a
key exchange towards the data site using AJAX, after which it will
have established a GlassTube session towards the server. Follow-
ing requests should start to populate the rich web application, as
the user navigates the already loaded UI, while never refreshing the
web page, as that would incur another key exchange. The integrity
of each message during GTDT will be guaranteed by GlassTube,
and sensitive - though not secret - data can be sent confidently.

The developer sets up two sites, the secure site running HTTPS
and the data site servicing HTTP. The secure site and data site may
be hosted by the same machine, but may as well be distributed
among different machines for load balancing. To add GlassTube
functionality to the data site the developer may import a GlassTube
library and mark individual pages to use GlassTube. As the secure
site and the data site makes use of different protocols (HTTPS and
HTTP, respectively), they are separate origins and separated by the
same origin policy [3]. The data site must therefore explicitly allow
the secure site to make Cross-Origin requests to it, making use of
Cross-Origin Resource Sharing (CORS) [37]. A typical client code
needs few modifications in order to work with GlassTube.

In a web application, it is common that data transfers are initi-
ated when HTML is loaded on a page, making the browser fetch ad-
ditional content. This happens when an ordinary image tag, such as
<img src="image.jpg" /> is rendered. The browser will fetch
the image ¢mage.jpg from the server, without resorting to AJAX
and JavaScript - indeed, JavaScript is completely oblivious regard-
ing all data transfers which it does not initiate itself. The same is
true for <script> and <iframe> tags, which means that if these

tags are used by in the application to reference a resource at the
server, they may break GlassTube. However, a programmer may
make use the data URI scheme [25], which embeds the binary data
of an element instead of referencing to its location, to achieve the
same functionality that can be achieved with the traditional URL
scheme.

GlassTube is fully transparent to the end user with this setup.
Users access a GlassTube web page as any other web page, e.g.
using a bookmark or following a link. A benefit of using this setup
is that the application provider does not have to create, maintain
and distribute a separate software for the client. The setup requires
a secure site servicing HTTPS, and will thus have a slightly bigger
impact on the server than a client with completely pre-distributed
code and public key.

3.2 Generic Browser Plugin

Another way to set up a GlassTube session is by utilizing a generic
browser plugin; generic in the sense that it is not bound to a certain
web application or domain. This setup is outlined in Figure 3. Upon
connecting to a web site, the plugin announces that it can handle
GlassTube sessions, and the secure site will respond appropriately.

5 >
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Site Alugin Site
Certificate Request
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V|ISIGN(P ublic Key. Y) }
4____—-——_'____

JHAY

v v v

Figure 3. GlassTube as a browser plugin

A generic plugin removes the need for individual application
providers to maintain and distribute plugins, and the end user only
needs to take one action to be able to use any number of GlassTube
sites. Benefits of using a plugin instead of dynamic code is po-
tentially better client performance and the possibility to handle
HTML-initiated requests. Note that due to the lack of a cipher suite
exchange, the browser plugin will not be able to connect to services
not supporting HMAC-SHA1.

An alternative approach is to store the public key along with
the secure site’s SSL certificate and the signature of the public key
at the data site; the signature is created with the certificate. The
browser plugin can then initiate the session directly towards the
data site, and thus removing the reliance on HTTPS. The browser
plugin verifies the data site’s authenticity of the public key, and thus
the data site, by verifying the signature using the certificate and the
certificate towards the browsers installed root certificates.

3.3 Smartphone App

Many web applications might find it desirable to release an app that
lets the users browse and edit the information, this setup is illus-
trated in Figure 4. It differs from the other two in the sense that no
secure site is used, instead the data site’s public key comes shipped
with the app. This means that the overhead of first connecting to a
secure site is gone, which gives a performance boost. As most apps,
it is dedicated to one web site, thus an end user has to install one
app per site.

For this setup the developer creates and releases an app. No
secure site needs to be deployed, as the public key for the data site
is shipped together with the app. Any functionality needed in the
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Figure 4. GlassTube as used by a smartphone app

app for key exchange and GTDT can be accessed from a library,
thus very little extra work needs to be done. The data site is set up
as in Section 3.1.

3.4 Notes on Scalability

The nature of GlassTube has some implications on large and com-
plex systems, this section will briefly discuss how load balancers
and cache servers integrate with GlassTube. As GlassTube enforces
end-to-end integrity for the span of a session, the client will experi-
ence it as though a man-in-the-middle attach has occurred if a load
balancer changes application server, and the application servers of
the service does not somehow share GlassTube session keys.

Intermediate cache servers will not be able to cache any
GlassTube requests, as each request is made unique by the mes-
sage identifier. This fact should prevent caching completely, but
misconfigured caches may erroneously cache GlassTube requests.
If this occurs, the client will experience it as though an attacker is
replaying old responses, and reset the session.

4. Security Considerations

This section discusses the security of GlassTube, and is divided
into three parts. The first part details the different parts of the
GlassTube approach, highlighting each part of a GlassTube session.
The second part covers GlassTube’s security guarantees. The third
part pursues general security considerations.

4.1 The GlassTube Approach

This section covers the security within each stage of the GlassTube
Setup, and the security of the GlassTube Data Transfer.

4.1.1 Client Code Distribution

To ensure that messages are handled correctly, it is important that
the code running on the client is not modified by an attacker. Two
options were presented in Section 2.1.1, one where the code is
fetched from a dedicated code server, dynamically, and one where
the code is available via a plugin or application on the client,
statically. For both mechanisms, trusted third parties are used to
securely distribute initial code.

For dynamic code distribution, the service is responsible for
delivering the code to the client. As man in the middle attack
can be attempted at any point during the transmission, end-to-end
integrity must be guaranteed, and the client must be able to verify
the server’s identity. HTTP over SSL offers the required security
and is a typical choice as it is broadly supported.

Static code distribution is an effective way to decrease the risk
of a man in the middle attack against the client code, since the code
is not sent over the network at the start of each session. It is still
vital that the code is securely distributed to the client. The common
distribution channels for smart-phone apps and browser plugins
provide secure downloads and verifies the publisher. This means
that most use cases of statically distributed code can be assumed to
be secure.

4.1.2 Key Exchange

Authenticated Diffie-Hellman is a canonical way of exchanging
keys in a secure manner, as it a part of TLS. Diffie-Hellman guar-
antees that only the communicating parties can compute the ses-
sion key; eavesdropping is ineffective. Diffie-Hellman is, however,
susceptible to man-in-the-middle attacks, where the attacker ex-
changes one key with the server and one with the client, as the iden-
tity of the server is not verified by the client. ADHE successfully
thwarts man-in-the-middle attacks, as it uses a previously known
server certificate, with which the client verifies the server’s iden-
tity.

An attentive reader might notice that the server does not have
any previous knowledge about the client, and thus a man-in-the-
middle may seem possible by impersonating the client. However,
this requires either that the impersonated client does not verify the
server’s signature in the key exchange, or that the adversary does
not alter the server’s Diffie-Hellman public key. In the latter case,
the adversary can not interfere in the following session without
being discover, and in the former the impersonated client is faulty.

4.1.3 GlassTube Data Transfer

The MAC of each message is the most vital part of GlassTube,
as it ensures integrity of every message. By including the request
parameters and the URL in the MAC, GlassTube asserts that the
client will know if intended data is delivered to the intended ser-
vice on the intended server. MACs are constructed in an asymmet-
ric manner for requests and response, as responses and requests
contain different information. Note that an adversary can not con-
fuse the protocol by sending requests to the client or responses to
the server, as such packages are discarded already by the browser
or web server, and are not accepted by the application.

For a request, the attacker may try to forge the URL, the request
parameters, or the message identifier. If the request parameters or
the message identifiers are modified, the message will trivially be
discarded by the GlassTube service. If an attacker modifies the
URL, the request may be delivered to a different web application,
in which case the client will reject the response. If the packet is
delivered to the same application but using a different URL, the
application will detect that the MAC is invalid, and will discard the
packet.

With each response, the response code and data are included in
the MAC along with the message identifier. The data and message
identifiers are authenticated, and only handled by the client applica-
tion, meaning that any modification will invalidate the MAC. Mod-
ifying the response code can have more complicated consequences,
as the response code is interpreted by the web browser, but none of
these cause anything else than truncation. By modifying the port
numbers in a response, an adversary may cause a request to be de-
livered to the wrong response handler at the client. By embedding
the request’s MAC in the response’s MAC, such attacks are pre-
vented, as the client will be able to identify the request is handled
by the intended request handler.

4.2 Security Guarantees

This section will describe how GlassTube protects against 1) Mod-
ification of the data stream, 2) Session Hijacking & 3) Reordering
and replay attacks.

4.2.1 Modification of the Data Stream

A correctly set up GlassTube protects against most aspects of a
man in the middle attack, except for when the attacker delays
or completely removes packets from the stream, for which it is
unfeasible to create a solution. GTDT will protect a correctly set
up session during data transfer, as described above.



An active attacker may during a full man in the middle attack
modify the entire packet, which includes TCP and IP headers.
However, as both the client and the server verifies information on
the application layer, nothing can be achieved except for truncation,
if the attacker modifies the lower levels - assuming that no data
from the lower layers are used by the application. By verifying each
request using a secure MAC while keeping the session key secret,
there can be no modification of the data stream during a GlassTube
session.

4.2.2 Session Hijacking

An adversary cannot masquerade as the data site because each
key exchange scheme uses public keys. The public keys are either
distributed with the code, or fetched from the secure site, as detailed
in Section 2.1.1. Both of these methods are considered secure,
see Section 4.1.1. Once a session is set up an attacker can not
impersonate the client, as the session is protected by each message
being authenticated with MAC. If an attacker, Eve, would attempt
to use the session cookie of another user, Bob, the server would at
first glance think that Eve is actually Bob, thus using Bob’s session
key to verify the MAC. The verification would fail, as Eve does not
know Bob’s session key, and cannot create a correct MAC.

Note that both server and client may relay messages on to a
third party, outside of the protocol. This does not violate any of
the guarantees made by GlassTube, and there is no feasible way to
prevent such behaviour. Once a session is set up, both parties have
expressed explicit trust for the other.

4.2.3 Modifying HTTP headers

An active attacker can add, remove and modify HTTP headers. If
the application uses HTTP headers, they must be included in the
MAC. Any inherent behavior of the web server is considered to be
the responsibility of the programmer; the configuration of the web
server is part of the application. Thus, all malicious modifications
of HTTP headers in a request is easily detected, and analysis of
the server becomes simple. Any modified headers will either not be
acted upon, or be included in the MAC. If headers are modified
in responses, analysis becomes more complex, as we may not
presume that the programmer is in control of the inherent behavior
of the web browser.

It is possible for an attacker to modify HTTP headers in such
a way that the message is interpreted differently by the browser.
However, if an attacker forces the browser to modify a message,
the MAC will be void. An attacker can use the Location header [15,
p- 135] to force the browser to execute a new request towards an-
other URL. Since the browser sends the same request to a different
URL, this message will be treated in the same manner as a message
with a modified URL, described in Section 4.1.3, and will lead to
that the either the request is discarded by the server or by the client,
depending on where the new URL points. Lastly, an attacker may
attempt to change caching behaviour at the client. This, however,
will not have any affect on the application, as each GlassTube re-
quest is unique and not cacheable.

When a benign intermediate host, such as firewalls and proxies,
modifies header fields, a GlassTube session may be terminated or
unable to commence. Thus, there may be false negatives over cer-
tain links, making GlassTube malfunction. These may completely
prevent a client from reaching the service, but does not lead to a
breach of integrity.

4.2.4 Replay and Reordering Attacks

GTDT uses message identifiers, as described in Section 2.2.1, to
prevent both replay and reordering attacks. As the message iden-
tifier is unique for every message, the recipient will only accept a
specific message identifier once. Thus, replay attacks are not possi-

ble during a GlassTube session. Reordering is made impossible by
sequence numbers being sent in strictly increasing order.

4.3 General Security Considerations

The subsection will discuss general security issues, which are not
confined within the limits of web applications integrity.

4.3.1 Entropy

JavaScript currently has no support for generating cryptographi-
cally secure random numbers. Unless a third party library is used,
only Math.random() is available, which is not cryptographically
secure. Although adding cryptographically strong random num-
ber generation to JavaScript API is only a matter of time [36],
GlassTube does not depend on the ability of the client to gener-
ate random numbers. The client must not be used to generate ran-
dom numbers if it cannot guarantee cryptographically secure ran-
dom numbers. In this case, the secure site generates the random
numbers and sends them securely to the client. This is the choice
taken in our GlassTube instances.

4.3.2 User Authentication

Recall that user authentication is an orthogonal issue [21] left to the
application. By design, GlassTube does not offer confidentiality,
and it is therefore important that the application does not send
authentication data in clear text. If the user gives the attacker
enough information to authenticate as the user, there is often no
need for integrity.

4.3.3 Denial of Service

GlassTube does not have a large performance impact on the se-
cure site, as this site will always perform a fixed number of opera-
tions for every client; the extra workload caused by every separate
GlassTube client will not increase with the number of clients.

Each session between a client and the data site requires that the
data site stores information. The time to access this information will
increase with each client, and thus each new session does not just
add its own workload but does also affect the workload for all other
sessions. This in turn means that the data site is more vulnerable
to a resource exhaustion attack. However, it is very likely that the
work done by the application itself will by far exceed that of any
method for maintaining integrity.

5. Case Study

This section presents a working prototype of GlassTube, and inves-
tigates how it performs relatively to HTTP and HTTPS. The web
application used in the study is a simple chat that allows the users
to login, post messages, read messages, and logout.

5.1 GlassTube Implementation

This section covers a server implementation of GlassTube using
Java and two separate clients implemented in Java and JavaScript.
Java is chosen as the backbone for both the server and clients, using
Google Web Toolkit [17] (GWT) to generate JavaScript as needed.
Standard Java libraries are used whenever possible as they provide
reasonable performance and are easy to use. The chosen implemen-
tation strategies are dynamic code distribution and server-side ran-
dom number generation for the JavaScript client, with static code
distribution for the Java client. A secure site and a data site are set
up, but no actions have to be taken to prepare a web browser to use
the JavaScript client.

The Java client is developed in order to benchmark the server,
see Section 5.2. The JavaScript client is developed to assert that the
user experience is not noticeably affected by GlassTube.



5.1.1 Server

Both servers are implemented with Java servlets using standard
Java libraries for cryptographic functions as well as web applica-
tion functionality. The implementation of the server-side part of
GlassTube consists of 203 lines of Java, 66 at the secure site and
137 at the data site.

The secure site is capable of serving both the Java client and the
web client respectively. The Java client uses static code distribution,
while the JavaScript client makes use of dynamic code distribution.
To the Java client, we thus only need to send the data site’s public
key, while for the web client there’s also a need to serve JavaScript
and the client’s private key for the Diffie-Hellman key exchange.
As the secure site only takes part in the setup phase no further data
is handled by this server.

To make development at the data site easy, a GlassTubeServlet
was created. It extends the HTTPServlet and adds GlassTube spe-
cific functions for the key exchange and for constructing and veri-
fying MACs. The GlassTubeServlet demands that the first message
from a client contains the client’s public key for the Diffie-Hellman
key exchange, from which the servlet computes the session key.
The data site then signs its public key and sends the key as well
as the signature to the client, concluding the key exchange. All
servlets extending GlassTubeServlet on the data site are now ready
to use GTDT. All information required for GTDT is stored in the
server’s session storage.

5.1.2 JavaScript Client

The JavaScript client uses GWT to convert all cryptographic func-
tions from Java to JavaScript. The jQuery JavaScript library is used
to provide smooth access to AJAX and different user interface func-
tionality. Functions for exchanging keys and constructing and ver-
ifying MACs are thus coded in Java, while data transfers during
GTDT are managed in native JavaScript using jQuery. The Java
code is 75 lines long, and the JavaScript functionality needed is 14
lines long. This excludes the cryptographic functions (HMAC and
SHA-1) that were needed to be imported because javax.security
is unavailable to GWT.

Upon initialization, the JavaScript generated by GWT initiates
the key exchange by computing the client’s public key with the
server-generated private key, embedded in the code. The client will
also have the data site’s DSA public key, which the client uses to
verify the server’s response. When the key exchange is complete,
the web application is ready to be used by the end user.

5.1.3 Java Client

The Java Client is able to make use of Java’s standard API to
provide all needed cryptographic functions. It fetches the data site’s
public key and a server-generated private key from the secure site,
to emulate a web client, after which the Java client commences
the key exchange towards the data site. When keys have been
exchanged, GTDT is ready to be used.

5.2 Benchmark

This section details the results of a series of tests conducted to ver-
ify how GlassTube performs in relation to HTTP and HTTPS. The
first benchmark measures how well the server performs, and com-
pares the average number of successful requests per second for the
different techniques. The second benchmark compares the response
time as experienced by the end user. As each GlassTube message
must be uniquely identifiable, lest the protocol be vulnerable to
replay attacks, intermediate caches will unfortunately not be able
to help boost the performance of GlassTube. This is true also for
HTTPS, while HTTP can obtain significant boosts by caching.

5.2.1 Server Benchmark

The benchmark is done against a very simple chat application
called SimpleChat, using static fields to maintain the state of the
web application. Each access to any of SimpleChat’s functions is
counted as a successful request by a client. A benchmark using each
of the three different techniques, HTTP, HTTPS and GlassTube is
performed. During the HTTP benchmark only the data site will
receive traffic, during the HTTPS benchmark only the secure site
will receive traffic, and during the GlassTube benchmark both will
receive traffic. Therefore, the same machine is hosting both the
secure site and the data site in order for the same computational
resources to be available during all of the benchmarks.

The benchmarks were carried out towards a server running
Tomcat 6, using standard configuration. The server machine used
in the server benchmark is a Packard Bell Dot M/A-NCD/711, with
a 1.2 GHz 64 bit processor with a single core, and 2GB of RAM.
The SSL connection towards the server was for both clients using
256 bit AES in CBC mode, with SHA1 for message authentication
and ECDHE_RSA as the key exchange mechanism.

Figure 5 plots the result of a benchmark conducted towards
HTTP, HTTPS and GlassTube. The graph plots successful mes-
sages per second on the Y-axis, and the tests are carried out with
an increasing number of clients for each test. The clients are con-
figured to messages of 4096 bytes at an interval of between 10 and
300 milliseconds. The Max label in Figure 5 shows the maximal
throughput for a server with unlimited processing power and a net-
work without latency using the given client configuration.

The chosen configuration gives measurements with very little
focus on how setting up new connections within the different pro-
tocols perform. However, it is very common that a user sends a
multitude of requests to a server. Loading www.facebook.com, the
authors observe 144 requests within the first 3 seconds at the time
of writing. At the very least, a site will contain a script file, a style
sheet and a couple of images besides the markup. Given that the
user will navigate to a couple of pages within the site, the num-
ber of requests used during data transfer quickly grows to make
the setup less prominent, when comparing the performance of the
different protocols.
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Figure 5. Benchmarks for performance

Figure 5 shows what the throughput limit for each setup is.
HTTP will follow closely to the maximal limit until just about 1000
packets per second is reached, and reaches it’s limit at around 1150
packets per second, while HTTPS can handle about 800 packets per
second and GlassTube can process around 950 packets per second.
The number of requests that can be served by GlassTube in this
setting is at 250 clients 32% higher than that of HTTPS and 6%
lower than HTTP, while HTTP can serve 41% more clients than
HTTPS.



It is clearly visible that there is a performance gain in the above
scenario when using GlassTube instead of HTTPS. GlassTube is
also very close to the performance of HTTP at 250 clients, which
is notable. While this does not mean that GlassTube will provide a
performance boost as compared to HTTPS for an arbitrary service,
it proves that it is possible to find cases where it is profitable to
use application-level integrity enforcement, instead of resorting to
lower-level techniques. Be it GlassTube, a derivate or later version
of GlassTube, or a completely different protocol.

5.2.2 Client Benchmark

The client was benchmarked using Google Chrome, comparing the
time for an AJAX call to be prepared, sent, received, and inter-
preted. The application used was SimpleChat, and each chat mes-
sage posted was timestamped. Any timestamps in JavaScript inher-
ently includes any time spent preparing and verifying HTTPS de-
tails. All GlassTube computations are included in the timestamps.
The machine used in the client benchmark was a 13”” MacBook Pro,
running Intel i5 2.4 GHz CPU, and 4GB of RAM.

The average of 100 samples was 7.42 ms for HTTP, 9.9 ms
for GlassTube, and 11.61 ms for HTTPS. These numbers are tiny,
and the delay is not noticeable by a user. The results are consistent
with the results on the server side, and shows that GlassTube can
be implemented efficiently in JavaScript, as well as in Java.

6. Related Work

We share much of the motivation with work on application-level
integrity described below. However, our work offers substantial
added values: protection against active attackers and fine-grained
application level integrity support.

SSL supports both null encryption and null authentication, both
in which the respective security property is neglected. When null
encryption is used, SSL functions as an integrity-only protocol.
However, neither null encryption or authentication is allowed by
any major browsers[22]. IPsec supports end-to-end integrity, using
Authentication Header (AH) in Transport Mode. However, when
AH is used in transport mode, the origin IP address is included in
the signature[29]. This means that AH cannot be used in combi-
nation with NAT, and thus is not useful for most practical practical
applications. We emphasize that in contrast to GlassTube, both SSL
with null encryption and IPsec AH transport are protocol-level,
lacking flexibility for expressing application-specific policies.

Adida presents SessionLock [1], a mechanism to protect a web
session from eavesdropping. SessionLock uses HMAC to prevent
eavesdroppers from simply reusing the session cookie to authen-
ticate themselves. SessionLock does not prevent against active at-
tacks, but prevents session hijacking and thus incapacitates tools
such as Firesheep. However, an active attacker can easily alter
the client’s behavior by modifying a response to contain different
JavaScript, which can then be used to either leak the session key or
make use of the compromised client to construct signed messages.

BetterAuth [21] by Johns et al. describes a non-regressive ap-
proach to authentication, secure by default. BetterAuth is focused
upon authentication, which does not handle integrity in its abstract
sense. Orthogonal to GlassTube, the focus is on user authentication
rather than application integrity. A common case with open services
is to use authenticators specific for every application that uses the
service, through e.g. OAuth [19], and to not only authenticate the
user.

Dacosta et al. suggest One-Time Cookies [11] (OTC) as an alter-
native to using session cookies for authentication. OTC protects the
session by sending a session key, encrypted, which is also used to
sign the message together with each request. The stateless protocol
is inspired by Kerberos, leading to a scalable design. However, the

server responses are not signed, and thus the protocol is vulnerable
to man in the middle attacks, in the same manner as SessionLock.

Singh et al. propose HTTPi [34], as an alternative to HTTPS that
guarantees end-to-end integrity. They achieve convincing perfor-
mance results by focusing on utilizing web caching. HTTPi shares
much of the motivation with our approach when arguing that in-
tegrity without confidentiality is often desired. However, HTTPi
occupies a somewhat different point in the design space. HTTPi is
a direct alternative to HTTP and HTTPS, with possibilities for ac-
cess control across HTTPS, HTTPi, and HTTP content. Similarly
to HTTP and HTTPS, HTTPi relies on the support of the browser.
In contrast, GlassTube is a lightweight approach that focuses on
application-level support for integrity. GlassTube does not require
browser modification. Being a customizable library, GlassTube fea-
tures flexibility for supporting application-specific policies.

Choi and Gouda describe an integrity protocol for web applica-
tions, named similarly to the above protocol, HTTPI [7]. HTTPI is
designed to allow intermediate cache servers to function, while still
maintaining integrity. However, the protocol lacks protection from
replay attacks, and it requires a plugin to function. Cache servers
can be a great performance boost for web applications, which is
most desirable. However, the choice of MDS5 for hashing makes
collision attacks feasible, leading to inferring the hash of the con-
tent, and hence opening for man in the middle attacks.

Chen et al. present App Isolation [6] against cross-site attacks
that occur while accessing multiple websites simultaneously in
the same browser, such as cross-site request forgery. They isolate
browser sessions from each other. GlassTube provides the same
level of protection when using JavaScript or a smartphone app with-
out any additional efforts, as each browser window has a local and
protected session key, which cannot be accessed by other windows.
When utilizing a browser plugin it is up to the implementation of
the plugin to provide this separation. Efforts such as App Isolation
thus becomes redundant if GlassTube is employed.

The tools like SIF [8] and SWIFT [9] allow the programmer to
enforce powerful policies for confidentiality and integrity in web
applications. The programmer labels data resources in the source
program with fine-grained policies using Jif [27], an extension of
Java with security types. The source program is compiled against
these policies into a web application where the policies are tracked
by a combination of compile-time and run-time enforcement. The
ability to enforce fine-grained policies is an attractive feature. At
the same time, the enforcement is rather heavyweight: the program-
mer is required to use Jif as the programming language.

7. Conclusion and Future Work

We now summarize the results and give an outlook onto future
work.

7.1 Summary

We have proposed GlassTube, a lightweight approach to web ap-
plication integrity. Such an approach is vital when confidentiality
is not needed or even undesired and when application-specific in-
tegrity policies are in place. GlassTube is compatible with several
secure setup options with and without modified client. Upon suc-
cessful setup, GlassTube guarantees per-message integrity, prevent-
ing a man in the middle attack from inferring changes to data be-
tween the client and the server, without being detected. GlassTube
assures mutual authentication between client and server for each
message within a session. As is common, the authentication of the
user to the application is left to the application [21].

The deployment of GlassTube is lightweight, both in the web
application setting and in the scenario of smartphone apps. Little
effort is required of the developer to use the GlassTube library.
GlassTube is fully transparent for the end user. The benchmarks



from the case study show that GlassTube reduces the load com-
pared to HTTPS. The performance results are encouraging, given
that no optimization efforts were made. GlassTube provides a solid
foundation for future implementations both refining security poli-
cies and optimizing performance, so that it can be efficiently im-
plemented and easily deployed in existing applications.

7.2 Future Work

An important direction for future work is focused on detecting trun-
cation attacks. When a user performs a number of actions in se-
quence, the adversary might cause unexpected results by dropping
the last packets. A promising way to combat this is to implement
application-level transactions.

GlassTube could further enhance flexibility over HTTPS-based
applications if encryption could be supported by GlassTube. This
will enable the programmer to specify application-specific con-
fidentiality and integrity policies. We conjecture that sending a
few packets encrypted with GlassTube while already having a
GlassTube session negotiated is more efficient than setting up a
new HTTPS connection for these transfers.

Another improvement that GlassTube can benefit from is free-
ing the programmer from using the binary data of each image,
instead of its path. A similar improvement can be also made for
dynamically loaded frames and scripts. This can be accomplished
by having GlassTube deployed as a proxy or a module in the web
server, similarly to the technique by Lekies et al. [23]. Future work
includes studying the performance implications.
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A. HTTP Header Fields
A.1 Volatile Headers

Headers listed in this section are frequently changed by intermedi-
ate hosts. Thus, including them in the MAC will often cripple an
application. Potential attack vectors are considered for each header
field.

An adversary can modify headers with the intent to make either
browsers or server-side caches to present a cached version instead
of a fresh response. This, however, will not be possible since each
GlassTube message includes a message identifier which makes
all requests unique and not cacheable. These include the fields
Cache-Control [15, p. 108], Date[15, p. 124], Age[15, p. 106], If-
Modified-Since[15, p. 130], If-Unmodified-Since[15, p. 134], If-
Range[15, p. 133], Vary[15, p. 145], Expires[15, p. 127] and Last-
Modified[15, p. 134].

A number of header fields are used mainly to keep track of dif-
ferent properties of intermediate hosts. Modification of such may
lead to truncation of the data stream, but none modifies the appli-
cation data in any way. They include the Via [15, p. 116], Warn-
ing [15, p. 145] and Connection [15, p. 146] header fields. Other
header fields used in relation to proxies and intermediate hosts are
Max-Forwards [15, p. 136], Proxy-Authenticate [15, p. 137] and
Proxy-Authorization [15, p. 137]. The Max-Forwards header field
can never have any other effect on a stream than truncation, as it
only specifies how many times a packet can be forwarded by inter-
mediate hosts. The Proxy-Authenticate response header is used by
proxies to require the requester to supply a Proxy-Authorization re-
quest header. The first is sent out by proxies, and the latter is used to
authenticate the end user towards a proxy. If a request or response
causes caches or proxies to modify the message, the MAC will be-
come invalid, and the session will be reset.

A.2 Application Headers

Headers mentioned in this section should be safe to include in
the MAC, while leaving them out of the MAC will not allow
an adversary to modify the data stream if they are not used by
the application. Many of these headers are not modifiable form
JavaScript, but they are still consider mutable as the adversary will
have full access to modify messages sent over the network. If any
header is used by the application, it must be included in the MAC.

The Retry-After response-header field [15, p. 140] is used to in-
form the client of how long a resource is expected to be unavailable,
or for how long the client should stall before following a redirect.
The data stream can not be modified in any way through the use of
this parameter, it may however cause truncation of the stream.

The Content-MDS5 header field [15, p. 121] is the MDS5-
signature of the entity body. If the Content-MD5 header field is
modified, without the entity body being modified, the receiving
party must decline the request. If both the Content-MD35 header
field and the entity body is modified, in such a way that the header
field is the MDS hash of the entity body, the GlassTube MAC will
be incorrect for the received entity body, and the request will be
declined. This header field is completely redundant in a GlassTube
session and should not be used.

The Range request header field [15, p. 138] is used to specify
what parts of (which range of bytes) an entity is wanted by the
application. This can be useful when retrieving a large entity. The
server may decide to disregard a range request. Whenever a certain
range of bytes is sent in a response, the exact range returned is spec-
ified in the Content-Range entity header field. If the Range request
header field is modified, the client will need to send additional re-
quests in order to retrieve the entire entity. If the Content-Range
response header field is modified, the received bytes will be inter-
preted as a different byte range than the original, which will cause
the MAC to be invalid, as the response body will be interpreted
differently by the client than by the server.

The Accept-Ranges response-header [15, p. 105] is used to ad-
vertised to the client what, if any, byte ranges the client can request.
Byte ranges may still be requested regardless of whether Accept-
Ranges have been received by the client or not. Modifications of
this field will lead to performance losses at worst, by introducing
extra round trips. The same effect can be accomplished by the ad-
versary by simply dropping packets.

The WWW-Authenticate response header field [15, p. 150] in-
cludes a challenge to enable the user to authenticate him- or her-
self. If this header field is modified, the user will not be able to
be authenticated, and the result is the same as stream truncation. If
a response contains a WWW-Authenticate header field, the client
should respond with a request containing the Authorization header
field [15, p. 107]. The Authorization header field is used to authen-
ticate the user. However, since the Authorization field would be
sent in cleartext using GlassTube, WWW-Authenticate and Autho-
rization must never be used during a GlassTube session as it could
allow an adversary to impersonate the user. Note however, that this
does not violate any of GlassTube’s guarantees, as the user’s ses-
sion is still has valid integrity.

The Allow header field [15, p. 106] is used to specitfy which
request methods are supported for the requested resource. An at-
tacker can set not allowed methods to be advertised as being al-
lowed, however, they will not be served by the origin server. If
the adversary changes allowed request methods to be disallowed,
the data stream will be truncated the. However, nothing except for
truncation can be accomplished.

The Host header field [15, p. 128] identifies the resource being
requested, on a host running web services for multiple domains it
controls which site is served. Modifications to the Host header field
was discussed in section 4.1.3. Any modifications to this field can
only lead to truncation of the data stream.

The From header field [15, p. 128] is used to identify the person
responsible for a request, but only for logging purposes and never
for authorization. The From header can thus never affect a current
session in any way.

The Location response-header [15, p. 135] is used to redirect
the client to another resource together with a response code in the
range 300-399. If a GlassTube request is responded by a redirect,
it will have the same effect as if the original request is modified so
that it is delivered to a different service, as the browser will resend
the exact same request to another host and/or URL. Signatures will
not match on the target machine, and a GlassTube service will thus
discard the packet. A service not running GlassTube will respond,
but without adding a MAC to the response, which means that the
client will discard the message. Redirects must not be used within
a GlassTube session, as the client can not successfully follow them.
Attacks that modify this header are void, as even benign usage leads
to declined messages.

The Pragma header field [15, p. 135] is used solely to supply
implementation-specific directives, to any machine along the mes-
sage path. As only the active client and intended service can con-
struct a correct MAC for a modified packet, modifications by any



other party are not interesting. The only standardized value of the
Pragma header field is no — cache, which will not cause any issues
with GlassTube (removing the header may cause truncation of the
data stream).

The header fields Accept [15, p. 100], Accept-Charset [15,
p- 102], Accept-Encoding [15, p. 102], Accept-Language [15,
p- 104]), Expected [15, p. 126] and the TE [15, p. 142], controls in
what formats a response is accepted. An adversary can thus try to
change the response by changing these headers, if the application
reacts to them.

The two conditional request-header fields If-Match [15, p. 129]
and If-None-Match [15, p. 132] are used to control whether a
request is served, i.e. if a PUT is applied or if a GET is returned.
If-Match and If-None-Match match against entity tags according
to known entities. Entities are introduced by the ETag [15, p. 126]
response-header field.

The Referer field (misspelled in the standard [15, p. 139]) may
be used by the application to keep track of from which resource the
request-URI was obtained.

The User-Agent [15, p. 145] field is often used to tailor user
experience, as different browsers use different rendering engines
and in some cases the size of the users screen can be guessed
from the user agent, as is the case with smartphones. The Server
response header [15, p. 141] informs the client what server software
is serving the request.

The header fields Content-Language [15, p. 118], Content-
Length [15, p. 119], Content-Location [15, p. 120], Content-
Encoding [15, p. 118] and Content-Type [15, p. 124] are used
to inform the receiving party about how the entity body is format-
ted. If these headers are modified by an attacker, a web browser
may transform the data, e.g. by only reading the number of bytes
specified in the Content-Length header field from the entity. If this
occurs the MAC will not match - if the application can interpret the
result at all.

The Transfer-Encoding header field [15, p. 143] describes what
codings have been applied to the message during transfer. This
coding applies to the message, and not to the entity - as is the case
with Content-Encoding, and it is thus applied by the web server
or web browser, before it reaches the application. If an attacker
modifies the Transfer-Encoding header field, MAC will not match
on enclosed data, and it will be decoded incorrectly.

The Trailer header field [15, p. 143] describes what header fields
are present in the trailer of a chunked message. If this header field
is modified by an attacker, it may change how the data reassembled.
If it is, the MAC within the data will either not match the data, or
will be indistinguishable.

The Upgrade header [15, p. 143] is used to change the application-
layer protocol, to e.g. change from HTTP/1.0 to HTTP/1.1, or from
HTTP/1.1 to FTP/1.0. A GlassTube service must decline any up-
grade requests.



