
Proceedings on Privacy Enhancing Technologies ..; .. (..):1–19

Elena Pagnin*, Gunnar Gunnarsson, Pedram Talebi, Claudio Orlandi, and Andrei Sabelfeld

TOPPool: Time-aware Optimized
Privacy-Preserving Ridesharing
Abstract: Ridesharing is revolutionizing the transporta-
tion industry in many countries. Yet, the state of the art
is based on heavily centralized services and platforms,
where the service providers have full possession of the
users’ location data. Recently, researchers have started
addressing the challenge of enabling privacy-preserving
ridesharing. The initial proposals, however, have short-
comings, as some rely on a central party, some incur
high performance penalties, and most do not consider
time preferences for ridesharing. TOPPool encompasses
ridesharing based on the proximity of end-points of a
ride as well as partial itinerary overlaps. To achieve the
latter, we propose a simple yet powerful reduction to
a private set intersection on trips represented as sets
of consecutive road segments. We show that TOPPool
includes time preferences while preserving privacy and
without relying on a third party. We evaluate our ap-
proach on real-world data from the New York’s Taxi &
Limousine Commission. Our experiments demonstrate
that TOPPool is superior in performance over the prior
work: our intersection-based itinerary matching runs in
less than 0.3 seconds for reasonable trip length, in con-
trast, on the same set of trips prior work takes up to 10
hours.

Keywords: Privacy-preserving ride sharing, Location
privacy, Private set intersection.

DOI Editor to enter DOI
Received ..; revised ..; accepted ...

*Corresponding Author: Elena Pagnin: Department of
Computer Science, Aarhus University, E-mail: elena@cs.au.dk
Gunnar Gunnarsson: Chalmers University of Technology,
E-mail: gunnarsson2@gmail.com
Pedram Talebi: Chalmers University of Technology, E-mail:
pedramt@student.chalmers.se
Claudio Orlandi: Department of Computer Science, DIGIT,
Aarhus University, E-mail: orlandi@cs.au.dk
Andrei Sabelfeld: Chalmers University of Technology, E-
mail: andrei@chalmers.se

1 Introduction
Recent developments in information technology mark a
paradigm shift in the transportation industry. Location-
Based Services (LBS) for transportation have enabled
a large and versatile variety of services like Uber [52],
Lyft [29] and BlaBlaCar [5]. Ridesharing is a particu-
larly appealing type of transportation service. Rideshar-
ing companies, like BlaBlaCar [5], match ridesharing
possibilities from a pool of trips advertised by its users.
This kind of service is a typical sharing economy service
that combines simplicity and travel cost efficiency for a
more sustainable future. Yet, state of the art platforms
are heavily centralized and allow the service providers
to learn users’ locations, commuting patterns and other
data useful for individual profiling and tracking.
Need for privacy in ridesharing. While the appeal
of ridesharing has led to remarkable developments, pri-
vacy of ridesharing is a key challenge that current plat-
forms fail to address [12]. Indeed, the state of the art
is based on heavily centralized solutions, where the ser-
vice providers have full possession of the users’ location
data. Unfortunately, some centralized services have a
record of abusing user privacy. For example, Uber and
its employees have been allegedly involved in privacy-
violating activities like stalking journalists, celebrities,
and ex-girlfriends [4].

Even when a centralized service is well-minded,
it becomes an attractive target for attacks to harvest
the users’ private location information. For example,
Lyft’s privacy safeguards have been allegedly bypassed
by Uber while spying on double-dipping drivers [45].
This leads to a pivotal question of how to preserve pri-
vacy of passengers and drivers without sacrificing the
functionality or performance of ridesharing services.
Privacy-preserving ridesharing. We set out to
model flexible ridesharing, where either sharing whole
rides or sufficiently long ride segments is possible. In
this setting, we identify the following desiderata:

(i) Privacy wrt peers. Drivers and passengers should
not learn more information about each other than is
necessary by the ride matching protocol. This implies
that no information is leaked when there is no match,
and only information about the shared segment is leaked
when there is a match on that segment.

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 2

(ii) Privacy wrt third parties. No third party should
learn the users’ location information. This includes any
party involved in the matching process, including cen-
tral parties when the protocol is centralized.

(iii) Realistic performance. For a ridesharing service
to be usable, its performance is important. Users should
be able to get quick answers to their match queries.

(iv) Time preferences. Users should be able to ex-
press time preferences and only get matches when the
time preferences between riders and drivers agree.

Recently, researchers have started addressing the
challenge of enabling privacy-preserving ridesharing [1,
2, 17, 21, 28, 34, 35, 44]. However, the initial efforts
have shortcomings: most rely on a central party [1, 2,
21, 28, 34, 35, 44], some incur high performance penal-
ties [17], and several do not fully support time prefer-
ences for ridesharing [2, 17, 28, 34, 35, 44]. Section 7
elaborates on the state of the art. The platform that
lies closest to our goals is PrivatePool [17]. PrivatePool
guarantees privacy, while not relying on a central party.
It supports ride matching based on both proximity of
end points and trajectories overlaps for segments larger
than a chosen threshold. Thus, PrivatePool satisfies
goals (i) and (ii), making it a suitable starting point.
However, for trajectory matching, PrivatePool relies on
a specially-designed threshold private set intersection
construction, which incurs high performance overhead.
In addition, PrivatePool has no support for setting the
desired time of the ride. This implies that PrivatePool
does not achieve goals (iii) and (iv).

TOPPool: a time-aware optimized approach
to privacy-preserving ridesharing. This paper
presents TOPPool, a decentralized platform for time-
aware, optimized privacy-preserving ridesharing. TOP-
Pool has two major improvements over PrivatePool:
the inclusion of time in the ridesharing model and a
faster trip matching mechanism. We offer two indepen-
dent privacy-preserving approaches to determine fea-
sible ridesharing: a time-aware proximity test of end-
points of a ride and a time-aware itinerary intersection.
The former approach is extremely efficient in matching
routes that go “in the same direction” though on differ-
ent, possibly disjoint, ways. This solution, however, does
not take into account the actual length of the shared
ride. Itinerary intersection, on the other hand, identifies
trips that “overlap” and suits ridesharing between cities
or along specific routes like bridges or highways.

To ease the presentation, we first describe how to
perform intersection-based matching in time linear on
the trip length. We then extend both endpoint- and

intersection-based matching to include the dimension
of time. TOPPool should not be thought of as a self-
standing interactive protocol, but rather as an approach
or framework. The acronym is chosen to make a clear
connection to the predecessor PrivatePool and highlight
our contributions in terms of time-awareness and per-
formance optimization

Intuitively, we include the time of the ride by aug-
menting the regular trips with one dimension and per-
forming the usual matching on the spatial coordinates
plus a time difference on the time coordinate. Our effi-
ciency boost is due to more technical reasons. In a nut-
shell, PrivatePool performs intersection-based matching
using a carefully crafted cryptographic tool named TPSI
(Threshold Private Set Intersection). Looking at trips as
sets of points and at the minimal itinerary overlap as a
value c, TPSI loops through all of the possible sequences
of c consecutive points along each trip and returns a
match if one c-point set is present in both trips. This
approach is quadratic in the trips’ length. We leverage
ordinary PSI (Private Set Intersection) techniques and
perform intersection-based matching in time linear in
the trips’ length. The key point is to observe that the
output of this matching process is a sequence of c con-
secutive points. Thus, we rely on an ideal routing model
to identify one default itinerary between any two points.
In this way, we simply check if both routes contain a pair
of points (P,Q) with the ideal itinerary between P and
Q being of length c. This can be done efficiently by run-
ning regular PSI on the sets of pairs (P,Q) generated by
sliding P along the route.

Limitations. Our focus is on developing suitable cryp-
tographic techniques for the emerging problem of pri-
vate ridesharing. As such, our work does not constitute
a fully-fledged ridesharing system. However, it paves the
way for building such systems in the future. One limi-
tation to note down is that we address privacy at the
application layer, while not considering leaks that may
occur at the system layer, such as leaks via IP addresses.
More details on our setting are presented in Section 2.

Another limitation is scalability to large numbers
of users. This limitation is shared with the entire line
of work on privacy-preserving location proximity and
ridesharing protocols (e.g., [17, 18, 31, 43, 53]), where
matching among users is performed in pairwise fash-
ion. Designing an efficient privacy-preserving market-
place where users can be matched in complexity less
than quadratic (without sacrificing privacy) is a major
open problem for this area of research.

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 3

protocol time cryptographic matching process complexity
acronym awareness primitives endpoint intersection

computation communication computation communication
PP [17] × AHE, TPSI O(λ2

max) O(λ2
max) O(n2) O(n log(n))

O-PP (Sec.3) × AHE, PSI O(λ2
max) O(λ2

max) O(n log(n)) O(n log(n))
TOPP (Sec.5) X AHE, PSI O(λ2

max + τmax) O(λ2
max + τmax) O(τmaxn log(n)) O(τmaxn log(n))

Table 1. Overview PrivatePool (PP), O-PrivatePool (O-PP) and TOPPool (TOPP); n is the maximum number of points in a trajec-
tory; λmax and τmax indicate respectively the maximum spatial and time deviation captured by the system. The complexities are only
based on the input size and disregard the dependency on the security parameter. AHE, PSI and TPSI are the respective abbreviations
of additive homomorphic encryption, private set intersection and threshold PSI.

Contributions. Table 1 provides a quick overview of
our main results compared with PrivatePool. In detail:

We present O-PrivatePool, an optimized version of
PrivatePool [17] for efficient and private intersection-
based ridesharing. O-PrivatePool offers a novel way to
test itinerary overlaps that reduces to private set inter-
section (instead of the inefficient threshold PSI of Pri-
vatePool). We demonstrate the privacy guarantees of O-
PrivatePool and discuss its asymptotic computational
complexity (Section 3).

We present a general model for time-aware rideshar-
ing that extends the one of PrivatePool to include users’
time preferences (Section 4).

We present TOPPool a collection of two indepen-
dent, efficient and privacy-preserving ways to match
trips for ridesharing. Concretely, we describe a time-
aware endpoint-based matching (timedEP) based on
additive homomorphic encryption; and a time-aware
intersection-based matching (timedIS) based on private
set intersection (Section 5).

We evaluate the effectiveness of O-PrivatePool and
TOPPool in finding ridesharing trips on real-world data
from the New York’s Taxi & Limousine Commission. Fi-
nally, we run a series of experiments to test and compare
the efficiency of PrivatePool, O-PrivatePool and TOP-
Pool (Section 6).

2 Preliminaries
Notation. We denote by [a, b] the set of all integer
values between a and b, namely [a, b] = {a, a+ 1, . . . , b},
a, b ∈ Z, a < b. We denote by |S| the size of a set, i.e.,
the number of elements in S. We denote by Sym[n] the
symmetric group defined over the set [1, n], consisting
of all the possible permutation of n elements.

2.1 Ridesharing concepts
Ridesharing is the act of taking part in a journey in
which one or more passengers travel in a private vehicle
driven by its owner. In practice, drivers and passengers
look for itineraries that match their own way, destina-

Fig. 1. The five ridesharing segments, for two trips.

tion or direction. Given two itineraries, there are five
segments to consider as depicted in Figure 1. For details
on how to model ridesharing, maximum trip extension
and ridesharing patterns we refer the reader to [17].

In this work, we adopt two independent approaches
to match trips: endpoint-based matching (where rides
are selected according to how far the respective start-
ing/ending points are) and intersection-based matching
(where rides are selected according to how large of an
overlap there is between the two itineraries). In Section
2.2, we formalize the notion of feasible ridesharing in
two flavors that closely model these methods. Below,
we present our terminology and technical assumptions.

Definition 1 (Trip, trajectory and segment). Given a
graph G = (V,E) a trip T is an acyclic sequence of con-
secutive vertices vi ∈ V , where Ps = v0 is the starting
point (origin) and Pf = v|T |−1 is the final point (desti-
nation), such that (vi, vi+1) ∈ E, for all i ∈ [0, |T | − 2].
The set T is also called users’ trajectory and its ver-
tices positions Pi ∈ T . Any subset S ⊆ T of consecutive
vertices of a trip is called segment.

Note that the points of a trajectory are naturally sorted
along the graph path (see Figure 2 and 3 for examples).

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 4

Definition 2 (Segment length). Given a segment S =
{P0, . . . , Ps−1} for some trip in a graph, we denote the
length of the segment as `(S) =

∑s−2
i=0 dxy(Pi, Pi+1),

where dxy(·, ·) is the Euclidean distance between two
points on a plane.

Assumptions. In line with previous work [17], we
make the following simplifying assumptions:

(1) The distance between two points is the Euclidean
distance on the plane.

(2) There is a graph that models possible routes be-
tween points and a model for ideal routing which,
given any two points on the graph, outputs an ideal
route between them. The ideal routing model should
be thought of as a way to generate a “canonical tra-
jectory” between locations.

(3) Users travel at a constant speed; spatial and tempo-
ral cost of traversing a segment are equivalent.

Assumption (1) makes a realistic approximation of the
route that is sufficiently good for most applications.
More accurate solutions would require ad-hoc develop-
ment of the geometry of the region considered, including
physical barriers such as rivers and mountains, as well
as actual disposition of the roads. We favored the more
general approach that uses the Euclidean distance to
provide a general-purpose model and leave the develop-
ment of geography-specific models to future work.

Assumption (2) gives us a simplified yet realistic
ground to work with. The ideal routing model provides
a set of preferred (ideal) trips along the graph, intu-
itively selecting a set of common trajectories that effi-
ciently approximates real traffic. We make use of this
model to create and match routes, and exploit the fact
that between any pair of points there is only one ideal
itinerary. Note that the same graph may have several
ideal models, and users may choose what model to use
for matching according to their preference, e.g., “toll-
free” or “shortest route”. We leave this choice to the ap-
plication layer. In our experiments we consider the ideal
route to be the shortest path between two locations. We
discuss how our platform can support trajectory match-
ing while preserving privacy of the routing model chosen
by the users in Section 4.

Assumption (3) states that users have constant
speed when traversing their routes. In particular, if a
passenger matches with a driver at the origin of the
shareable segment at a given time, the constant speed
assumption guarantees that the passenger reaches the
end of the shareable segment at the expected time. This
assumption simplifies our time-aware model and can be

lifted without affecting user privacy. The idea is to as-
sociate time-weights to the edges of the graph and com-
pute the travel time including these costs. We explain
how to do it in Section 4.

Note that our model is based on an unweighted
graph where all edges reflected by simply introducing
additional nodes and edges along the congested paths.
However, such modeling will trade accuracy for effi-
ciency, since the introduction of nodes and edges will
degrade the efficiency of the protocol.

2.2 Defining feasible ridesharing

To ease the exposition, we consider two users, Alice and
Bob (denoted with the capital Latin letters, A and B),
each having their own trip T A and T B respectively.
We explain the matching processes from Alice’s point
of view and assume that Alice and Bob cooperate to
find a segment for feasible ridesharing. Note that we do
not fix Alice’s role, so she can act as a driver or pas-
senger. The feasibility of ridesharing depends on three
ingredients that we explain below.

Users’ itineraries. The possible itineraries are con-
tained in an undirected unweighed graph G that models
the network of streets in the considered city. Trips are
trees in the graph, i.e., directed paths between two ver-
texes and are determined using the ideal routing model.

Users’ willingness to deviate. Following the foot-
print of [17], we formalize the notion of “users’ willing-
ness to deviate from the planned trip” using two tools: a
deviation function ∆(T ;P), that measures how willing
is the user with trajectory T to adjust their trip around
the point P ∈ T ; and a threshold value t that sets a lower
limit to the length of the ridesharing segment. In detail,
the deviation function ∆ returns distance values, e.g.,
∆(T ;P) = 500mt implies that the user with trajectory
T is willing to move of at most 500 meters around the
point P on their route in order to match another user’s
itinerary. The threshold t is a percentage of the total
trip length, e.g., t = 50% implies that the users’ trajec-
tories should overlap on at least half of Alice’s itinerary
for the ride to be considered feasible.

Matching trips. We define matching trips accord-
ing to two independent approaches: endpoint-based and
intersection-based. The methods are independent and
incomparable, and no method is better than the other
[17]. Below, we explain the strengths and weaknesses
of the two processes and define feasible ridesharing for
each approach.

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 5

∆ ∆

P A
0 P A

1 P A
2

P B
0

P B
1 P B

2

P B
3

Fig. 2. Typical trajectories detected by endpoint-based matching.

Endpoint-based matching (EP). This matching pro-
cess computes the distance from the starting (resp. end-
ing) point of T A to the starting (resp. ending) point of
T B . If both distances are smaller than Alice’s ∆ around
the endpoints of her trip, the matching process returns 1
(match found) otherwise it returns 0 (no match found).
We formalize the notion of feasible ridesharing accord-
ing to EP in the following definition.

Definition 3 (Endpoint-based ridesharing feasibility).
For any fixed deviation function ∆, given two trips
T A = {PA

0 , . . . , P
A
nA−1} and T B = {PB

0 , . . . , P
B
nB−1} for

users A and B in a graph G, ridesharing is feasible
for A along B’s itinerary if and only if{

dxy(PA
0 , P

B
0) < ∆(T A;PA

0)
dxy(PA

nA−1, P
B
nB−1) < ∆(T A;PA

nA−1) .

Endpoint-based ridesharing is especially useful when
users care more about where the trip starts and ends
than the actual way to go. In particular, this method
matches trips that can be completely disjoint, as long
as they start and end in about the same areas, as shown
in Figure 2. We observe that EP by nature can be per-
formed in constant time as the process is independent of
the trip length and of the actual trajectory in-between
the starting and ending points. While this matching
mechanism is very natural and effective, it cannot detect
possible ridesharing routes between trajectories that are
close enough or even intersect on large segment but have
starting and ending point that lie “far away” (see Figure
3). This is the main motivation to introduce an alter-
native matching mechanism that focuses on the actual
itineraries and not only the endpoints of the ride.

Intersection-based matching (IS). This matching
process looks for segments of length t · `(T A) present
in both routes. Intuitively, intersection-based matching
checks if any subset of consecutive locations builds a
trip of the desired length within both Alice’s and Bob’s
itineraries. If such a segment S is found, the matching
process returns S, otherwise it returns the empty set.
We formalize the notion of feasible ridesharing accord-
ing to IS in the following definition.

P A
0 P A

1 P A
2 P A

3 P A
4

P B
0

P B
1

P B
2 P B

3 P B
4

P B
5

P B
6

Fig. 3. Typical trajectories detected by intersection-based match-
ing. In this example, Ps = PB

2 , Pf = PB
4 and t = 50%.

Definition 4 (Intersection-based ridesharing). For
any threshold value t, given two trips T A and T B for
users A and B in a graph G, ridesharing is feasible
for A along the segment S = {Ps, . . . , Pf} ⊆ T B if
and only if:
1. `(S) > t · `(T A); and
2. there exist PA

i , P
A
j in T A, with i < j such that:{
dxy(PA

i , Ps) = 0
dxy(PA

j , Pf) = 0; .

Intuitively, Definition 4 ensures that at least a cer-
tain portion of Alice’s trip is contained within Bob’s
itinerary. Therefore, intersection-based ridesharing is es-
pecially useful when users are flexible to be picked-up
and drop-off at any point on their trajectory, provided
that the shared ride will be long enough. This method is
particularly effective when the city road plan has high-
traffic roads such as bridges or tunnels.

As shown in Figure 3, intersection-based matching
detects different ridesharing patterns than endpoint-
based matching. Arguably the best approach to find
more matching patterns would be to combine these two
mechanisms. We elaborate on this in the next para-
graph.

Optimal matching. EP and IS are valuable ap-
proaches to determine feasible ridesharing. In fact, Hall-
gren et al. [17] show that both methods excel, but on dif-
ferent rides. Endpoint-based matching quickly detects
rides that are “in the same direction” but not necessar-
ily identical, e.g., crossing a city on parallel roads (Fig-
ure 2); while intersection-based matching works best on
“common” itineraries, e.g., crossing a bridge or along
a highway (Figure 3). Therefore the optimal approach
would be to have a definition of ridesharing feasibility
that combines the flexibility of itinerary of EP with the
mobility of pick-up and drop-off locations of IS. This is
achieved in the following definition (taken from [17]):

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 6

P A
0 P A

1 P A
2 P A

3 P A
4

P B
0

P B
1 P B

3

P B
4

P B
2

> ∆ > ∆

≥ t · `(T A)

Fig. 4. Typical trajectories that satisfy threshold ridesharing (Def-
inition 5) but are undetected by both EP and IS.

Definition 5 (Threshold ridesharing). For any fixed
deviation function ∆ and threshold percentage t, given
two trips T A and T B for users A and B in a graph
G, ridesharing is feasible for A along the segment
S = {Ps, . . . , Pf} ⊆ T B of B’s itinerary if the following
two conditions hold:
1. `(S) > t · `(T A); and
2. there exist PA

i , P
A
j in T A, with i < j such that:{

dxy(PA
i , Ps) < ∆(T A;PA

i)
dxy(PA

j , Pf) < ∆(T A;PA
j) .

Intuitively, Definition 5 states that at least a certain
portion of Alice’s trip (t) should be shared with user
B, and the pick-up drop-ff locations should not deviate
too much (∆) from Alice’s planned route. Note that ∆
in Definition 5 parameterizes the user’s spatial devia-
tion preferences at every point along the route. More-
over, “small” threshold values make perfect sense for
long rides (e.g., between cities) or to overcome particu-
lar geographical barrier (e.g., mountains, rivers etc.).

Combining EP and IS may appear to provide
higher effectiveness for determining ridesharing feasibil-
ity. The outcome, however, has a privacy issue: com-
bining the results returned by endpoint-based match-
ing and intersection-based matching leaks information
any time we match trajectories as in Figure 2. Briefly,
the reason for the information leakage is that when
determining the actual pick-up and drop-off locations
(namely PB

0 and PB
3 in Figure 2), an attacker in the role

of Alice sees that these are not on her trajectory (as it
happens with IS) and learns Bob’s whereabouts, break-
ing the privacy requirement. Moreover, EP may return
false positives on pathological patterns, as we discuss
in the Appendix A. For completeness, we notice that
there are pairs of trajectories that satisfy the definition
of threshold ridesharing but remain undetected by both
EP and IS as shown in Figure 4.

2.2.1 Toward building secure ridesharing systems
As mentioned earlier, our work does not offer a fully-
fledged ridesharing system, but rather provides a foun-

dation for building such systems in the future. Our
model is meant to be general, leaving implementation-
dependent choices to the service provider. This is a com-
mon approach shared with [2, 17, 44] which, e.g., does
not include identify management.

There has been work on building fully-fledged sys-
tems from protocols like ours. Stirbys et al. [48] demon-
strate how to implement identity and credential man-
agement and communication of the peers for a decen-
tralized protocol with trust assumptions are similar to
ours. Their system includes a mobile application for
the Android operating system, an application server,
and a messaging service used to send push notifications
to smartphones, leveraging Firebase Cloud Messaging
(FCM). In their implementation, the identify manage-
ment is handled by the application server, while the
communication is accommodated by an FCM server.

Random IDs and digital certificates can be jointly
used to prevent identity leaks to service providers. For
example, ORide [34] uses Anonymous Credentials Light
(ACL) [3], a linkable anonymous credential system that
prevents linking users with their transactions.

To keep the model simple we ignore variables such
as the cost of the ride and available seats. These can
be however easily added as additional conditions for
defining ridesharing feasibility in our Definition 5 fol-
lowing Aïvodji at al.’s approach in [2]. Finally, generat-
ing the graph corresponding to a city’s street planning
and building trajectories between points is also left for
implementation-specific decisions. In our case study, we
use the open source routing software Routino [42] based
on the mapping data from OpenStreetMap (OSM) [9].

A secure ridesharing system must ensure that sen-
sitive information is not leaked by network attacks [34].
This is an achievable goal since the smartphones of the
users do not have fixed public IP addresses, using their
mobile Internet providers’ gateways to access the In-
ternet. Further, VPN proxies and Tor can be used to
further protect network identifies and metadata.

2.3 Defining privacy-preserving ridesharing
Location privacy is gaining popularity to combat record
abuses that may lead to people identification [6, 15],
organized stalking [4] and even spying [45]. Privacy-
preserving ridesharing aims to reduce the risk of such
threats by enforcing that, in case ridesharing is feasible,
only the common trip is revealed nothing else about
users’ itineraries is leaked. The following definition cap-
tures this concept [17].

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 7

Definition 6 (Privacy-Preserving ridesharing). An
approach Π realizes privacy-preserving ridesharing if
for any two trajectories T A, T B in G, a given threshold
value t and a deviation function ∆ it securely im-
plements the functionality described by the considered
ridesharing feasibility definition.
By “securely implement” we mean that the protocol
satisfies the standard textbook definition of simulation
based for secure two-party computation protocols in the
presence of semi-honest adversaries (see e.g., [20]).

Endpoint functionality. Π is a privacy-preserving
ridesharing protocol for EP if:

- Π(T A, T B)� 1 if and only if T A, T B and ∆ sat-
isfy Definition 3; and

- Π(T A, T B)� ∅ otherwise.
Intersection functionality. Π is a privacy-

preserving ridesharing protocol for IS if:
- Π(T A, T B) � S if and only if T A, T B , t and S

satisfies Definition 4; and
- Π(T A, T B)� ∅ otherwise.

Note that in intersection-based matching Π additionally
leaks the total lengths of the two itineraries.

2.4 PrivatePool: a model for
privacy-preserving ridesharing

PrivatePool [17] is the name of a suite of match-
ing processes for determining ridesharing segments in
a privacy-preserving way. The matching processes are
EP and IS presented before and the privacy guaran-
tees come from two cryptographic techniques. Addi-
tive homomorphic encryption (AHE) is used to per-
form proximity-testing of itineraries’ starting and end-
ing points via essentially the InnerCircle protocol [16].
Privacy-preserving trajectory-intersection is achieved
using threshold private set intersection (TPSI) on the
two trajectories (seen as sets of subsequent points).

Homomorphic encryption schemes [14, 41] are
public-key encryption schemes with an additional func-
tionality allowing anyone to “compute blindfolded”, i.e.,
to perform meaningful manipulations on encrypted data
without ever having to decrypt. A special case are
AHE schemes, such as [8, 32], which allow to perform
linear operations in the encrypted domain. In other
words, given the encryption scheme Enc,Dec, there are
operations ⊕,+ (over the ciphertext group and plaintex
groups respectively) such that:

Dec(sk,Enc(pk, x)⊕ Enc(pk, y)) = x+ y

Operators (,−) for subtraction and (�, ·) for multipli-
cation by scalar can also be defined and evaluated simi-
larly. AHE can be instantiated efficiently from standard
computational assumptions.

Private set intersection protocols (PSI) are interac-
tive protocols between a sender and a receiver, each
holding a (private) set. At the end of the protocol the
receiver learns which elements belong to both sets and
nothing else. The exact security guarantees can be for-
mally defined using the standard ideal world/real world
paradigm, and their security can be proven using the
simulation-based approach. In recent years, there has
been a significant improvement in the performances of
PSI protocols, mostly those based on Oblivious Trans-
fer (OT) and Garbled Circuit. An excellent survey of
techniques for PSI can be found in [39].

Threshold PSI was introduced by Hallgren et al. [17]
as an extension of the standard PSI functionality. In
TPSI, the receiver learns the intersection of the two sets
only if this has size at least equal to a given threshold
c, and nothing otherwise; formally:

TPSI(A,B)→ (⊥, Z), Z =
{

A ∩B if |A ∩B| ≥ c
∅ otherwise

The solution for TPSI provided in PrivatePool combines
the OT-based PSI of [36, 38] with a threshold key encap-
sulation mechanism (TKEM) based on Shamir’s secret
sharing scheme. Unfortunately the TPSI protocol of [17]
does not scale well in the set size, and it is the main
source of inefficiency. of PrivatePool. Recently, a new
approach for TPSI was introduced by [7]. In this paper,
we depart from the approach of Hallgreen et al. and
replace TPSI with standard (and more efficient) PSI.

3 O-PrivatePool
By nature, the computational complexity of
intersection-based matching increases with the length of
the considered trips. To give some benchmarks, on tra-
jectories with 1024 edges, PrivatePool’s endpoint-based
matching terminates in 0.34 seconds, while intersection-
based matching requires 96.78 seconds [17]. We address
this disparity and propose O-PrivatePool, an optimized
version of PrivatePool that offers a novel, efficient ap-
proach to IS. Concretely, we are able to replace the
expensive TPSI protocol of [17] with an efficient regular
PSI on a different set of points.

A simple and effective trick. Our optimiza-
tion comes from observing that the output of the

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 8

intersection-based matching needs to be a sequence of c
(or more) consecutive points. Let t denote Alice’s thresh-
old value for IS. From t we define the sequence-threshold
value c > 1 corresponding to the minimal number of
consecutive points needed in the graph G to realize a
segment of length t · `(T A). Let T A = {PA

0 , . . . , P
A
nA−1}

denote Alice’s trajectory of length nA, and T B defined
analogously for Bob. Establishing intersection-based
ridesharing feasibility boils down to checking whether
two points at position i and i + c on Alice’s trajectory
exist as well on Bob’s. Indeed, if there exist an index
iA ∈ [0, nA − c − 1], and an index jB ∈ [0, nB − c − 1]
such that PA

iA
= PB

jB
and PA

iA+c = PB
jB+c, then PA

iA+h =
PB

jB+h for all h ∈ [0, c− 1].

Intersection-based matching in O-PrivatePool.
O-PrivatePool’s privacy-preserving intersection-based
matching is a two party protocol and works as follows.

Step 1: Alice extracts from her trajectory T A =
{PA

0 , . . . , P
A
nA−1} a set of (nA − c) pairs of points

A = {(PA
i , P

A
i+c)}i∈[0,nA−c−1]. Alice sends to Bob her

sequence-threshold value c.
Step 2: Bob checks that his trip T B is not too

short by comparing nB ≥ c. In case nB < c, Bob
aborts. Otherwise, Bob performs the same procedure
on his trajectory T B and generates the set B =
{(PB

j , P
B
j+c)}j∈[0,nB−c−1].

Step 3: Alice and Bob run a PSI protocol using the
sets A and B as respective inputs.

We notice that the actual form of the PSI does not im-
pact the structure of our intersection-based matching.
If PSI returns no common intersection, we output ∅ (no
match found); otherwise the PSI returns S = A∩B 6= ∅
(match found).

Security. We remark that the PSI protocol returns
only the segments common to both routes. In particular,
neither Alice or Bob learns how the other party’s route
is shaped outside the common piece(s).

Theorem 1. Let PSI be a private set intersection
protocol secure against semi-honest adversaries, then
O-PrivatePool realizes privacy-preserving intersection-
based ridesharing.

We provide here a sketch of the security proof. By as-
sumption, the underlying PSI protocol is secure, i.e.,
there exist a simulator that, given the input/output of
a party in the PSI protocol, can produce a view which

is computationally indistinguishable from the view of
a semi-honest adversary in the protocol. Since we use
the PSI protocol in a black box manner, it is enough
to show that given the input/output of the intersec-
tion matching functionality, we can simulate the in-
put/output of the PSI functionality. First, note that the
intersection matching functionality reveals the length of
the itinerary of Alice and Bob. Thus, if Bob’s itinerary
is shorter than the threshold, the simulator will abort
as Bob would do in Step 2. Otherwise, our simula-
tor will simply run the PSI simulator with the ap-
propriate input as explained now: note that the out-
put of the PSI protocol (i.e., a set of consecutive pairs
(Pi, Pi+c), . . . , (Pj , Pj+c)) can be efficiently simulated
given the desired output of the trajectory-intersection
protocol (i.e., the common segment (Pi, . . . , Pj+c)), sim-
ply by constructing a trajectory adding (once) each
point appearing in the pairs used in the PSI protocol.

Complexity. Generating the sets A and B for the PSI
scheme takes O(n) where n = max{nA, nB}, as users
need to run through the points in their trajectories once,
while pairing up the location Pi with the c hops away
point Pi+c. To be precise, the input set will consist of
n − c pairs of points. After this, the complexity of O-
PrivatePool is dominated by the choice of the PSI pro-
tocol. There are many PSI protocols in the literature,
optimizing different parameters e.g., it is possible to op-
timize for computation or communication. Our imple-
mentation of O-PrivatePool uses the BaRK-OPRF PSI
protocol of Kolesnikov et al. [25], which is among the
fastest state-of-the-art custom PSI protocols for large
batches of data. Asymptotically, the protocol requires
work and communication O(n logn). Importantly, the
protocol uses a number of expensive cryptographic op-
erations (e.g., exponentiations necessary for computing
the Oblivious Transfers) proportional only to the secu-
rity parameter (and not the input size). After that, the
protocol mostly performs cheap symmetric-key opera-
tions (e.g., hashing, AES encryptions, etc.). The exact
parameters to be used in BaRK-OPRF depend on the
input size, and we refer to the original paper for a thor-
ough discussion on the choice of parameters.

We stress again that due to the modular nature of
O-PrivatePool, any improvements in efficiency of PSI
protocols would immediately translate in a more effi-
cient ride-sharing protocol. For instance, the first pro-
tocol for PSI with linear communication overhead has
recently been announced [37]. Plugging their protocol
into O-PrivatePool would give an overall linear com-
plexity in the length of the itineraries.

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 9

4 Modeling time-aware
ridesharing

The criteria PrivatePool and O-PrivatePool employ to
define ridesharing feasibility are quite natural and ex-
pressive, however, they lack a fundamental component
in ridesharing: the time of the ride. In realistic contexts,
ridesharing depends not only on users’ locations and
routes but also –if not especially– on the time of the ride.
To share a ride users need to be approximately at the
same place at approximately the same time. Therefore,
in what follows we extend Hallgren et al.’s [17] rideshar-
ing model to include the users’ time of the ride as well as
their willingness to deviate from the planned time. To
this end, we adjust the definitions given in Section 2.1
and propose a novel model for time-aware ridesharing.

Definition 7 (timed trip, trajectory and segment). A
timed trip (or timed trajectory) Ttime is classical trip
(as of Definition 1) in which each location Pi is aug-
mented with a value Ti encoding the time at which the
user wants to be to be at location Pi. In detail, the set
Ttime is made of elements of the form (Pi, Ti). Any sub-
set Stime ⊆ Ttime of consecutive locations and of a timed
trip is called timed segment.
Definition 7 simply augments the usual trip and segment
definitions with one temporal component for each spa-
tial coordinate. We remark that, in applications, users
do not need to generate every single location and time
along their trip. This can be done automatically by the
client software given the following three ingredients: a
starting point, an ending point, and a desired time for
the ride to begin. Our time-aware ridesharing model
uses the same definition of segment length as the previ-
ous model (Definition 2). Indeed, the only elements that
contribute to the length of a segment are the spatial co-
ordinates Pi ∈ S in the Euclidean plane.

We define time-aware feasible ridesharing using two
deviation functions: ∆space and ∆time. Concretely, ∆space
is the same as in Section 2.1 and models the users’ will-
ingness to “move away” from the planned trajectory in
terms of locations; while ∆time models users’ deviance
in time. In addition to the 2-dimensional Euclidean dis-
tance dxy to compare spatial coordinates on the plane,
we will also employ the 1-dimensional distance dz for
measuring time differences. Formally,

Definition 8 (Time-aware threshold ridesharing). For
any fixed threshold value t, and deviation functions
∆space (modelling users’ flexibility in space) and ∆time
(modelling users’ flexibility in time), given two timed

trips T A
time and T B

time for users A and B in a graph G,
time-aware ridesharing is feasible for A along the
segment Stime = {(Ps, Ts), . . . , (Pf , Tf)} ⊆ T B

time if and
only if the following conditions hold:
– `(Stime) > t · `(T A

time); and
– there exist (PA

i , T
A
i), (PA

j , T
A
j) in the timed-trip

T A
time, with i < j, such that:

dxy(PA
i , Ps) ≤ ∆space(T A

time;PA
i),

dxy(PA
j , Pf) ≤ ∆space(T A

time;PA
j),

dz(TA
i , Ts) ≤ ∆time(T A

time;TA
i),

dz(TA
j , Tf) ≤ ∆time(T A

time;TA
j).

Comparing Definition 8 with Definition 5, we see that
our time-aware model comprises all of the physical con-
straints from the un-timed model plus two conditions
on the starting and ending time of the ride.

We derive the definition of time-aware endpoint-
based ridesharing from Definition 8 by dropping the
constraint given by the threshold and setting PA

i =
PA

0 , Ps = PB
0 , P

A
j = PA

nA−1, Pf = PB
nB−1. Analogously,

we define time-aware endpoint-based ridesharing from
Definition 8 by setting ∆space = 0 for every trip and
point. The definition of privacy-preserving ridesharing
remains unchanged: the approach security implements
its functionality.

Modeling dynamic delays. As mentioned in Sec-
tion 2.1, our implementation of time-aware privacy-
preserving ridesharing considers users to have constant
speed (Assumption (3)). While this choice simplifies the
presentation and analysis or our protocol, it clearly lim-
its its accuracy. It is possible to lift Assumption (3)
and accommodate for dynamic delays without brak-
ing our model or affecting user privacy, in the fol-
lowing manner. Consider the timed-trajectory Ttime =
{(P0, T0), . . . , (Pn−1, Tn−1)} where T0 denotes the de-
sired initial time of the ride. Denote by k the ‘constant
speed factor’ (in minutes per meter), i.e., the linear co-
efficient used to convert a spatial distance into transit
time under normal traffic conditions. Concretely, this
means that the estimated travel time between point
Pi and point Pj (under Assumption (3)) equals ki,j =
k ·`(Pi, Pj). Denote by Ki,j the additional delay (in min-
utes) when transiting between Pi and Pj due to, e.g.,
rush hour, works on the road or similar conditions. We
can include such dynamic delays in our model as weights
on the edges and compute the estimated time of arrival
T̃i at a point Pi in T as T̃j =

∑j−1
i=0 k·`(Pi, Pi+1)+Ki,i+1.

Employing the dynamic time-values t̃j –instead of the
standard ones without the Ki,j addend– we improve the
accuracy of our model.

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 10

timedIS: time-aware privacy-preserving intersection-based matching

A B

construct the set A construct the set B
A = {(PAi , P

A
i+c, T

A
i,p)}p∈[−τmax,τmax]

i∈[nA−c−1]
A−−−−−→ run B←−−−− B = {(PBj , P

B
j+c, T

B
j,q)}q∈[−τmax,τmax]

j∈[nB−c−1]
regular

∅ ∨ A∩B←−−−−−− PSI ∅ ∨ A∩B−−−−−−→

Fig. 5. Both users U ∈ {A,B} hold a timed-trajectory T U = {(PU
i , T

U
i)}i∈[0,nU−1] and compute the time intervals TU

i,p for p ∈
[−τmax, τmax] and i ∈ [nU − c− 1] where c is a given sequence-threshold value and, for simplicity, we consider ∆time = τmax.

Supporting multiple routing models. There might
be other user preferences to be taken into account,
e.g., toll-free or shortest route. This can be easily done
by treating routing preferences similarly to the time
component. Concretely, if Alice wants to travel from
point (P, toll− free) to a point (Q, toll− free) while Bob’s
itinerary includes (P, toll− allowed) to (Q, toll− allowed)
our matching protocols will not return a match, since
there is no common tuple as the routing tags differ. Note
that such additional preferences would be kept private
exactly in the same way as the time preferences of the
user are protected, thanks to the guarantee of the un-
derlying PSI protocol.

5 TOPPool
PrivatePool and O-PrivatePool perform privacy-
preserving ridesharing matching in a basic way that does
not capture the time of the ride. In this section, we in-
troduce TOPPool, a decentralized platform for deter-
mining feasible ridesharing also according to time pref-
erence. In a nutshell, TOPPool extends O-PrivatePool
to take into consideration the time of the ride as a pa-
rameter and therefore is a time-aware and optimized
version of PrivatePool (thus the acronym). We remark
that in our matching processes Alice’s role can be either
passenger or driver.

5.1 Time-aware, private intersection-based
ridesharing (timedIS) in TOPPool

TOPPool’s privacy-preserving time-aware intersection-
based matching (timedIS) is a two party protocol that
securely implements the following functionality:

timedIS functionality: given as input two timed trips
(T A

time, T B
time), a threshold percentage t, and a time-

deviation function ∆time return the common segment

S (match found) if the trips satisfy Definition 8 for
∆space = 0; otherwise return ∅ (no match found).

The idea behind TOPPool’s timedIS can be summarized
as follows. Borrowing the notation introduced in Sec-
tion 3 (intersection-based matching in O-PrivatePool),
we consider triplets of the form (Pi, Pi+c, Ti,p), where
the first two elements are as in O-PrivatePool, i.e., Pi is
the spatial coordinate of the i-th point along the party’s
trajectory; the last component, Ti,p, represents the p-th
possible temporal coordinate at which the user can be
at location Pi. Concretely, Ti,p = Ti + p for suitable
values of p determined by the user flexibility in time
around the i-th point on their route. Intuitively, the Ti,p

values span within an interval of radius ∆time(Ttime;Ti)
around the desired time, formalizing the concept of “at
around Ti”. We then let Alice and Bob run PSI between
their sets of triples generated as described above. If the
outcome is a non-empty intersection it means that the
two trips have a long enough common segment and
the time of the ride are compatible, i.e., there exist a
moment in time at which both users can be at the first
location on S. Figure 5 provides an overview of timedIS,
for a detailed description see the Appendix B.

Correctness. The correctness of timedIS reduces di-
rectly to the correctness of the employed PSI protocol
and the way we generate the sets A,B. Observe that
by Assumption (3), if there exist a point on two trips
with temporal and spatial coordinates within the devi-
ation limits of the driver, then it is guaranteed that the
passenger will reach all the consequent points along the
shared segment in due time. In particular, if the follow-
ing conditions hold

∃ i0, j0, p0, q0 : PA
i0 = PB

j0∧P
A
i0+c = PB

j0+c∧TA
i0,p0 = TB

j0,q0 ,

then the following condition is also satisfied:

∀ k ∈ [0, c],∃ pk, qk ∈ [−τmax, τmax] such that

PA
i0+k = PB

j0+k ∧ TA
i0+k,pk

= TB
j0+k,qk

.

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 11

This reasoning shows that any triple output by timedIS
satisfies the desired functionality (given at the incipit
of this section).

Security. Similarly to what we did for O-PrivatePool
in Theorem 1, it can be easily argued that timedIS re-
turns only the common ride segments (if any) and leaks
nothing the users’ trips outside the common portions.
Formally,

Theorem 2. Let PSI be a private set intersec-
tion protocol secure against semi-honest adversaries,
then timedIS realizes privacy-preserving time-aware
intersection-based ridesharing.

Complexity. The running time of timedIS depends
both on the trajectory length and on the maximal
time deviation. Let n = max{nA, nB} and τmax =
max{τA

max, τ
B
max}, to generate the sets of triples we only

need O(n) elementary operations –for pairing up c-
distant points– and O(τmax) elementary operations to
generate the desired time interval around each pair of
points. Thus, timedIS has complexity O(τmax · n) plus
the complexity of the employed PSI, resulting in a
O(τmax · n · log(n)) in our implementation.

5.2 Time-aware, private endpoint-based
ridesharing (timedEP) in TOPPool

TOPPool’s privacy-preserving time-aware endpoint-
based matching (timedEP) is a two party protocol that
securely implements the following functionality:

timedEP functionality: given as input two timed
trips (T A

time, T B
time), a spatial-deviation function ∆space,

and a time-deviation function ∆time return 1 (match
found) if the trips satisfy Definition 8 for t = 0,
PA

i = PA
0 , Ps = PB

0 , P
A
j = PA

nA−1, Pf = PB
nB−1; other-

wise return ∅ (no match found).

TOPPool’s timedEP can be seen as EP in PrivatePool
(based on InnerCircle [16]) augmented with a time
component (and its relative set). We provide here an
intuition, for technical details see the Appendix A.

Alice uses her public key of an AHE scheme to en-
crypt the location and time of her starting and ending
points and sends these data to Bob. In what follows,
we denote by the subscript s (resp. f) values corre-
sponding to the starting (resp. ending) points or times

of user’s trajectories. Bob uses the location and time
of his starting and ending points to homomorphically
compute the (encrypted) physical distancesDxy,s, Dxy,f

between his and Alice’s locations (precisely as in Inner-
Circle and PrivatePool). In addition, Bob evaluates the
(encrypted) temporal differences Dz,s, Dz,f . From each
of the above values, Bob generates a set of ciphertexts
using the InnerCircle technique. For example, from Dz,s

Bob computes:

Ws = {(Dz,s 	 Enc(pkA, j))� ρj | j ∈ [−τmax, τmax]}

where τmax is as in timedIS and ρj are random values
from the plaintext space. The set Wf and the location
sets Ls,Lf are generated analogously. Bob also shuffles
the ciphertexts within each set. This procedure ensures
that Bob’s actual location and time preferences remain
hidden to Alice. Nonetheless, if each set has one cipher-
text that decrypts to 0 Alice finds out that their rides
match. See the Appendix A for detailed explanations.

Correctness. The only difference between the EP in
PrivatePool and timedEP is the addition of the time
component. As we explained above timedEP treats time
values in a very similar way to spatial coordinates there-
fore the correctness of timedEP comes for the one of Pri-
vatePool’s EP and InnerCircle [16].

Security. We want to show that timedEP securely im-
plements the timedEP functionality. Formally,

Theorem 3. Let AHE be a semantically secure additive
homomorphic encryption scheme, then timedEP realizes
privacy-preserving time-aware endpoint-based rideshar-
ing.

The proof of Theorem 3 is a straightforward general-
ization of the security proof of InnerCircle [16]. In par-
ticular, it is possible to efficiently simulate the views of
Alice, Bob and an external entity (Claire). The addition
of the time components does not impact the security, as
they can be simulated using the same techniques as spa-
tial coordinates.

Complexity. The running time of timedEP is quadratic
in the flexibility of the system but independent of the
trips length. Let λmax and τmax be maximum spatial and
time deviations allowed by the system. Generating the
sets L and W takes O(λ2

max) and O(τmax) respectively.
Shuffling the sets adds costs linear in |L| = λ2

max +1 and
|W| = 2 · τmax + 1 respectively. Thus, timedEP has com-
plexity O(λ2

max + τmax). Regarding the communication
complexity, let m denote the bit length of the cipher-
texts. Alice sends 8 ciphertexts to Bob (3 for each spatial

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 12

point and 1 for the time preference at each point). Bob
replies with 4 sets that add up to O((λ2

max +2τmax +2)m)
bits to transmit giving the asymptotic value provided in
Table 1.

6 Experiments
This section collects our main results on the effective-
ness and efficiency of O-PrivatePool and TOPPool. We
show that, compared to PrivatePool [17], our proposals
achieve an astonishing speed-up in intersection-based
matching without compromising neither effectiveness
nor user privacy.

6.1 Implementation details

In order to provide a fair comparison, we implemented
PrivatePool, O-PrivatePool and TOPPool using the
same programming language: Python. As PSI protocol,
we deployed BaRK-OPRF [25] (using the open-source
code available at [51]) as it is used within the TPSI
procedure of PrivatePool and it is one of the fastest
PSI to date. We implemented minor modifications to
the original code to enable the program to read and
parse the exported dataset and to return the result in
an expected format.

The deviation functions ∆space and ∆time.We adopt
the same approach as in PrivatePool to model the spa-
tial deviation function ∆space [17]. Concretely, given a
trajectory T and a maximum spatial deviation value
λmax, we define the user’s willingness to deviate at loca-
tion x ∈ [0, `(T)] along their route as:

∆space(x) = 4x2 λmax
`(T)2 − 4xλmax

`(T) + λmax (1)

Equation 1 displays a curve that is λmax far away from
the trajectory’s starting and ending points and it grad-
ually approaches the actual trajectory until intersecting
it in its middle point. This models the fact that users
are willing to deviate at the start and end of their trip,
but not in the middle; capturing the intuition that both
passengers and drivers feel confident in moving around
known places but are reluctant to change the “usual
way” to go. Our time-aware model additionally consid-
ers a time-deviation function ∆time. In our experiments,
we adopt a static time-deviation, given a maximum de-
lay value τmax, we define ∆time as:

∆time(x) = τmax. (2)

We model deviance in time as a constant function in
line with Assumption (3).

6.2 Effectiveness of O-PrivatePool and
TOPPool

We evaluate the effectiveness of O-PrivatePool and
TOPPool by comparing how many trips the respective
intersection-based and endpoint-based matching pro-
cesses find, against a plaintext implementation that
finds all possible matches using bruteforce. Concretely,
bruteforce matching checks all points (and times) of all
the possible pairs of rides in the dataset and looks for
segments that satisfy the general definition of rideshar-
ing for the given values of threshold and spatial devi-
ation Definition 5 (and 8). We report the percentages
of how many trips IS, timedIS, EP and timedEP respec-
tively detect, compared to all existing ridesharing routes
detected via bruteforce.

The effectiveness of the matching methods were
tested independently, on the same set of routes selected
from the real-world data publicly available from Taxi &
Limousine Commission (TLC) website [50]. TLC pro-
vides a large amount of data that can be used to gen-
erate endpoints of routes. However, the intermediate
points of the trips are not included. In our experiments,
we generated the trips using the open source routing
software Routino [42] based on the mapping data from
OpenStreetMap (OSM) [9]. To measure the effectivity of
O-PrivatePool and TOPPool we employed the same set
of trips as used to test PrivatePool’s effectiveness: 1000
trips selected from each even month of the year 2015.
We consider different values of threshold t, expressed as
the minimum percentage of the user’s total trip for con-
sidering ridesharing feasible; and of the maximal spatial
deviation at any point of a trajectory (λmax), in meters.
The spatial deviation tolerated at intermediate points
in the trajectories is derived from Equation (1). For the
time-aware protocols timedIS and timedEP, we addition-
ally consider different values for the maximal deviation
in time, τmax, expressed in minutes.

Table 2 reports the effectiveness of the privacy-
preserving IS of O-PrivatePool compared to the timedIS
of TOPPool. The values are average percentages of
the ridesharing opportunities detected by our meth-
ods against the (non privacy-preserving) bruteforce ap-
proach. This means that the total of the ridesharing
patterns (100%) is the output of the bruteforce com-
parison method between each individual point along
two trips considering the optimal definition of (time-

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 13

Table 2. Effectiveness comparison: average percentages of privacy-preserving detecting ridesharing opportunities with O-PrivatePool
and TOPPool. IS = intersection-based matching , timedIS = time-aware intersection-based matching.

λmax 500 mt 1000 mt 2000 mt
t τmax IS timedIS IS timedIS IS timedIS

20%
30 min

97.99
88.84

63.7
59.75

32.27
31.60

45 min 93.26 60.95 31.91
60 min 95.90 63.61 33.34

50%
30 min

79.42
76.58

44.55
41.46

15.88
15.72

45 min 76.15 41.59 15.75
60 min 76.22 42.90 16.72

80%
30 min

28.8
34.03

9.96
9.40

2.48
2.30

45 min 33.14 11.21 2.81
60 min 32.51 11.10 2.99

Table 3. Effectiveness comparison: average percentages of privacy-preserving detecting ridesharing opportunities with O-PrivatePool
and TOPPool. EP = endpoint-based matching, timedEP = time-aware endpoint-based matching.

λmax 500 mt 1000 mt 2000 mt
t τmax EP timedEP EP timedEP EP timedEP

20%
30 min

0.30
0.00

1.39
0.76

5.95
3.63

45 min 1.42 1.39 3.47
60 min 1.03 1.36 3.97

50%
30 min

0.91
0.00

3.59
1.52

10.84
6.31

45 min 3.81 2.89 5.91
60 min 3.12 3.03 6.95

80%
30 min

2.51
0.00

6.11
2.38

12.89
7.28

45 min 9.72 5.03 7.00
60 min 7.04 4.97 8.24

aware) threshold ridesharing. We recall that in IS and
timedIS the spatial deviation function set to a constant
0 value. Therefore, we do not expect to detect all of the
ridesharing matches found via bruteforce. Nonetheless,
our analysis shows that intersection-based matching is
very effective, especially for shorter threshold values. We
can observe that timedIS is only slightly less effective
at detecting ridesharing opportunities than the time-
insensitive IS protocol of O-PrivatePool.

Table 3 reports the effectiveness of the privacy-
preserving EP of O-PrivatePool compared to timedEP of
TOPPool. We recall that in EP and timedEP the thresh-
old is set to 0, and only the staring and ending points of
the rides are used for the comparison. The nature of the
dataset [50] is reflected in the effectiveness numbers, as
in the city of New York is more likely that rides have
some intersection (e.g., along Brooklyn bridge) than the
actual pick-ups and drop-offs being close to some fix
points. Indeed, the effectiveness of both EP and timedEP
increases with larger spatial deviation values (λmax) and
larger threshold.

Comparing Table 2 and 3 it is clear that endpoint-
based matching is less effective than intersection-based

matching. This is entirely due to the the geographical
distribution of the routes considered in the experiment
(LCT database [50]), where most trajectories have a
large overlap, however, the pick-up / drop-off locations
are actually sparse. Moreover, endpoint-based matching
has an opposite behavior to intersection-based match-
ing, thus confirming the intuition that two methods
“compensate” each other. Finally, we remark that our
time-aware matching mechanisms incur arguably little
effectiveness drops with respect to time insensitive ap-
proaches.

6.3 Efficiency analysis of the
intersection-based matching process

We tested the efficiency of O-PrivatePool and TOP-
Pool in performing privacy-preserving intersection-
based itinerary matching and compared the perfor-
mances with the one of PrivatePool. In our experiments,
we consider trajectories with the same number of nodes
n = 2k for k ∈ [5, 12]. PrivatePool and O-PrivatePool
were tested under identical conditions on a dedicated
machine. The efficiency test suite comprises of the same
tasks as the one for intersection-based matching in Pri-

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 14

vatePool, however, the trajectory datasets were ran-
domly generated. Given the complexity of timedIS, we
tested this process on a randomly generated dataset of
routes with τmax = 12 hours with time deviation preci-
sion were set to 30, 45 and 60 minutes. The motivation
behind this choice is that users generally search for avail-
able rides the same day as they intend to make use of
it. Since the number of possible time slots was consid-
erably large and the standard deviation of the collected
values was negligible, we limited the experiment to 10
repetitions and computed the average over the 30 values
(10 per each deviation option).

Figure 6 displays the results, the concrete values
are reported in Table 5 in the Appendix C. Figure 6
shows that O-PrivatePool clearly outperforms its prede-
cessor. While PrivatePool’s running time increases ex-
ponentially with the itinerary length, O-PrivatePool’s
runs constantly in less than 0.1 second, independently
on the number of nodes in the trajectory. When the time
of the ride comes into play, we expect performances to
drop. Therefore it is no surprise that TOPPool’s timedIS
is less efficient than O-PrivatePool’s IS and that its run-
ning time increases with the itinerary length. What is
worth noticing is that the optimization trick that allows

32 64 128 256 512 1024 2048 4096
10−2

10−1

100

101

102

103

104

105
O-PrivatePool

TOPPool
PrivatePool

Fig. 6. Efficiency comparison of the running times of intersec-
tion-based matching in O-PrivatePool (blue-triangles), TOPPool
(brown-squares) and PrivatePool (red-circles). The horizontal axis
displays the value n representing the number of nodes in the tra-
jectories, in logarithmic scale, while the vertical axis displays the
average running times (in seconds) in logarithmic scale, where
negative exponent values correspond to measurements below 1
second. The displayed values are average over 30 measurements
for deviation precision set to 30, 45 and 60 minutes (10 measure-
ments per each option).

us to use regular PSI instead of TPSI is powerful enough
to perform timedIS in less than 0.31 seconds, which is a
legit delay in many application scenarios.

Finally, our experiments (where threshold values
were set randomly) indicate that the choice of the
threshold value does not have a significant impact on
the performance.

7 Related work
We discuss related work on re-identification, location
proximity, privacy-aware ridesharing, and general pri-
vate set intersection.

Re-identification. Location privacy is an increas-
ingly important topic [27, 49]. When it comes to
ridesharing scenarios, much prior research relates to re-
identification [6, 15] in order to protect the privacy of a
user’s trajectory. The focus of hiding the identity of a
user stems from the fact that many existing ridesharing
services have access to users’ location data and therefore
can trace a user’s whereabouts. As an example, consider
public transport providers which use an electronic tick-
eting system to record where a user enters and exits a
vehicle. While data on users’ commutes could be valu-
able for statistical purposes about crowd movements
and urban planning [24], they should not be misused
and need not to be linkable to individuals. To tackle
this and similar situations, researchers focus on collect-
ing anonymized data. Our work takes a different ap-
proach and aims at protecting the privacy of a user’s
trajectory by minimizing the disclosure of location data,
rather than the user’s identity. This solution is relevant
for cases where a service provider, who anyways needs to
know the identity of their customers, wants to minimize
the data disclosure to, e.g., reduce the risk of security
breaches or to conform to privacy regulations, such as
EU’s General Data Protection Regulation (GDPR) [13].

Location proximity. There is extensive literature on
the problem of how to test for the proximity of two
points as provided by two different users, without re-
vealing more than the proximity result [11, 18, 23, 30,
31, 43, 46, 47, 53]. However, most work considers a
single proximity result in isolation. Further work uses
additive homomorphic encryption for location proxim-
ity [18, 19, 31, 43, 53].

Privacy-aware ridesharing. Privacy-aware ride-
sharing [1, 17, 33] is now an active research area, boosted
by real-life cases of location abuse by ridesharing plat-

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 15

Table 4. Comparison of privacy-aware ridesharing protocols.

Protocol Decentralization Privacy Time
TOPPool X X X

PrivatePool [17] X X

PrivateRide [35] (X) (X)
ORide [34] X (X)
He et al. [21] (X) X

Aïvodji et al. [2] X

Li et al. [28] (X)
SRide [1] X X

Sherif et al. [44] (X)

forms [4]. Table 4 provides an overview and comparison
of most approaches; checkmarks X signify that a desired
property is supported by the proposal, while checkmarks
in parentheses (X) indicate partial support.

PrivatePool [17] serves as a baseline for our ap-
proach. We substantially improve performance and gen-
eralize the approach to handle time, while preserving
strong privacy guarantees and remaining in a fully de-
centralized setting with no trusted parties.

PrivateRide by Pham et al. [35] uses a combi-
nation of anonymous credentials, blind signatures as
well as location and time cloaking to improve the pri-
vacy of passengers. However, privacy guarantees de-
pend on the density of a cloaked area. Further, Pri-
vateRide provides no guarantees of driver privacy.
ORide [34] by Pham et al. builds on PrivateRide and
uses somewhat-homomorphic encryption with optimiza-
tions such as ciphertext packing and transformed pro-
cessing for privacy-aware ride-hailing. While it improves
the privacy guarantees for both passengers and drivers
compared to PrivateRide, it relies on a central party to
compute on encrypted distances and leaks the distances
of nearby drivers to the passenger.

He et al. [21] propose a central service that com-
bines spatial preselection and Paillier cryptosystem to
calculate the travel time saving, which is used to find
a ride. However, some information, such as the region
of riders and drivers is leaked to the service provider.
Aïvodji et al. [2] use private set intersection to com-
pute on possible pick-up and drop-off locations. Thus,
they do not model possibilities of a successful ride as
long as it is longer than a threshold. This model does
not handle time preferences for a ride. Li et al. [28] use
blockchain-assisted vehicular fog computing, involving
private proximity testing and spatial cloaking. Fog com-
puting achieves low latency due to local data process-
ing. SRide [1] by Aïvodji et al. builds on the preceding
work [2] and introduces a model that encompasses time
preferences. However, SRide [1] looses precision due to

the use of spatial cloaking techniques. Sherif et al. [44]
focus on ridesharing for autonomous vehicles. They di-
vide riding regions into cells and represent trips as bi-
nary vectors of such cells and use a server to decide
similarity of encrypted binary vectors.

Private Set Intersection. Private set intersection is
one of the most studied special cases of secure multi-
party computation. In recent years, thanks to signif-
icant improvements in the performances of primitives
for secure multi-party computation, the efficiency of PSI
protocols has increased dramatically. Examples of such
protocols can be found in [10, 22, 26, 36, 38, 40]. We
refer the reader to the excellent survey by Pinkas et
al. [39] for further background on PSI protocols.

8 Conclusions
With the rise in popularity of ridesharing systems, the
risk of misuse and abuse of users’ location data has be-
come a real threat. We have presented TOPPool, an
approach to prevent leakage of private information to
ridesharing service providers. TOPPool encompasses a
framework for modelling time-aware, flexible and opti-
mized privacy-preserving ridesharing.

We have proposed two major improvements of the
state of the art: O-PrivatePool exploits a simple yet
powerful technique to break away from the tailored
TPSI in PrivatePool and leverage a regular PSI protocol
to achieve a remarkable speed-up in intersection-based
itinerary matching. TOPPool extends O-PrivatePool to
include the dimension of time in both intersection and
endpoint-based matching. In realistic ridesharing con-
texts, indeed, the feasibility of a ride depends both on
the users’ locations and on the time of the ride. There-
fore, in TOPPool we enable users to determine (i) the
minimum length of a ride to consider sharing the trip,
and more importantly (ii) a time interval for the ride to
take place, and (iii) the maximum discrepancy between
their ideal itinerary and the actual shared route.

We have tested the effectiveness and efficiency of
our proposals on real-world data from New York’s Taxi
& Limousine Commission and demonstrated that both
O-PrivatePool and TOPPool outperform PrivatePool
while achieving the same privacy guarantees and pre-
cision level.

TOPPool’s encouraging results pave the way for
building practical privacy-preserving ridesharing sys-
tems in the future. An attractive avenue for future work
is thus to develop a fully fledged ridesharing system
based on TOPPool and evaluate its scalability on large

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 16

numbers of users. Directions for further development
also include an investigation of more versatile space and
time deviation functions and an analysis of the impact
of deploying dynamic delays and multiple routing mod-
els in our platform.

Acknowledgments. This work was partly funded by
the: Swedish Foundation for Strategic Research (SSF)
and the Swedish Research Council (VR); the European
Research Council (ERC) under the European Unions’s
Horizon 2020 research and innovation programme under
grant agreement No 669255 (MPCPRO) and No 803096
(SPEC); the Danish Independent Research Council un-
der Grant-ID DFF-6108-00169 (FoCC);

References
[1] U. M. Aïvodji, K. Huguenin, M. Huguet, and M. Killijian.

Sride: A privacy-preserving ridesharing system. In WISEC,
pages 40–50. ACM, 2018.

[2] U. M. Aïvodji, S. Gambs, M.-J. Huguet, and M.-O. Killi-
jian. Meeting points in ridesharing: A privacy-preserving
approach. Transportation Research Part C: Emerging Tech-
nologies, 72:239 – 253, 2016.

[3] F. Baldimtsi and A. Lysyanskaya. Anonymous credentials
light. In ACM Conference on Computer and Communica-
tions Security, pages 1087–1098. ACM, 2013.

[4] C. Bessette. Does Uber Even Deserve Our Trust? http://
www.forbes.com/sites/chanellebessette/2014/11/25/does-
uber-even-deserve-our-trust/, Nov. 2014.

[5] BlaBlaCar - Trusted carpooling. https://www.blablacar.
com/.

[6] R. Chen, B. C. M. Fung, and B. C. Desai. Differentially
private trajectory data publication. CoRR, abs/1112.2020,
2011.

[7] M. Ciampi and C. Orlandi. Combining private set-
intersection with secure two-party computation. In Secu-
rity and Cryptography for Networks - 11th International
Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018,
Proceedings, pages 464–482, 2018.

[8] I. Damgørd, M. Geisler, and M. Krøigard. Homomorphic
Encryption and Secure Comparison. Int. J. Appl. Cryptol.,
1(1):22–31, Feb. 2008.

[9] O. Foundation. OpenStreetMap. https://www.
openstreetmap.org/.

[10] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private
matching and set intersection. In Advances in Cryptology -
EUROCRYPT 2004, International Conference on the Theory
and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004, Proceedings, pages 1–19, 2004.

[11] D. Freni, C. R. Vicente, S. Mascetti, C. Bettini, and C. S.
Jensen. Preserving location and absence privacy in geo-
social networks. In Proceedings of the 19th ACM Conference
on Information and Knowledge Management, CIKM 2010,
Toronto, Ontario, Canada, October 26-30, 2010, pages 309–

318, 2010.
[12] M. Furuhata, M. Dessouky, F. Ordóñez, M.-E. Brunet,

X. Wang, and S. Koenig. Ridesharing: The state-of-the-
art and future directions. Transportation Research Part B:
Methodological, 57:28 – 46, 2013.

[13] General Data Protection Regulation, EU Regulation
2016/679, 2018.

[14] C. Gentry. Fully homomorphic encryption using ideal lat-
tices. In Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, STOC 2009, Bethesda, MD, USA,
May 31 - June 2, 2009, pages 169–178, 2009.

[15] G. Ghinita. Private queries and trajectory anonymization: a
dual perspective on location privacy. Trans. Data Privacy,
2(1):3–19, 2009.

[16] P. Hallgren, M. Ochoa, and A. Sabelfeld. InnerCircle: A
parallelizable decentralized privacy-preserving location prox-
imity protocol. In 2015 13th Annual Conference on Privacy,
Security and Trust (PST), pages 1–6, July 2015.

[17] P. Hallgren, C. Orlandi, and A. Sabelfeld. PrivatePool:
Privacy-Preserving Ridesharing. In 2017 IEEE 30th Com-
puter Security Foundations Symposium (CSF), pages 276–
291, Aug 2017.

[18] P. A. Hallgren, M. Ochoa, and A. Sabelfeld. Innercircle:
A parallelizable decentralized privacy-preserving location
proximity protocol. In 13th Annual Conference on Privacy,
Security and Trust, PST 2015, Izmir, Turkey, July 21-23,
2015, pages 1–6, 2015.

[19] P. A. Hallgren, M. Ochoa, and A. Sabelfeld. Maxpace:
Speed-constrained location queries. In 2016 IEEE Confer-
ence on Communications and Network Security, CNS 2016,
Philadelphia, PA, USA, October 17-19, 2016, 2016.

[20] C. Hazay and Y. Lindell. Efficient secure two-party pro-
tocols: Techniques and constructions. Springer Science &
Business Media, 2010.

[21] Y. He, J. Ni, X. Wang, B. Niu, F. Li, and X. Shen. Privacy-
preserving partner selection for ride-sharing services. IEEE
Trans. Vehicular Technology, 67(7):5994–6005, 2018.

[22] Y. Huang, D. Evans, and J. Katz. Private set intersection:
Are garbled circuits better than custom protocols? In 19th
Annual Network and Distributed System Security Sympo-
sium, NDSS 2012, San Diego, California, USA, February
5-8, 2012, 2012.

[23] K. Järvinen, Á. Kiss, T. Schneider, O. Tkachenko, and
Z. Yang. Faster privacy-preserving location proximity
schemes. In CANS, volume 11124 of Lecture Notes in Com-
puter Science, pages 3–22. Springer, 2018.

[24] H. Kikuchi and K. Takahashi. Zipf distribution model for
quantifying risk of re-identification from trajectory data.
In 13th Annual Conference on Privacy, Security and Trust,
PST 2015, Izmir, Turkey, July 21-23, 2015, pages 14–21,
2015.

[25] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu.
Efficient batched oblivious prf with applications to private
set intersection. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
pages 818–829. ACM, 2016.

[26] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu.
Efficient batched oblivious PRF with applications to private
set intersection. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,

http://www.forbes.com/sites/chanellebessette/2014/11/25/does-uber-even-deserve-our-trust/
http://www.forbes.com/sites/chanellebessette/2014/11/25/does-uber-even-deserve-our-trust/
http://www.forbes.com/sites/chanellebessette/2014/11/25/does-uber-even-deserve-our-trust/
https://www.blablacar.com/
https://www.blablacar.com/
https://www.openstreetmap.org/
https://www.openstreetmap.org/

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 17

Vienna, Austria, October 24-28, 2016, pages 818–829, 2016.
[27] J. Krumm. A survey of computational location privacy.

Personal and Ubiquitous Computing, 13(6):391–399, 2009.
[28] M. Li, L. Zhu, and X. Lin. Efficient and privacy-preserving

carpooling using blockchain-assisted vehicular fog comput-
ing. IEEE Internet of Things Journal, pages 1–1, 2018.

[29] Lyft. https://www.lyft.com/.
[30] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and S. Jajo-

dia. Privacy in geo-social networks: proximity notification
with untrusted service providers and curious buddies. VLDB
J., 20(4):541–566, 2011.

[31] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg,
and D. Boneh. Location privacy via private proximity test-
ing. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 2011, San Diego, California,
USA, 6th February - 9th February 2011, 2011.

[32] P. Paillier. Public-Key Cryptosystems Based on Composite
Degree Residuosity Classes. In J. Stern, editor, Advances
in Cryptology — EUROCRYPT ’99, pages 223–238, Berlin,
Heidelberg, 1999. Springer Berlin Heidelberg.

[33] A. C. Pesara, V. Patil, and P. K. Atrey. Secure computing
of gps trajectory similarity: A review. In Proceedings of the
2Nd ACM SIGSPATIAL Workshop on Recommendations for
Location-based Services and Social Networks, LocalRec’18,
pages 3:1–3:7, New York, NY, USA, 2018. ACM.

[34] A. Pham, I. Dacosta, G. Endignoux, J. R. Troncoso-
Pastoriza, K. Huguenin, and J. Hubaux. Oride: A privacy-
preserving yet accountable ride-hailing service. In USENIX
Security Symposium, pages 1235–1252. USENIX Associa-
tion, 2017.

[35] A. Pham, I. Dacosta, B. Jacot-Guillarmod, K. Huguenin,
T. Hajar, F. Tramèr, V. D. Gligor, and J. Hubaux. Priva-
teride: A privacy-enhanced ride-hailing service. PoPETs,
2017(2):38–56, 2017.

[36] B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing:
Private set intersection using permutation-based hashing.
In 24th USENIX Security Symposium, USENIX Security 15,
Washington, D.C., USA, August 12-14, 2015., pages 515–
530, 2015.

[37] B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai. Ef-
ficient circuit-based psi with linear communication. In Ad-
vances in Cryptology - EUROCRYPT 2019, International
Conference on the Theory and Applications of Cryptographic
Techniques, 2019.

[38] B. Pinkas, T. Schneider, and M. Zohner. Faster private set
intersection based on OT extension. In Proceedings of the
23rd USENIX Security Symposium, San Diego, CA, USA,
August 20-22, 2014., pages 797–812, 2014.

[39] B. Pinkas, T. Schneider, and M. Zohner. Scalable private
set intersection based on ot extension. Cryptology ePrint
Archive, Report 2016/930, 2016. https://eprint.iacr.org/
2016/930.

[40] A. C. D. Resende and D. de Freitas Aranha. Faster unbal-
anced private set intersection. Cryptology ePrint Archive,
Report 2017/677, 2017. https://eprint.iacr.org/2017/677.

[41] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data
banks and privacy homomorphisms. Foundations of Secure
Computation, Academia Press, 1978.

[42] Routino : Router for openstreetmap data. http://www.
routino.org/, 2018.

[43] J. Sedenka and P. Gasti. Privacy-preserving distance com-
putation and proximity testing on earth, done right. In 9th
ACM Symposium on Information, Computer and Commu-
nications Security, ASIA CCS ’14, Kyoto, Japan - June 03 -
06, 2014, pages 99–110, 2014.

[44] A. B. T. Sherif, K. Rabieh, M. M. E. A. Mahmoud, and
X. Liang. Privacy-preserving ride sharing scheme for au-
tonomous vehicles in big data era. IEEE Internet of Things
Journal, 4(2):611–618, 2017.

[45] C. Shu. Uber reportedly tracked Lyft drivers using a secret
software program named ‘Hell’. https://techcrunch.com/
2017/04/12/hell-o-uber/, 2017.

[46] L. Siksnys, J. R. Thomsen, S. Saltenis, and M. L. Yiu. Pri-
vate and flexible proximity detection in mobile social net-
works. In Eleventh International Conference on Mobile Data
Management, MDM 2010, Kanas City, Missouri, USA, 23-26
May 2010, pages 75–84, 2010.

[47] L. Siksnys, J. R. Thomsen, S. Saltenis, M. L. Yiu, and
O. Andersen. A location privacy aware friend locator. In
Advances in Spatial and Temporal Databases, 11th Inter-
national Symposium, SSTD 2009, Aalborg, Denmark, July
8-10, 2009, Proceedings, pages 405–410, 2009.

[48] S. Stirbys, O. A. Nabah, P. A. Hallgren, and A. Sabelfeld.
Privacy-preserving location-proximity for mobile apps. In
PDP, pages 337–345. IEEE Computer Society, 2017.

[49] M. Terrovitis. Privacy preservation in the dissemination of
location data. SIGKDD Explorations, 13(1):6–18, 2011.

[50] The City of New York. Taxi and Limousine Commission trip
data. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-
data.page, 2016.

[51] N. Trieu. Github - osu-crypto/BaRK-OPRF: Efficient
Batched Oblivious PRF with Applications to Private
Set Intersection (CCS 2016). https://github.com/osu-
crypto/BaRK-OPRF.

[52] Uber technologies inc. https://www.uber.com/.
[53] G. Zhong, I. Goldberg, and U. Hengartner. Louis, lester

and pierre: Three protocols for location privacy. In Privacy
Enhancing Technologies, 7th International Symposium, PET
2007 Ottawa, Canada, June 20-22, 2007, Revised Selected
Papers, pages 62–76, 2007.

A Details on timed
endpoint-based matching

Before proceeding with the formal presentation of our
time-aware endpoint-based matching, we clarify the
statement given in Section 2.2 about the false positives
matched returned by this process. Figure 7 depicts a
special pair of trips and a specific choice of the values ∆
and t for which endpoint-based matching would return
match found, but condition 1 in Definition 5 is not
satisfied.

https://www.lyft.com/
https://eprint.iacr.org/2016/930
https://eprint.iacr.org/2016/930
https://eprint.iacr.org/2017/677
http://www.routino.org/
http://www.routino.org/
https://techcrunch.com/2017/04/12/hell-o-uber/
https://techcrunch.com/2017/04/12/hell-o-uber/
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://github.com/osu-crypto/BaRK-OPRF
https://github.com/osu-crypto/BaRK-OPRF
https://www.uber.com/

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 18

P A
0 P A

1 P A
2 P A

3 P A
4 P A

5 P A
6 P A

7

P B
0 P B

1 P B
2

Fig. 7. Example of two rides that give a false positive match
when performing endpoint-based matching. The two dashed
sections of circles represent the spatial deviation values ∆ set
by Alice at her starting and ending points. Since Bob’s starting
and ending points lie within Alice’s spatial deviation preferences,
endpoint-based matching would return a match. However, if Al-
ice’s threshold value t is set anything higher than 40%, Bob’s
route is not a feasible segment for ridesharing.

The timedEP protocol. Time-aware endpoint-based
matching aims at discovering whether two timed trips
begin and end at points that are close enough in terms
of space and time. Our timedEP is a two party protocol
that works as follows.

Step 1: Alice identifies the starting and ending
points and times of her trip:

PA
s = PA

0 = (xA
0 , y

A
0), PA

f = PA
nA−1 = (xA

nA−1, y
A
nA−1),

TA
f = TA

nA−1 = zA
nA−1, TA

s = TA
0 = zA

0 .

In addition, Alice encrypts her components using an ad-
ditive homomorphic encryption scheme and her public
key. Concretely, Alice generates the ciphertexts:

ζA
0 ← Enc(pkA, z

A
0), ζA

nA−1 ← Enc(pkA, z
A
nA−1),

ξA
0 ← Enc(pkA, 2xA

0), ξA
nA−1 ← Enc(pkA, 2xA

nA−1)
γA

0 ← Enc(pkA, y
A
0), γA

nA−1 ← Enc(pkA, y
A
nA−1),

ηA
0 ← Enc(pkA, (xA

0)2 + (yA
0)2),

ηA
nA−1 ← Enc(pkA, (xA

nA−1)2 + (yA
nA−1)2).

Note that Alice also encrypts the squares of her spatial
components. This is to enable Bob to compute the dis-
tance between his endpoints and Alice’s in a homomor-
phic way using AHE only (and not more expensive ho-
momorphic encryption schemes supporting evaluation
of higher degree functions). Computing directly the dis-
tance between Alice’s and Bob’s spatial and temporal
coordinates, however, would leak too much information
to Alice. Therefore, in this step Alice additionally sends
her flexibility in terms of location and time at around
her starting and ending points. In detail, she sends to
Bob all of the above ciphertexts and the following four
plaintext values:

λmax,s = ∆space(T A
time;PA

s), τmax,s = ∆time(T A
time;TA

s),
λmax,f = ∆space(T A

time;PA
f), τmax,f = ∆time(T A

time;TA
f).

Step 2: Bob receives Alice’s ciphertexts and her
flexibility values and uses his own plaintext coordinates
to homomorphically evaluate the Euclidean distance be-
tween his starting (ending) point and Alice’s, and the
time differences. In detail, Bob identifies the starting
and ending points and times of his trip:

Ps = PB
0 = (xB

0 , y
B
0), Ts = TB

0 = zB
0 ,

Pf = PB
nB−1 = (xA

nB−1, y
B
nB−1), Tf = TB

nB−1 = zB
nB−1.

In addition, Bob computes:

Dxy,s = ηA
0 ⊕ Enc(pkA, (xB

0)2 + (yB
0)2)

	(xB
0 � ξA

0)	 (yB
0 � γA

0),
Dxy,f = ηA

nA−1

⊕Enc(pkA, (xB
nB−1)2 + (yB

nB−1)2)
	(xB

nB−1 � ξA
nA−1)	 (yB

nB−1 � γA
nA−1),

Dz,s = Enc(pkA, z
B
0)	 ζA

0 ,

Dz,f = Enc(pkA, z
B
nB−1)	 ζA

nA−1.

Note that all of the ciphertexts are encrypted using Al-
ice’s public key. If, at this point, Bob sent back to Alice
the four values he computed she would be able to de-
termine the exact distance between their starting and
ending points and the exact times at which Bob plans
to be there. This obviously would break the privacy-
preservation requirement we want to meet. To overcome
this, we require Bob to perform one additional step.

Step 3: Bob protects his inputs by using a solution
inspired to the InnerCircle two-party proximity-testing
protocol by Hallgren et al. [16], with additional routines
dedicated to hiding Bob’s input time components. In
detail, Bob creates four sets (one for each ciphertext he
has) as follows:

Ls = {(Dxy,s 	 Enc(pkA, i))� ρi | i = x · y;x, y ∈ [0, λmax,s]}

Ws = {(Dz,s 	 Enc(pkA, j))� ρj | j ∈ [−τmax,s, τmax,s]}

Lf = {(Dxy,f 	 Enc(pkA, i))� ρ′i | i = x · y;x, y ∈ [0, λmax,f]}

Wf = {(Dz,f 	 Enc(pkA, j))� ρ′j | j ∈ [−τmax,f , τmax,f]}

where the values ρi, ρj , ρ
′
i, ρ
′
j are taken uniformly at

randomly from Z∗q . In addition, Bob ‘scrambles’ the val-
ues within each set, i.e., he selects four permutations
σs, σf ←R Sym[λmax + 1], σ′s, σ′f ←R Sym[2τmax + 1] and
computes:

L′s = σs(Ls) L′f = σf (Lf)
W ′s = σ′s(Ws) W ′f = σ′f (Wf)

Finally, Bob sends to Alice the four sets L′s,L′f ,W ′s,W ′f .

TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing 19

size 32 62 128 256 512 1024 2048 4096
PP 0.0329 0.2019 1.3906 10.2894 79.0680 618.6747 4893.2446 38827.3026

O-PP (Sec.3) 0.0869 0.0871 0.0867 0.0911 0.0898 0.0913 0.0955 0.0986
TOPP (Sec.5) 0.0917 0.0942 0.0986 0.1026 0.1126 0.1404 0.1994 0.3081

Table 5. Average running times (in seconds) of performing intersection-based trajectory matching in PrivatePool, O-PrivatePool and
TOPPool.

Step 4: Alice uses her secret key to decrypt (the
elements in) the four sets. If she finds a 0 value in each of
the (decrypted) sets, Alice outputs 1 (this is the output
of timedEP) for ‘match found’. In this case, indeed, it
must hold that

dxy(PA
0 , P

B
0) < λmax,s dxy(PA

nA−1, P
B
nB−1) < λmax,f

i.e., Alice’s and Bob’s starting and ending locations are
close enough, and

|zA
0 − zB

0 | < τmax,s |zA
nA−1 − zB

nB−1| < τmax,f

i.e., the desired departure and arrival times are close
enough. If, on the other hand, the value 0 does not ap-
pear in at least one set, Alice outputs 0 (this is the
output of timedEP) for ‘no match’.

B Details on timed
intersection-based matching

Before diving into the details of our construction, we
collect some useful notation. Our definition of feasible
ridesharing makes use of a threshold t for matching
trajectories. In what follows we adopt the sequence-
threshold cA corresponding to t, defined as the minimal
number of consecutive points needed in G to realize a
segment of length `(S) ≥ t · `(T A). Moreover, to sim-
plify the exposition, we assume Alice and Bob have
a constant deviation function for space and for time.
In other words, we define λA

max (resp. λB
max) to be Al-

ice’s (resp. Bob’s) flexibility in space at any point on
the trajectory and set λA

max = ∆space(T A
time;PA

i) for all
i ∈ [0, nA − 1] (λB

max is defined in an analogous way).
We also set Alice’s (resp. Bob’s) time flexibility to be
τA

max (resp. τB
max) defied as τA

max = ∆time(T A
time;TA

i) for
all i ∈ [0, nA − 1] (τB

max is defined in an analogous way).
These simplifications are only for exposition purposes,
the generalization to the case where spatial and time
flexibility is different for every point along Alice’s tra-
jectory is immediate.

Step 1: Alice extracts from her timed trajec-
tory T A

time = {(PA
0 , T

A
0) . . . , (PA

nA−1, T
A
nA−1)} a set

A of (2τA
max + 1) · (nA − cA − 1) triples of the

form (PA
i , P

A
i+c, T

A
i,p) where i ∈ [0, nA − cA − 1] and

p ∈ [−τA
max, τ

A
max]. Alice sends to Bob the her sequence-

threshold value cA.

Step 2: Bob checks that his trip T B
time is not

too short by comparing nB ≥ cA. In case nB <

cA, Bob aborts and timedIS outputs 0 (no match
found). Otherwise, Bob extracts from his timed tra-
jectory T B

time = {(PB
0 , T

B
0) . . . , (PB

nB−1, T
B
nB−1)} a set

B of (2τB
max + 1) · (nB − cA − 1) triples of the form

(PB
j , P

B
j+cA , T

B
j,q) where i ∈ [0, nB − cA − 1] and

q ∈ [−τB
max, τ

B
max].

Step 3: Alice and Bob run a regular PSI using the
sets A and B as respective inputs.
The output of timedIS is ∅ (no match found) if PSI re-
turns no common intersection; otherwise the PSI returns
S = A ∩ B 6= ∅ (match found).

C Implementation details
Table 5 reports the concrete values measured during our
efficiency tests of TOPPool and displayed in Figure 6,
Section 6. In detail, PrivatePool and O-PrivatePool were
tested under identical conditions. The test suite was run
on a dedicated machine and executed ten times without
interruption, according to the experimental design. The
collected values correspond to the actual running times
of the intersection-based methods used in the two proto-
cols, namely TKEM and BaRK-OPRF. Regarding TOP-
Pool, the temporal proximity test was implemented fol-
lowing the deviation functions defined in Section 6 with
τmax set to 12 and time deviation precision of 30, 45 and
60 minutes. The first row (size) of Table 5 indicates the
maximum number n of coordinates (points, or nodes)
along the routes considered for the measurement.

	TOPPool: Time-aware Optimized Privacy-Preserving Ridesharing
	1 Introduction
	2 Preliminaries
	2.1 Ridesharing concepts
	2.2 Defining feasible ridesharing
	2.2.1 Toward building secure ridesharing systems

	2.3 Defining privacy-preserving ridesharing
	2.4 PrivatePool: a model for privacy-preserving ridesharing

	3 O-PrivatePool
	4 Modeling time-aware ridesharing
	5 TOPPool
	5.1 Time-aware, private intersection-based ridesharing (timedIS) in TOPPool
	5.2 Time-aware, private endpoint-based ridesharing (timedEP) in TOPPool

	6 Experiments
	6.1 Implementation details
	6.2 Effectiveness of O-PrivatePool and TOPPool
	6.3 Efficiency analysis of the intersection-based matching process

	7 Related work
	8 Conclusions
	A Details on timed endpoint-based matching
	B Details on timed intersection-based matching
	C Implementation details

