
Catch Me If You Can: Permissive Yet Secure Error Handling

Aslan Askarov
Department of Computer Science

Cornell University
aslan@cs.cornell.edu

Andrei Sabelfeld
Department of Computer Science and Engineering

Chalmers University of Technology
andrei@chalmers.se

Abstract
Program errors are a source of information leaks. Track-
ing these leaks is hard because error propagation breaks
out of program structure. Programming languages often fea-
ture exception constructs to provide some structure to error
handling: for example, the try...catch blocks in Java and
Caml. Mainstream information-flow security compilers such
as Jif and FlowCaml enforce rigid rules for exceptions in or-
der to prevent leaks via public side effects of computation
whose reachability depends on exceptions.

This paper presents a general and permissive alternative
to the rigid solution: the programmer is offered a choice for
each type of error/exception whether to handle it or not. The
security mechanism ensures that, in the former case, it is
never handled and, in the latter case, it is always handled
with the mainstream restrictions. This mechanism extends
naturally to a language with procedures and output, where
we show the soundness of the mechanism with respect to
termination-insensitive noninterference.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.4.6 [Se-
curity and Protection]: Information flow controls

General Terms Languages, Security

Keywords Security type system, exception handling

1. Introduction
Program errors are a source of information leaks. Track-
ing these leaks is hard because error propagation breaks
out of program structure. Programming languages often fea-
ture exception constructs to provide some structure to er-
ror handling: for example, the try...catch blocks in Java
and Caml. Mainstream information-flow compilers such as
Jif [24] and FlowCaml [30] for Java and Caml, respectively,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLAS ’09 June 15, Dublin, Ireland.
Copyright © 2009 ACM 978-1-60558-645-8/09/06. . . $10.00

enforce rigid rules for exceptions: for example, if an excep-
tion is thrown in a sensitive context, then no public side ef-
fects are allowed either in the code that follows the exception
in the try block or in the catch handler.

Assume h and h′ are variables storing secret (high) infor-
mation and variable low public (low) information. Programs
like

h’ := 1/h; low := 0;

are not allowed by Jif and FlowCaml, since the reachability
of the public assignment depends on secret h. Further pro-
grams like

try { h’ := 1/h; low := 0; } catch { }

are rejected by Jif and FlowCaml because the reachability of
the public assignment still depends on secret h. On the other
hand, programs like

try { h’ := 1/h;} catch { }; low := 0;

are allowed since now the public assignment is reachable
independently of secrets.

The exception mechanism in the mainstream information-
flow compilers ensures that all exceptions are handled, and
the constraints on the public side effects in the try and
catch parts are enforced. Although the intentions of the ex-
ception mechanism are good, there is an unfortunate price
that the programmer has to pay: cluttering the code with
exception handling. Although Jif provides some help for
reducing the need to handle exceptions (for example, a null-
pointer analysis), there is clear evidence that exception han-
dling has become a usability bottleneck for Jif programming:

• “The obligation to handle runtime exceptions in Jif can
easily make code more clunky than necessary.” [2]

• “Handling all these potential control flows [due to excep-
tions] becomes arduous and clutters the code.” [20]

• “Handling every runtime exception is an exceedingly
time-consuming part of converting Java code to Jif
code.” [20]

Experiments by King et al. [22] suggest that exception-
related annotations are not always critical for security. For

example, they find that 706 out of 757 unhandled exception
warnings of JLift [21], an interprocedural extension of Jif,
are in fact false alarms (around 93%!).

The goal of this paper is to help reduce the burden of
catching errors by programmers but without giving up se-
curity guarantees. One observation is that the program frag-
ment from the first listing is in fact secure (in the sense of
termination-insensitive security), as long as we consistently
not catch the exception in the outer context. Termination-
insensitive security is the target security policy of Jif and
FlowCaml, since they ignore leaks due to the termination
behavior of the program. The first program

h’ := 1/h; low := 0;

is secure according to this policy because its only leak is
through termination behavior: depending on the secret, the
program terminates normally (or not). There are no other
dependencies from the secret by the public observer. The
second program

try { h’ := 1/h; low := 0; } catch { }

on the other hand, is much more dangerous, since it is pos-
sible to exploit the termination channel within the program
itself and magnify it. This program leaks the value of an n-
bit nonnegative integer bit-by-bit:

i := 0;
while (i<n) {
lowi := 0;
try { h’:= 1/(h & 2i); lowi := 1; }
catch { }
i := i + 1;

}

An exception can be thrown if the i-th bit of the variable h is
zero and in that case the second assignment in the try block
is not executed as the control jumps to the catch block. As a
result, this program leaks all of the secret h into low . Finally,
the third program

try { h’ := 1/h;} catch { }; low := 0;

is innocent because the try and catch parts do not have any
public side effects.

Based on these observations, we propose a security mech-
anism for permissive yet secure error-handling. We can
achieve the best of the both worlds (i.e., security and usabil-
ity), by the following “all-or-nothing” per-exception policy:
for each error/exception, either never catch exceptions or
always do it. The former may result in a leak through ab-
normal termination and the latter corresponds to no leak.
From the enforcement point of view, as we have mentioned,
leaks through abnormal termination are typically allowed
by mainstream compilers (the simplest example of a pro-
gram with such a leak is a loop with a secret guard and no
public side effects). From the security-policy point of view,
these leaks are ignored by termination-insensitive noninter-

e ::= n | x | e op e

c ::= skip | x := e | c; c | if e then c else c
| while e do c | try c catch c

Figure 1. Syntax

ference [1], a target property for compilers as Jif and Flow-
Caml.

Note that “never handle an exception” corresponds to
the policies implemented in FlowCaml and Jif for serious
errors, such as resources exhaustion (out-of-memory, stack-
overflow, etc.). For this kind of errors, FlowCaml and Jif do
not allow exceptions to be caught. However, we believe that
giving the programmer control over which errors/exceptions
are handled is a more promising alternative. It is appealing
because it may relieve programmers from cluttering the code
with exception handling without jeopardizing security.

We show that our solution extends naturally to a language
with procedures and output, which we illustrate by proving
the soundness with respect to termination-insensitive nonin-
terference.

For simplicity, the rest of the paper uses the term excep-
tions for all kinds of errors that can be handled in code. This
corresponds to the Throwable class in the Java jargon.

Section 2 illustrates the essence of our approach by a se-
curity type system for a trimmed down language with ex-
ceptions. Section 3 defines a more ambitions language with
procedures, multiple exception types, and output. Section 4
presents a security type system for the extended language
and Section 5 argues that this system guarantees security.
Section 6 presents is a discussion of, among other things,
examples. Section 7 discusses related work. Section 8 draws
some conclusions.

2. Permissive error handling in a nutshell
To demonstrate the key idea of the permissiveness we gain
by our approach, this section presents a security type sys-
tem for a simple imperative language (displayed in Figure 1)
equipped with simple error recovery. We assume that oper-
ations on integers (such as division) may throw a runtime
error.

Assume a simple security lattice with levels L (low, or
public) and H (high, or secret), where L @ H . Metavari-
ables `, pc, and eh range over security levels. Γ is a mapping
of program variables to their security levels. We extend Γ
to expressions by assuming an expression is mapped to the
least upper bound of the security levels of the variables that
occur in it. In some examples, we assume that l and h are
typical low and high variables, respectively.

Expressions The typing rules for expressions have the
form Γ, pc ` e : `, where ` is the level of an excep-

(T-SKIP) Γ, pc, eh ` skip : L

(T-ASGN)
Γ, pc ` e : ` Γ(e) v Γ(x) pc v Γ(x)

Γ, pc, eh ` x := e : `

(T-SEQ-1)
Γ, pc,X ` c1 : `1 Γ, pc t `1,X ` c2 : `2

Γ, pc,X ` c1; c2 : `1 t `2

(T-SEQ-2)
Γ, pc, ∅ ` c1 : `1 Γ, pc, ∅ ` c2 : `2

Γ, pc, ∅ ` c1; c2 : `1 t `2

(T-IF)
Γ, pc ` e : ` Γ, pc t Γ(e), eh ` ci : `i, i = 1, 2

Γ, pc, eh ` if e then c1 else c2 : ` t `1 t `2

(T-WHILE)
Γ, pc ` e : ` Γ, pc t Γ(e), eh ` c : `′′

Γ, pc, eh ` while e do c : ` t `′′

(T-TRY)
Γ, pc,X ` c1 : `1 Γ, pc t `1, eh ` c2 : `2

Γ, pc, eh ` try c1 catch c2 : `2

Figure 2. Typing rules for commands

tion that expression e may throw in the context pc. That
is, Γ, pc ` e : L is possible only if e does not throw an
exception or if both exception and pc are low.

Commands The typing rules for commands have the form
Γ, pc, eh ` c : `, where eh is the exception handler
which effectively indicates whether there are any exception
handlers in the context where c is executed. We let eh range
over two values X and ∅, where X means that c is executed
within a try...catch block and ∅ means that it is not. In
the latter case we know that exceptions raised within c are
not going to be caught. As with expressions, ` is the level of
exception that c may throw.

The rule for skip records L as the exception level since
it does not throw any exceptions. The rule for assignment
prevents explicit flows (such as l := h), implicit flows [16]
via control structure (as in if h then l := 1 else l := 0) in
a standard fashion [16, 32, 28]. In addition, the security level
of an exception the expression may throw is propagated to
the command level.

We have two typing rules for sequential composition.
Rule (T-Seq-1) covers the case when the exception handler
is set. In this case, following the standard practice [23, 27,
29, 18], we enforce that c2 does not have side effects lower
than the level of possible exceptions that c1 may throw. Rule
(T-Seq-2) considers the case when exceptions in c1 are not
handled. In this case, we allow low side effects in c2: this rule
does not restrict the pc for c2. Both rules record the level of
exceptions that c1; c2 may throw as a join of levels `1 and `2
of exceptions that c1 and c2, respectively, may throw.

Program ::= Proc∗ { c }
Proc ::= proc p : ` (in : ` x, out : ` y)

throws X∗` failswith X
∗
` { c }

e ::= n | x | e op e

c ::= skip | x := e | c; c | if e then c else c
| while e do c | try c catch X c

| p(e, x) | output(e, ch)

Figure 3. Syntax of Jif0

Rules for if and while are similar in that they both
propagate the level of exceptions that the guard emay throw.
Observe that we have Γ ` e : ` implies ` v Γ(e) for well-
typed expressions e in the simple language. Taking this into
account, the rules for if (resp., while) only requires that the
branches (resp., loop body) have no side effects below Γ(e).

The rule for try...catch sets the exception handler for c1
to X . The body of the error handling code c2 is typed with
the original exception handler eh . Moreover, to reflect that
execution of c2 depends on the erroneous behavior at level
`1, we prevent side effects below `1 in c2. This complements
the similar restriction in rule (T-Seq-1).

Revisiting the examples from Section 1, this program is
rejected by the type system:

try { h’ := 1/h; low := 0; } catch { }

The problem is that the second low assignment reflects
whether the previous high assignment has succeeded or not.
Recall that this is a dangerous leak, which, as shown in Sec-
tion 1, can be magnified. The magnification is also rightfully
rejected by the type system. Consider, on the other hand the
program:

h’ := 1/h; low := 0;

This program is accepted by the type system of Figure 2.
Because exceptions are not caught, a magnification of this
attack is not possible. Finally, the innocent program

try { h’ := 1/h;} catch { }; low := 0;

is also accepted by the type system since neither the try
nor the catch blocks have public side effects. Since the
version with no exception handling is also accepted, it might
be preferable from the usability perspective: it is clearly less
cluttered.

3. Imperative language with procedures and
outputs: Jif0

This section presents an imperative language with proce-
dures and output, dubbed Jif0. Figure 3 shows the syntax
of the language, and we outline the semantics below. Com-

pared to the simple language of Section 2, Jif0 is enriched
with multiple exception types, procedures, and outputs.

3.1 Semantics
Exceptions For simplicity, we assume that exceptions can
only be raised from within expressions and are propagated
further to commands as discussed below. Assuming a set of
possible exceptions is fixed, let R,X, Y, Z range over possi-
ble exceptions and let R,X,Y,Z denote sets of exceptions.
Exception handling is done using using try c1 catch X c2
command which runs c1 and passes the control to c2 if c1
raises an exception X .

Semantics of expressions Expressions semantics rules
have the form 〈e,M〉 ↓ u. We parameterize over the details
of expressions semantics and assume that u can be either an
integer n or an exceptional value err X , where X is a type
of the exception which evaluation of e has thrown.

Semantics of commands Semantic configurations for com-
mands have the form 〈c, E〉, where E = (M,C,F) is the
environment containing memory M , channel environment
C, and procedure declarations F . As shorthands, we may
write E(x) for E.M(x), E(p) for E.F (p), and E(ch) for
E.C(ch).

Figures 4 and 5 show the small-step operational seman-
tics for our language. The semantic transitions in these fig-
ures are labeled with low events which are discussed in de-
tail in Section 5. Most of the semantic rules are standard. A
configuration with skip evaluates to a non-syntactic com-
mand stop. The same happens with assignment and output,
unless evaluating the assigned (output) expression in these
commands raises an exception. In that case this exception is
propagated into commands.

Exception propagation Exceptions in commands are rep-
resented by a non-syntactic command throw X , where X
is the type of an exception. Exception propagation rule in
Figure 5 formalizes how exceptions are propagated from ex-
pressions to commands by defining a context Q[e]. Here Q
ranges over all contexts that involve expression evaluation.

Exception propagation among commands takes place
in the rules for sequential composition and the rules for
try c1 catchX c2. This is shown in Figure 4. If evaluation
of c1 yields an exception then so does c1; c2. An exception is
consumed if the type of exception c1 evaluates to throw X ,
and X is declared in the catch statement. Otherwise, if c1
evaluates to throw X ′ for some X ′ 6= X , then the entire
try c1 catch X c2 evaluates to throw X ′.

Procedures A notable feature of Jif0 is that procedure dec-
larations specify two sets of exceptions that a procedure can
throw. One set corresponds to exceptions that can be thrown
by the method in conventional sense (as in Java/Jif) and as-
sumed to be handled by a method caller. The other one cor-
responding to exceptions which must not be handled by the
caller. For simplicity, we fix procedures to two parameters x

〈skip, E〉 → 〈stop, E〉

〈e, E.M〉 ↓ n
Γ(x) = L =⇒ ν = (x, n) Γ(x) = H =⇒ ν = ε

〈x := e, E〉 →ν 〈stop, E[M.x 7→ n]〉

〈c1, E〉 →ν 〈c′1, E′〉 c′1 6∈ {stop, throw X}
〈c1; c2, E〉 →ν 〈c′1; c2, E′〉

〈c1, E〉 →ν 〈stop, E′〉
〈c1; c2, E〉 →ν 〈c2, E′〉

〈c1, E〉 →err 〈throw X,E〉
〈c1; c2, E〉 →err 〈throw X,E〉

〈e, E.M〉 ↓ n n 6= 0
〈if e then c1 else c2, E〉 → 〈c1, E〉

〈e, E.M〉 ↓ n n = 0
〈if e then c1 else c2, E〉 → 〈c2, E〉

〈e, E.M〉 ↓ n n 6= 0
〈while e do c, E〉 → 〈c; while e do c, E〉

〈e, E.M〉 ↓ n n = 0
〈while e do c, E〉 → 〈stop, E〉

〈e, E.M〉 ↓ n E(p) = proc(a, b) { c }
〈p(e, x), E〉 → 〈c[n/a, x/b], E〉

〈e, E.M〉 ↓ n Γ(ch) = L =⇒ ν = O(ch, n)
Γ(ch) = H =⇒ ν = ε

〈output(e, ch), E〉 →ν 〈stop, E.C[ch 7→ E(ch) : n]〉

〈c1, E〉 →ν 〈c′1, E′〉 c′1 6∈ {stop, throw X ′}
〈try c1 catch X c2, E〉 →ν 〈try c′1 catch X c2, E

′〉

〈c1, E〉 →ν 〈stop, E′〉
〈try c1 catch X c2, E〉 →ν 〈stop, E′〉

〈c1, E〉 →err 〈throw X,E′〉
〈try c1 catch X c2, E〉 → 〈c2, E′〉

〈c1, E〉 →err 〈throw X ′, E′〉 X 6= X ′

〈try c1 catch X c2, E〉 →err 〈throw X ′, E′〉

Figure 4. Semantics of the extended language

〈e, E.M〉 ↓ err X
〈Q[e], E〉 →err 〈throw X,E〉

Q[e] ::= x := e; | if e then c1 else c2 | while e do c
| output(e, ch) | p(e, x)

Figure 5. Exception propagation

and y, where x is passed by value, and y is passed by ref-
erence, so that the names of local variable in procedures do
not clash with global variables. The syntax for procedures is

proc p : `0 (in : `1 x, out : `2 y)

throws X∗` failswith R
∗
` { c }

where p is the name of a procedure, `0 is the begin-label
of the procedure [23, 24], `1 and `2 are labels of the pro-
cedure arguments, sets X∗` and R∗` are two sets of labeled
exceptions that p may throw, and, finally, c is the procedure
body. The begin-label specifies the lower bound on the side-
effects in the body c. The two argument labels `1, `2 spec-
ify upper bounds on the levels of actual arguments that are
passed to the procedure. The exceptions following the key-
words throws and failswith are annotated with labels as
well.

Neither of the labels have effect at run-time and are used
for type checking as discussed in Section 4.

Figure 4 also contains a rule for procedure invocation
p(e, x). At the invocation time, if the expression e evaluates
to a value, then the configuration transitions to the procedure
body c, where call-by-value argument is substituted with the
evaluated value n, and call-by-reference argument is substi-
tuted with the second argument—variable x. This rule relies
on the non-clashing name assumption mentioned above. Al-
though simplified, such semantics for procedure invocation
are sufficient for our purposes of illustrating the treatment of
exceptions.

Outputs The rule for outputs generates low events (observ-
able by the attacker, as we discuss in Section 5), but only if
the level of the output channel is low. No event is generated
for output on a high channel.

In our semantics we have a channel environment E.C,
with each channel represented by a stream. Outputting
a value appends the value to the corresponding channel
stream.

4. Type system
This section presents a security type system for Jif0. The
type system extends the idea described in Section 2 to deal
with multiple exception types, procedures, and outputs. We
assume the following form of a typing environment Γ =

Σ,Ω,∆, where Σ is the procedure environment, Ω is the
variable environment, and ∆ is the channel environment.

4.1 Exception sets and labeled exceptions
We use notation X to refer to a set of exceptions {X,Y, Z, . . . }.
To let the type system track security level associated with an
exception let labeled exception X` specify that exception X
has security level `. For the sets of labeled exceptions (not
necessary of the same level) we use notation X?. An addi-
tional requirement on labeled exception sets is that a set X?

may not contain any two labeled exceptions X`, X`′ with
` 6= `′.

Given a labeled exceptionX`, we refer to the correspond-
ing unlabeled exception X by simply dropping the label `
from its name. Similarly, we refer to the unlabeled excep-
tion set that corresponds to X? via X.

Exception tainting We overload the operator t to apply it
to the set of labeled exceptions as follows:

X? t `′ = {X`t`′ | X` ∈ X?}

Union, intersection, and subtraction We also define the
following auxiliary operations on the exception sets that are
used in the typing rules.

1. Union of two labeled sets

X? ⊕Y? = {X`|X` ∈ X? ∧ X` 6∈ Y} ∪
{Y`|Y` 6∈ X? ∧ Y` ∈ Y?} ∪

{Z`t`′ |Z` ∈ X? ∧ Z`′ ∈ Y?}

In this definition if sets X and Y contain no common ex-
ceptions then ⊕ matches an ordinary set union of labeled
exception sets.

2. Intersection of an exception set with a labeled exception
set X? uY = {X` | X` ∈ X? ∧X ∈ Y}

3. Subtraction of an exception set from a labeled exception
set X? \Y = {X` | X` ∈ X? ∧X 6∈ Y}

4.2 Expression types
Typing rules for expressions have the form Γ ` e : R?,
where R? is the set of labeled exceptions that expression e
may raise.

Since we parameterize over expression semantics, we for-
mulate properties that every instance of expression type sys-
tem must satisfy. These properties are listed later in Sec-
tion 5.

4.3 Command types
Typing rules for commands have the form Γ, pc,X ` c : R?,
where X is the set of exceptions that are handled by the
environment which executes c, and R? is the set of labeled
exceptions that c may raise.

Note that the set R? is labeled and reflects security levels
of possible exceptions, while X is unlabeled. This is because
our semantics do not have exception levels at run-time. This
is consistent with Jif’s implementation, where levels are
erased from Jif’s exception types, and at runtime there is
no difference between catching what was Exception : H or
Exception : L at the source level, because both types are
erased into Java’s Exception type. Hence, the type system
must be aware of this. While we follow Jif’s implementation
on this, we do not foresee much difference if the semantics
are designed to keep track of exception levels at run-time
instead.

Figure 6 presents the typing rules. The type system is a
mix of standard techniques typical for security type systems
and the new elements specific for our treatment of excep-
tions. We briefly go through the interesting rules, focusing
on new features.

In the rule for skip, the set of exceptions that can be
raised is ∅. The rule for assignment propagates the set of
exceptions R? that expression e may raise. Moreover, the
resulting set is tainted with the pc label to ensure that the
levels of possible exceptions record implicit flows. The same
happens in the rule for output.

The rule for sequential composition c1; c2 is one place
where the set of exceptions X that are handled by the context
is used. Here it affects the pc label in which the second
command c2 is typed. Given labeled exception set R?

1 that
c1 may raise, if any of these exceptions may be handled by
the outer context then c2 must have no side-effects lower
than the level of those exceptions. This is enforced by typing
c2 with program counter pc t lev(R?

1 u X). The function
lev(Y?) returns the least upper bound of levels of exceptions
among Y? and returns L in case Y? is empty. Finally, the
rule for sequential composition returns a union of R?

1 and
R?

2 as a set of exceptions that c1; c2 may raise.
The rules for conditionals and loops record that evaluat-

ing the guard e may raise exceptions and the level of those
exceptions is tainted with the pc label, when constructing the
final set of exceptions.

The rule for exception handling try c1 catch Y c2 is
another interesting spot. To type c1, we add exception Y
into the context of exceptions that can be handled. The rule
requires that Y must be possible to raise from within c1 by
having a clause which demands that Y in a labeled form
must belong to R?

1. The level with which Y is raised is
important to restrict side-effects in c2, and that is what the
last premise of the rule does. Finally, to record all unhandled
exceptions that try c1 catch Y c2 may raise itself, we
return all exceptions from R?

1 but Y together with R?
2.

Procedure types For procedures we introduce procedure
type proc `0 `1 `2 A? B?. Here `0 is the begin-label of the
method [24] and `1, `2 are labels of the method arguments.
The labeled exception sets A? and B? respectively record
which exceptions can be thrown and which must not be

handled by the method caller. We assume that the two sets
are disjoint, that is A ∩B = ∅.

The rule for typing a procedure declaration uses the ex-
tended environment Σ,Ω,∆. The rule constructs local envi-
ronment Γp to type the body of the procedure, where the pro-
cedure arguments are annotated with respective levels. Here
Ωp is the variable environment that contains global variables
together with the local procedure variables.

The body of the procedure c is type-checked starting with
the program counter set to the begin-label `0. Recall that for
exceptions listed after throws keyword we assume that they
can be handled by the caller. Therefore, the set X is added to
the environment for type-checking c. Similarly, exceptions
following failswith keyword must not be handled by the
context, and, therefore, the rule requires that the intersection
of unlabeled sets X and R is empty. Finally, the rule ensures
that the set of labeled exceptions that cmay raise Z? matches
what is specified in the procedure declaration by requiring
Z? = X? ⊕R?.

Calling a procedure p(e, x) is another place where we in-
spect the set X of exceptions that the calling context may
handle. Here the rule enforces that the set X must not over-
lap with exceptions that are listed after failswith in the
declaration of p. Moreover, we require invariant typing on
the in-out argument x.

4.4 Program typing
The last rule in Figure 6 is the one for typing an entire pro-
gram. For typing an entire program we only need variable
and channel environments. This rule builds the procedure en-
vironment from the procedure declarations and type checks
each of the procedures and the program body in the con-
structed environment.

5. Security guarantees
This section introduces the attacker model for our system,
requirements on expression semantics and type system, and
establishes guarantees that the type system of Section 4
enforces.

5.1 Attacker model: low events
Our attacker is modeled via low events—pieces of informa-
tion that the attacker can obtain during program execution.
A low event α can have one of the following forms:

events ν ::= ε | α
low events α ::= (x, n) | O(ch, n) | err

Event (x, n) is generated upon an assignment of value n
to a low variable x (Γ(x) = L). Similarly, event O(ch, n)
is an output on a low channel ch of the value n. The low
event err is produced when the final configuration of the
semantic transition is 〈throw X,E〉 for some exception X
and environment E.

Γ, pc,X ` skip : ∅
Γ ` e : R? Γ(e) v Γ(x) pc v Γ(x)

Γ, pc,X ` x := e : R? t pc
Γ ` e : R? Γ(e) v Γ(ch) pc v Γ(ch)

Γ, pc,X ` output(e, ch) : R? t pc

Γ, pc,X ` c1 : R?
1 Γ, pc t lev(R?

1 uX),X ` c2 : R?
2

Γ, pc,X ` c1; c2 : R?
1 ⊕R?

2

Γ ` e : R? Γ, pc t Γ(e),X ` ci : R?
i i = 1, 2

Γ, pc,X ` if e then c1 else c2 : (R? t pc)⊕R?
1 ⊕R?

2

Γ ` e : R? Γ, pc t Γ(e),X ` c : R?
2

Γ, pc,X ` while e do c : (R? t pc)⊕R?
2

Γ, pc,X ∪ {Y } ` c1 : R?
1 ∃` . Y` ∈ R1 Γ, pc t `,X ` c2 : R?

2

Γ, pc,X ` try c1 catch Y c2 : (R?
1 \ {Y })⊕R?

2

Γp , Σ,Ωp[x 7→ `1, y 7→ `2],∆ Γp, `0,X ` c : Z? X ∩R = ∅ Z? = X? ⊕R?

Σ,Ω,∆ ` proc p : `0 (in : `1 x, out : `2 y) throws X? failswith R? { c } : proc `0 `1 `2 X? R?

Γ.Σ(p) = proc `0 `1 `2 A? B? Γ ` e : `′,R? pc v `0 `′ v `1 Γ(x) v `2 `2 v Γ(x) X ∩B = ∅
Γ, pc,X ` p(e, x) : A? ⊕B? ⊕ (R? t pc)

Procj = proc pj : `j (in : `′j x, out : `′′j y) throws A?
j failswith B?

j { cj } j = 1 . . . k
Σ , ∪j [pj 7→ proc `j `′j `

′′
j A?

j B?
j] Σ,Ω,∆ ` Procj : proc `j `′j `

′′
j A?

j B?
j Γ , Σ,Ω,∆ Γ, L, ∅ ` c : R?

Ω,∆ ` Proc1 . . .Prock { c }

Figure 6. Type system for Jif0: commands, procedures, and programs

Note that the type of the exception X does not propagate
to the low event because the specifics of the exception are
not observable to the attacker.

Refining attacker’s view Observing low assignments leads
to a strong attacker model. We adopt this conservative model
for simplicity, which is justified because it subsumes more
liberal attackers. For example, a more realistic attacker is
the one that observes only outputs and errors.

We assume that the attacker observes a single run of
a program. Observing multiple runs of the program with
different inputs correspond to a more powerful attacker. We
assume an external security mechanism may be placed to
control the bandwidth of this channel (for example, this
mechanism may introduce delays between programs runs).

5.2 Semantics with low events
Semantic transitions in Figure 4 are already annotated with
low events. Low events are produced in the rules for assign-
ment and output. The rule for exception propagation on Fig-
ure 5 generates an error event corresponding to an excep-
tion. Rules for sequential composition propagate low events.
So do the rules for exception handling in case the thrown
exception is not dedicated for the handler. Finally, an error
event may be consumed by the exception handling if the type
of the exception matches the one of the handler.

Notation Given a sequence of transitions from 〈c, E〉
to 〈c′, E′〉 that produce a single low event α we write
〈c, E〉−→∗α〈c′, E′〉. For transitions from 〈c, E〉 to 〈c′, E′〉
that produce a sequence of low events (α0 . . . αn) we

write 〈c, E〉−→∗α0...αn〈c′, E′〉. A sequence of low events
α0 . . . αn can also be abbreviated as ~α and we write the
above transitions as 〈c, E〉−→∗~α〈c′, E′〉. If no low events
are produced in transitions from 〈c, E〉 to 〈c′, E′〉, this can
be denoted by 〈c, E〉−→∗〈c′, E′〉 or 〈c, E〉−→∗ε〈c′, E′〉. We
also write 〈c, E〉−→∗ν〈c′, E′〉 to refer to zero or more tran-
sitions that generate at most one low event.

5.3 Security condition
The target security property for our system we have termi-
nation-insensitive noninterference (TINI). Before stating the
definition of TINI, we introduce low-equivalence of memo-
ries and channel environments.

Definition 1 (Low-equivalence).

• Two memory environments M1 and M2 are low-equiva-
lent, written M1 =L M2, when they agree on all low
variables.

• Two channel environmentsC1 andC2 are low-equivalent,
written C1 =L C2, when they agree on all low streams.

We also write E1 =L E2 if E1 and E2 agree on the
same procedure declaration environments, and their respec-
tive memories and channel environments are low-equivalent.

Our definition of termination-insensitive noninterference
definition is a variant of the one from [1] adapted for the
semantics with error low events:

Definition 2 (TINI). A program P = Proc1 . . .Prock { c }
satisfies termination-insensitive noninterference (TINI) if

• whenever M1 =L M2, C1 =L C2, and

• F is a procedure declaration environment derived from
P , and

• Ej , (Mj , Cj , Fj), j = 1, 2, and
• 〈c, E1〉−→∗~α〈c′1, E′1〉

then there are c′2, E
′
2 such that one of the following holds:

1. 〈c, E2〉−→∗~α〈c′2, E′2〉, or
2. 〈c, E2〉−→∗~βerr 〈c

′
2, E

′
2〉 and ~β is a prefix of ~α, or

3. 〈c, E2〉−→∗~β〈c
′
2, E

′
2〉, ~β is a prefix of ~α, and no further

low events can be produced from 〈c′2, E′2〉.

Let us recall a few examples from [1] that illustrate how
termination-insensitivity is captured by the security defini-
tion. Program

low := h;

is rejected by the above definition since given any two low-
equivalent environments the resulting low events may not be
the same.

On the other hand the program

h := low; low’ := h

is accepted by the definition because the low assignment
event is going to be the same (low′, n), whereE1.M(low) =
E2.M(low) = n for all pairs of low-equivalent environ-
ments E1, E2.

Consider now the program

while h do skip; output (0, low_ch)

which leaks through the termination behavior: whether the
low output is reachable depends on the secret guard. The
program has no other leaks though, and so it is accepted
by the termination-insensitive definition. Indeed, take a pair
of low-equivalent environments E1, E2 with E1.M(h) = 0
and E2.M(h) 6= 0. In this case run of this program from
E1 produces a low event α = O(low_ch, 0), while the run
from E2 enters enter the non-terminating loop and produces
no events. This corresponds to clause (3) in Definition 2,
where ~β = ε which is a trivial prefix of α. If in this example
the while loop is replaced with a command that may throw
an error depending on h such as h′ := 1/h the modified pro-
gram is still accepted by Definition 2, now due to clause (2).

The next example is

while (h > 0) do skip; output (h, low_ch);

The program outputs a non-positive secret on a low channel.
This program is rejected. It is enough to consider two low-
equivalent environments where h is non-negative, but not
necessary the same.

The following program is accepted by Definition 2.

while i < n {
output (0, low_ch);

if (i == h) then while 1 do skip;
else skip;

i := i + 1;
}

Observe that this program leaks the value of h because the
attacker can deduce h by counting the number of low out-
puts. Although Definition 2 accepts this kind of brute-force
attacks (and so do information-flow mainstream tools such
as Jif [24], FlowCaml [30], and the SPARK Examiner [5, 9]),
the impact of these brute-force attacks is limited: the attacker
cannot learn the secret in polynomial time in the size of the
secret; and, for uniformly distributed secrets, the advantage
the attacker gains when guessing the secret after observing a
polynomial amount of output is negligible in the size of the
secret [1].

As with an earlier example, if we replace the nonter-
minating loop with an exception-raising statement, such as
h := 1/0, the modified program is still accepted.

On the other hand, the magnification attack is rightfully
rejected by the definition because of different low events in
runs that start with memories different in h.

5.4 Assurance
This section first formulates our main assurance result, spells
out requirements on expression type system and a key lemma
that is used in the soundness proof The main theorem is

Theorem 1 (Soundness of the type system). Given a pro-
gram P such that Ω,∆ ` P then P satisfies TINI.

Proof of Theorem 1 relies on a number of properties that
expression type system and semantics must satisfy and on
command lemmas, including statement of Lemma 1 that
we present below. The proof details are available in the
accompanying technical report [3].

Properties of expressions The properties of the expression
type system and semantics that we demand are:

If Γ ` e : R? then ∀X` ∈ R? . ` v Γ(e) (1)

If Γ ` e : R? and 〈e, E〉 ↓ 〈err X,E〉 then

X` ∈ R? for some ` (2)

If E1 =L E2 and Γ ` e : R? and 〈e, E1〉 ↓ err X

and 〈e, E2〉 ↓ u, u 6= err then XH ∈ R? (3)

Property (1) solely depends on the type system and specifies
that a level of a possible exception may not be higher than
the level of the expression.

Property (2) specifies that if expression evaluation results
in an exception, this exception must have been properly
recorded by the type system.

Property (3) requires that given two low-equivalent en-
vironments such that evaluation of an expression results in
an exception in only one of them, then this exception must
depend on high variable, that is, its level must be H .

Lemmas for commands The key property of the command
type system is reflected in the following lemma that enumer-
ates all possible cases of how low events behave in well-
typed programs.

Lemma 1. If Γ, pc,X ` c : R? and we have

1. E1 =L E2, and
2. 〈c, E1〉−→∗〈c′1, E′1〉 →α 〈c′′1 , E′′1 〉, and
3. 〈c, E2〉−→∗〈c′2, E′2〉 →β 〈c′′2 , E′′2 〉, then

• If α 6= err then

β 6= err =⇒ α = β, c′1 = c′2, c′′1 = c′′2 , E′1 =L E
′
2,

and E′′1 =L E
′′
2 .

β = err =⇒ c′′2 = throw Z, where Z 6∈ X
• If α = err with c′′1 = throw Z then

Z ∈ X =⇒ β = err and c′′2 = throw Z ′ for
some Z ′.

The intuition behind this Lemma is following. The first
case α 6= err , β 6= err implies that both configurations
must agree on commands and low parts of the environments
at the time when low events are produced. Hence, the low
events are the same, the resulting commands are the same,
and the resulting environments are low-equivalent.

In case α 6= err , β = err , then the second run
must terminate with an unhandled exception Z ′. This is a
consequence of the typing rule for sequential composition,
which otherwise could allow magnification leaks.

The last case complements the previous two by specify-
ing what happens if α = err .

The proof of Lemma 1 is by induction on the structure of
c. Special cases include sequential composition and excep-
tion handling. For sequential composition c1; c2 one uses an
inner induction on c1, considering separately the cases when
c1 runs without generating α and when it does. For exception
handling there are several sub-cases, the most interesting of
which is when the control may pass to the exception handler
depending on a secret. In this case we appeal to the property
of the try...catch typing rule that prevents low side-effects
in the exception handler.

5.5 Implication for batch-job execution
The language of Section 3 supports outputs whose effect is
immediate to the attacker. In a language without intermedi-
ate outputs, when the result of program is available to the
attacker only at the end of its execution, the type system
of this section enforces traditional batch-style termination-
insensitive noninterference. Formally, we have the following
corollary of Theorem 1.

Corollary 1. If P = Proc1 . . .Prock { c } is a program
without outputs then for any E1, E2, such that E1 =L E2,
if 〈c, E1〉−→∗~α〈stop, E′1〉 and 〈c, E2〉−→∗~β〈stop, E

′
2〉 then

E′1 =L E
′
2.

6. Examples and discussion
A new language feature gives new possibilities to program-
mers. We discuss some pros and cons of the proposed excep-
tion treatment.

6.1 Monotonicity of exceptions
One property of the type system above is that a code that
has been designed for catching exceptions can be used in a
context where exceptions are ignored:

proc P:H (in:H px, out:H py)
throws DivByZero:H { py = 1/px; }

proc Q:H (in:H qx, out:H qy) {
try { P(qx, qy); }
catch (DivByZero) {qy = 0; }

}
proc R:L (in:H rx, out:H ry)
failswith DivByZero:H
{ P(rx, ry); output(0, low_ch); }

In this example a procedure P is declared to throw an excep-
tion DivByZero. This procedure can be called in two dif-
ferent kinds of contexts—one is exemplified by procedure Q
where the exception declared in P is caught. The other one
is demonstrated by procedure R where this exception type is
declared via failswith keyword. We refer to this feature of
the type system as monotonicity of exception sets.

6.2 Impact on code style and refactoring
With the possibility of ignoring exceptions there is a danger
that programmers write code where most of the exceptions
are ignored either deliberately or because constraints on the
used methods forbid callers from handling them.

In this light, we believe our approach provides most bene-
fit at the early stage of program development, when the core
functionality is implemented. As the codebase evolves and
programmers shift their attention from mere functionality
to adherence with interfaces and usability of their code, the
treatment of exceptions can change as well.

Existing approaches that deal with exceptions at early
stages of development in security-typed languages are:

1. Explicit declassification of the pc label after a statement
that raises the pc label.

2. Surrounding the statement that raises the pc label with
try...catch construct where exceptions are simply ig-
nored.

While helping the programmer to “put the compiler out of
the way”, each of these options has its drawbacks. Declassi-
fication of the pc label makes it less transparent for the secu-
rity guarantees that the program provides. Based on our [2]
experience and the one by Hicks et al. [20], try...catch
blocks reduce transparency of the code and can negatively
affect programmer’s productivity at the early development
stages, when the basic code functionality is being tested and
debugged, and runtime exceptions actually do happen.

static void main(principal user, String[] args) {
jif.runtime.Runtime[user] rt = null;
try {
rt = jif.runtime.Runtime[user].getRuntime();

} catch (SecurityException e) {}
InputStreamReader[{user:}] inS = null;
try { inS = new InputStreamReader[{user:}](

rt.stdin(new label{user:}));
} catch (SecurityException ex) {
} catch (NullPointerException e) {}
... }

Figure 7a. Example Jif code from [19]

Compared to the above two approaches we believe that
the possibility of safely ignoring exceptions and failswith
declaration allows programmer to both

• keep the program code relatively transparent, and
• avoid spurious declassifications, keeping the confidence

in the obtained security guarantees.

Consider the scenario when at first iteration a program-
mer implements a method R with the following declarations

proc R:L (in H:rx, out H:ry)
failswith X, Y, Z { ... }

The method R can be used in the context where none of X, Y,
or Z are handled such as

proc Q:L (in H:qx, out H:qy)
failswith X, Y, Z { ... P(.., ..); ... }

If later the body of R is rewritten to reduce the types of ex-
ceptions that it may throw (e.g., by catching them internally),
then R can now be also used in a new context permitting the
context to catch more exceptions (this may be necessity due
to other methods).

6.3 Examples in Jif syntax
Figure 7a is an example code fragment from [19] where the
two possible exceptions of types SecurityException and
NullPointerException are caught by the code, but no
special handling is implemented. Indeed, there is little one
can do if any of these exceptions take place. We moreover
note that such approach to exception handling is very com-
mon to other Jif case studies [2, 12] as well. Figure 7b is a
pseudocode of the same method rewritten in a syntax that
supports failswith keyword. Due to failswith declara-
tion extensive wrapping with try...catch is not necessary
here yet we may have low side-effects later in the body of
this method.

6.4 Further extensions
This paper presents the core idea for a permissive yet secure
exception treatment. We briefly outline some directions for
extensions.

static void main(principal user, String[] args)
failswith SecurityException,

NullPointerException{
jif.runtime.Runtime[user] rt =
jif.runtime.Runtime[user].getRuntime();

InputStreamReader[{user:}] inS =
new InputStreamReader[{user:}](

rt.stdin(new label{user:}));
... }

Figure 7b. Alternative declaration using failswith

Explicit exception propagation As discussed earlier ig-
noring exceptions completely may be not the best program-
ming practice. We may suggest a new syntactic construction
try c1 catchandpropagate c2.

try { ... } catchandpropagate (SomeException e) {
... throw new AnotherException() }

The idea with try c1 catchandpropagate c2 is that
it allows handling exceptions from c1 in some way but c2
is required to throw a different exception of an adequate
level to the caller. The type system would enforce that c2
indeed throws an exception by employing some variant of
must static analysis. The end security guarantee will not be
affected by this—as long as the type system knows that some
exception is thrown to the caller, magnification attacks of the
kind discussed in Section 1 are not possible.

This extension can be handy in combination with the
ArgCheck programming pattern discussed in [2]. In par-
ticular, the pattern proposes checking method parameters
for null-values and throwing InvalidArgumentException
instead of NullPointerException that results in more
meaningful error reporting for the caller.

This can also be useful if the programmer needs a finer
distinction of particular throw-sites as in the following ex-
ample where method m() has failswith annotation.

void m() failswith NullPointerException {...}

This method can be called in a context that also throws
NullPointerException (abbreviated as NPE) which the
programmer wants to handle.

try {
foo.bar(); // foo could be null
try { m(); } catchandpropagate(NPE e) {

throw new Error(); }
} catch (NPE e) { // NPEs thrown by m() will not
// be caught here, but the NPE thrown if foo is
// null will be caught here
}

Syntactic support for exception hierarchies Java (and Jif)
exceptions form a class hierarchy, which allows catching
multiple exception types in a single catch. Similarly the
throws in Java/Jif relies on the exception class hierarchy
and subtyping. To make failswith approach more usable

in a language with exception hierarchies catch syntax can
be extended to exclude certain exception types. We exem-
plify the idea with simple instance of how this would look

try { ... }
catch (Exception but NPE e) {...}

For Jif, such extension can be implemented with moder-
ate effort using Polyglot [25] framework. One compilation
strategy in this case can be to catch exceptions declared after
the but keyword first, re-throwing them there, and handling
the rest of the exceptions (declared before the but keyword)
in a separate successful catch block after that.

Alternative translation An alternative to propagating ex-
ceptions is a translation of failswith annotation that instru-
ments the method body with a try...catch block catch-
ing exceptions named in failswith list and throwing a run-
time error in place. The same functionality can be recovered
with catchandpropagate extension discussed in this sec-
tion. The price in both cases is light runtime overhead due to
wrapping try...catch/catchandpropagate blocks. Note
that failswith annotations in isolation do not use instrumen-
tation and also allow for more precise reflection of methods’
behavior in their types.

Polymorphic libraries The approach of this paper can be
further extended to libraries that allow selective handling of
exceptions. If the library user is willing to handle exceptions,
the library fields and methods receive more restrictive labels.
Similarly, if the library user prefers not to handle the excep-
tions, the library fields are labeled more permissively.

Inspired by optional methods [17, 4] we outline an idea
for optional exceptions—a mechanism, that, together with
label parametrization, such as in Jif, would allow library
designers provide single code that is usable in both restric-
tive and permissive contexts. Optional exceptions can be de-
clared as follows:

void m() throws Exc when (/*constraints*/) {...}

The when clause is followed by a list of label constraints
such as ` ≤ `′. This specifies that the exception Exc is
declared only when the corresponding constraints hold at
the call site. Otherwise, if the constraints do not hold at
the call site, this declaration is equivalent to a failswith
declaration.

Jif classes can be parameterized over labels using key-
word label L, where L is a parameter name; this parameter
can appear in security annotations in the body of the class.

The following snippet illustrates how optional exceptions
could be used with Jif label parametrization. Here L, H, and
R are ordinary class parameters, where R has a helper role:
it is an upper bound on how much the client’s pc label gets
tainted due to exceptions.

In the method m() the exception ArithmeticException
has level H. The when clause specifies that for that exception

to be catchable R needs to be instantiated to a label that is as
restrictive as H.

class C [label L, label H, label R] {
int {L;R} x; // the annotation uses L and R
int {H} h; // high data

void m{L;R}()throws ArithmeticException{H}
when {H <= R} {
int t = 1/h; // may result in exception
this.x ++;

}
}

Such exception declaration is optional in the sense that if
the constraint in the when clause is not satisfied at the call
site, the exception is assumed to result in runtime error. In
general, the more restrictive R is, the more exceptions the
context needs to handle. In the most restrictive case, R can
be set to top-most security label and an optional exception
effectively becomes a mandatory one.

The two examples below illustrate how the above class
can be used. In both examples L is instantiated to {} — a
label corresponding to most public and least trusted security
level, and H is instantiated to some high label High, while
R is different. In the first example, the caller prefers not to
handle exceptions and sets R to {}. Note that the variable
obj.x receives permissive security level, as exemplified by
the last assignment in the example.

C[{}, {High}, {}] obj = new C();
obj.m();
int {} low = obj.x; // OK

In the second example, the caller is interested in handling
exceptions, setting R to High. This is reflected in the type
of variable obj.x that receives a more restrictive level now.
An assignment, similar to the previous one, is illegal in this
case.

C[{}, {High}, {High}] obj = new C();
try { obj.m(); } catch (Exception e) {...}
// the following assignment is illegal
int {} low = obj.x;

7. Related work
Denning and Denning [16] informally discuss exception
handling in the context of static information-flow analy-
sis. They consider top-level exception declarations (in the
style of the PL/I language), which prescribe actions to be
executed, should an exception condition occur, before the
control is returned back to the point of the exception. They
acknowledge that it would be a practical solution to inhibit
all traps except those that for which actions have been de-
fined explicitly by the program, which is in the spirit of
our solution. However, they do not consider local exception
handling as in the try . . . catch blocks, nor they discuss the
soundness of the approach.

Volpano and Smith [31] appear to be the first to prove
soundness for a static security analysis for programs with ex-
ceptions. However, it is limited to fatal (uncatchable) excep-
tions. Further, the analysis imposes severe restrictions: secret
data is not allowed to be involved in operations that might
raise an exception. This is the price for ensuring termination-
sensitive noninterference by the analysis.

Myers [23] proposes a more permissive mechanism,
based on path labels for catchable exceptions. This mech-
anism is the core of exception handling in Jif [24]. The
soundness of the approach is not discussed, however. Myers
remarks that resource exhaustion conditions (such as out-
of-memory and stack-overflow) should be treated as fatal,
which should not be caught. Later versions of Jif disallow
handling exceptions of class Error.

Pottier and Simonet [26, 27, 29] present a mechanism,
similar to Jif’s, and prove its soundness with respect to
batch-job termination-insensitive noninterference in a func-
tional setting. This mechanism is the core of exception han-
dling in FlowCaml [30].

Barthe and Rezk [7] track exceptions in a JVM-like lan-
guage. They consider a single type of catchable exceptions
and prove batch-job termination-insensitive noninterference.
Barthe et al. [6] extend this approach to multiple catch-
able exceptions. In a related effort, Barthe et al. [8] provide
security-type preserving compilation of a source language
with a single type of catchable exceptions to the low-level
language of Barthe and Rezk [7].

Hedin and Sands [18] consider class-cast and null-pointer
exceptions. They establish a batch-job termination-insensitive
noninterference property for their security analysis.

To sum up, some [31] approaches consider only uncatch-
able exceptions, some [26, 27, 29, 7, 8, 18, 6] only catchable,
and some [16, 23] even both, but none gives the program-
mers control over which exceptions should be handled.

On the secure programming side, our JifPoker [2] case
study identifies patterns for secure programming with excep-
tions. JifClipse [20], an integrated environment for devel-
oping Jif code provides automatic insertion of try . . . catch
blocks, although this is intended as a quick-fix feature.

Deng and Smith [15] propose array semantics where ab-
normal computation is replaced by default values. This coin-
cides with our motivation to reduce the burden of error han-
dling, but is different from our goal to preserve the original
semantics of the program.

Demange and Sands [14] offer termination-insensitivity
with respect to large secrets and termination-sensitivity with
respect to small secrets in their notion of “secret-sensitive
noninterference”.

Refining termination-insensitive security and determin-
ing when it is adequate is an important problem. Further
progress in quantitative information flow [10, 11, 13] could
be of help here, but this is outside of the scope of this paper.

8. Conclusions
We have presented a permissive yet secure mechanism for
exception handling in programs. By giving the programmer
control over which exception should be handled, we provide
an attractive possibility for reducing the burden of exception
handling without loss of security. This opens up interesting
possibilities for increasing the usability of such systems as
Jif. We have showed that our approach scales for a language
with procedures, multiple exception types, and output. The
treatment of procedures is particularly appealing: procedure
annotations for what exceptions can be handled and not
by the callers provide an elegant compositional solution,
which naturally extends Jif (which currently supports only
the former).

As is common for Denning-style analyzes, our target
security property is termination-insensitive noninterference.
In earlier work [1] with Hunt and Sands, we have showed
that the impact of leaks through abnormal termination is
limited: the attacker cannot learn the secret in polynomial
time in the size of the secret; and, for uniformly distributed
secrets, the advantage the attacker gains when guessing the
secret after observing a polynomial amount of output is
negligible in the size of the secret.

Prospects for achieving termination-sensitive security
without presence of exceptions do not appear to be realistic
(unless Draconian restrictions are imposed [31]). Whenever
there is a finite resource at disposal of the program (such
as memory), exhaustion is possible, which leads to runtime
errors. These errors can be used to encode information about
secrets.

Future work is focused on incorporating our mechanism
into Jif. We sketch some ideas on how to proceed in this
direction in Section 6.4.

Acknowledgments Thanks are due to Stephen Chong,
Daniel Hedin, Michael Hicks, Andrew Myers, and the
anonymous reviewers for useful feedback. This work was
funded by the Swedish research agencies SSF and VR, and,
in part, by AFRL.

References
[1] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-

insensitive noninterference leaks more than just a bit. In Proc.
European Symp. on Research in Computer Security, pages
333–348, October 2008.

[2] A. Askarov and A. Sabelfeld. Security-typed languages for
implementation of cryptographic protocols: A case study. In
Proc. European Symp. on Research in Computer Security,
volume 3679 of LNCS, pages 197–221. Springer-Verlag,
September 2005.

[3] A. Askarov and A. Sabelfeld. Catch me if you can:
Permissive yet secure error handling. Technical Report.
Available at http://www.cs.cornell.edu/~aslan/
exceptions-tr.pdf, 2009.

[4] J. A. Bank, A. C. Myers, and B. Liskov. Parameterized types
for Java. In Proc. ACM Symp. on Principles of Programming
Languages, pages 132–145. ACM, 1997.

[5] J. Barnes and JG Barnes. High Integrity Software: The
SPARK Approach to Safety and Security. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 2003.

[6] G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight
non-interference java bytecode verifier. In Proc. European
Symp. on Programming, LNCS. Springer-Verlag, 2007.

[7] G. Barthe and T. Rezk. Non-interference for a JVM-like
language. In Proc. ACM TLDI’05, pages 103–112. ACM
Press, 2005.

[8] G. Barthe, T. Rezk, and D. Naumann. Deriving an informa-
tion flow checker and certifying compiler for java. In Proc.
IEEE Symp. on Security and Privacy, pages 230–242, 2006.

[9] R. Chapman and A. Hilton. Enforcing security and safety
models with an information flow analysis tool. ACM SIGAda
Ada Letters, 24(4):39–46, 2004.

[10] D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis
of the leakage of confidential data. In QAPL’01, Proc.
Quantitative Aspects of Programming Languages, volume 59
of ENTCS. Elsevier, 2002.

[11] D. Clark, S. Hunt, and P. Malacaria. Quantified interference
for a While language. In QAPL’04, Proc. Quantitative
Aspects of Programming Languages, volume 112, pages
149–166, January 2005.

[12] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward
a secure voting system. In IEEE Symposium on Security and
Privacy, May 2008.

[13] M. R. Clarkson, A. C. Myers, and F. B. Schneider. Belief
in information flow. In Proc. IEEE Computer Security
Foundations Workshop, pages 31–45, June 2005.

[14] D. Demange and D. Sands. All Secrets Great and Small.
In Proc. European Symp. on Programming, LNCS, pages
239–253. Springer-Verlag, 2009.

[15] Z. Deng and G. Smith. Lenient array operations for practical
secure information flow. In Proc. IEEE Computer Security
Foundations Workshop, pages 115–124, June 2004.

[16] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. Comm. of the ACM, 20(7):504–
513, July 1977.

[17] B. Liskov et al. CLU reference manual. In In Goos and
Harmanis, editors, volume 114 of LNCS. Springer-Verlag,
Berlin, 1981.

[18] D. Hedin and D. Sands. Noninterference in the presence
of non-opaque pointers. In Proc. IEEE Computer Security
Foundations Workshop, pages 255–269, 2006.

[19] B. Hicks, K. Ahmadizadeh, and P. McDaniel. Understand-
ing practical application development in security-typed lan-
guages. In 22st Annual Computer Security Applications
Conference (ACSAC), Miami, Fl, December 2006.

[20] B. Hicks, D. King, and P. McDaniel. Jifclipse: Development
tools for security-typed languages. In Proc. ACM Workshop

on Programming Languages and Analysis for Security
(PLAS), June 2007.

[21] D. King. JLift. Software release. Located at http:
//www.cse.psu.edu/~dhking/jlift, 2008.

[22] D. King, B. Hicks, M. Hicks, and T. Jaeger. Implicit flows:
Can’t live with ’em, can’t live without ’em. In Proc.
International Conference on Information Systems Security
(ICISS), volume 5352 of LNCS, pages 56–70. Springer-
Verlag, December 2008.

[23] A. C. Myers. JFlow: Practical mostly-static information flow
control. In Proc. ACM Symp. on Principles of Programming
Languages, pages 228–241, January 1999.

[24] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and
N. Nystrom. Jif: Java information flow. Software release.
Located at http://www.cs.cornell.edu/jif, July
2001–2009.

[25] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot:
An extensible compiler framework for java. In Proc. 12th
International Conference on Compiler Construction, Warsaw,
Poland, LNCS 2622, pages 138âĂŞ–152, apr 2003.

[26] F. Pottier and V. Simonet. Information flow inference for
ML. In Proc. ACM Symp. on Principles of Programming
Languages, pages 319–330, January 2002.

[27] F. Pottier and V. Simonet. Information flow inference for ML.
ACM TOPLAS, 25(1):117–158, January 2003.

[28] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE J. Selected Areas in Communications,
21(1):5–19, January 2003.

[29] V. Simonet. Fine-grained information flow analysis for a
λ-calculus with sum types. In Proc. IEEE Computer Security
Foundations Workshop, pages 223–237, June 2002.

[30] V. Simonet. The Flow Caml system. Software release.
Located at http://cristal.inria.fr/~simonet/
soft/flowcaml/, July 2003.

[31] D. Volpano and G. Smith. Eliminating covert flows
with minimum typings. Proc. IEEE Computer Security
Foundations Workshop, pages 156–168, June 1997.

[32] D. Volpano, G. Smith, and C. Irvine. A sound type system
for secure flow analysis. J. Computer Security, 4(3):167–187,
1996.

