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Abstract
The root cause for confidentiality and integrity attacks against com-
puting systems is insecure information flow. The complexity of
modern systems poses a major challenge to secure end-to-end in-
formation flow, ensuring that the insecurity of a single component
does not render the entire system insecure. While information flow
in a variety of languages and settings has been thoroughly studied
in isolation, the problem of tracking information across component
boundaries has been largely out of reach of the work so far. This
is unsatisfactory because tracking information across component
boundaries is necessary for end-to-end security.

This paper proposes a framework for uniform tracking of in-
formation flow through both the application and the underlying
database. Key enabler of the uniform treatment is recent work by
Cheney et al., which studies database manipulation via an embed-
ded language-integrated query language (with Microsoft’s LINQ
on the backend). Because both the host language and the embed-
ded query languages are functional F#-like languages, we are able
to leverage information-flow enforcement for functional languages
to obtain information-flow control for databases “for free”, syn-
ergize it with information-flow control for applications and thus
guarantee security across application-database boundaries. We de-
velop the formal results in the form of a security type system that
includes a treatment of algebraic data types and pattern matching,
and establish its soundness. On the practical side, we implement
the framework and demonstrate its usefulness in a case study with
a realistic movie rental database.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection—information-flow controls

Keywords end-to-end security, information flow, static analysis,
language-integrated queries

1. Introduction
Increasingly, we trust interconnected software on desktops, laptops,
tablets, and smart phones to manipulate a wide range of sensitive
information such as medical, commercial, and location informa-
tion. This trust can be justified only if the software is designed,
constructed, monitored, and audited to be robust and secure.

Securing heterogeneous systems Heterogeneity is a major road-
block in the path of software security. Modern computing systems
are built with a large number of components, often run on different
platforms and written in multiple programming languages.
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It is not surprising that systems often break at component
boundaries. The OWASP Top 10 project identifies ten most crit-
ical web application security risks [2]. The top of the list is dom-
inated by attacks across component boundaries: injection attacks
(with SQL injection as prime example) are number 1 on the list;
cross-site scripting attacks are number 3. In both, untrusted data
bypasses inter-component filtering, which leads executing mali-
cious commands (commonly in SQL or JavaScript) to compromise
confidentiality and integrity.

In the face of complexity and heterogeneity of today’s systems,
it is vital to ensure end-to-end security [45], overarching compo-
nent boundaries.

Information-flow control The root cause for confidentiality and
integrity attacks against computing systems is insecure information
flow. For confidentiality, this implies a possibility of leaking infor-
mation from sensitive sources to attacker-observable sinks. For in-
tegrity, this implies a possibility of data from untrusted sources to
compromise data on trusted sinks.

Enforcing secure information flow is more involved than en-
forcing safety properties like tracking units of measure [33] or taint
tracking [47]. This is due to the fact that there are two different
types of information flows. The first type of flow, the explicit flows,
originates from the explicit propagation of values, via, e.g., param-
eter passing. Tracking this kind of flows is similar to tracking units
of measure or taint tracking. The second type of flows, the im-
plicit [25] flows, corresponds to flows via the control flow. Con-
sider

l = if (h) then true else false

Depending on the value of h, either the then branch or the else
branch of the conditional is chosen to be evaluated to give the
final result. In the above program, this has the effect of leaking
the Boolean value of h into l, constituting an implicit flow from h
to l. A different machinery is needed to track this kind of flows,
which distinguishes enforcement of secure information flow from
enforcement of safety properties [51].

A large, extensively surveyed [13, 29, 30, 41], body of work
has studied information-flow control. However, with a few recent
exceptions (discussed in Section 6), the problem of information
flow for different components has largely been explored in iso-
lation. This is unsatisfactory because tracking information across
component boundaries is necessary for end-to-end security.

Motivated by the above, this paper focuses on information-flow
control for systems with database components.

Database integration Programs commonly access databases via
libraries that connect and interact with the database. If we take SQL
as an example, querying is typically done by constructing a query
string that is passed to the database as illustrated below.
let query = "SELECT Name FROM People";
let result = SqlCommand(query, db).execute();

The problem with this approach is that the queries are con-
structed at runtime without any guarantees on the query. In general
it is hard to verify that the constructed queries are meaningful let
alone decide information flow properties for the queries. The cre-



ated string could be an invalid query or even the result of an SQL
injection. Further, the returned information is by necessity encoded
in a generic way, which makes it both inefficient and error prone
to work with. Instead, it is attractive to integrate database query
mechanism into the language as facilitated, e.g, by Google’s Web
Toolkit [4], Ruby on Rails [11], and Microsoft’s LINQ [5].

In functional setting, an elegant approach to provide language-
integrated query is to use meta-programming based on quotations
and antiquotations. This is the approach taken by Cheney et al. [16].
The goal is to provide access to SQL databases in F# (with Mi-
crosoft’s LINQ on the backend). F# provides quotation via <@ @>,
which creates a typed representation of a given F# expression e. As-
suming that e has type t, then <@ e @> is a value of type Expr〈t〉.
Antiquotes (% ) provide a way to splice in typed quoted val-
ues into other quoted expressions. This approach capitalizes on the
flexible meta-programming capabilities of F# [50]. With this frame-
work we can express the above query in F# in the following way.
let query =
<@ for p in (% db).People do

yield p.Name
@>
let result = run query

From the type of the spliced in database, db, the type system
of F# is able to determine the type of query to Expr〈list string〉.
In turn query is given to run which, when run, executes the query
resulting in a list of strings. The typing of the program is compile
time, whereas the creation and execution of the actual query is run-
time. At runtime the quoted expression is parsed by the F# runtime
and the typed result is passed to run for normalization and evalua-
tion. This produces and performs the actual SQL query. Note how
antiquotation is used to splice in the database allowing the con-
struction of multiple queries using the same database connection.

Contributions This paper puts homogeneous meta-programming
to work to develop information-flow type systems for heteroge-
neous systems. In particular we present an information-flow type
system for a subset of F# with database queries. The presented de-
velopment is an instance of a general method that allows for the
reuse of existing type systems to create information flow type sys-
tems that seamlessly spans language boundaries. Thus, the method
is not limited to database queries.

Because both the host language and the embedded query lan-
guages are F#-like subsets, we are able to leverage information-
flow enforcement for functional languages to obtain information-
flow control for databases “for free”. The simplicity of the result-
ing type system and the relatively small modifications needed is
evidence for the success of the approach.

In a nutshell, the paper contains the following main contribu-
tion:

(i) We leverage homogeneous meta-programming to provide
information-flow security for a subset of F# including database
access via the essence of query processing in Microsoft LINQ, as
it is expressed in F#.

In addition, the paper contains further contributions:
(ii) We develop the formal results in the form of a security

type system and show that it enforces the security condition of
noninterference [28] (Section 2).

(iii) We develop an analysis to treat algebraic data types and
pattern matching, establish its soundness, and implement it as a
part of our prototype (Section 4).

(iv) We present an implementation of the type checker and a
translator from our language to executable F# code (Section 3).

(v) We demonstrate the usefulness of our framework by a case
study with a realistic movie rental database (Section 5).

The full soundness proof and the code of the framework and
case study are available online1.

2. Framework
This section presents a simple functional language with support for
product types, records, lists, quoted expressions and antiquotations,
the security type system, and shows that the type system enforces
information-flow security with respect to a small-step semantics.

Recall that the fundamental idea is that, since the information-
flow of the database interaction is fully described in the quoted
language, the type systems is able to enforce information-flow
security for the database interactions for free.

2.1 Language
The language is based on the one used by Cheney et al. [16] with
the addition of security levels to the type system.

Figure 1 shows the syntax of security levels, types, and terms.
We write x to denote a sequence of entities x. For example, f : t is
a shorthand for a sequence f1 : t1, f2 : t2, . . . , fn : tn of typings
of record fields.

` ::= L | H

b ::= int` | string` | bool`

t ::= b | t→ t| t ∗ t | {f : t} | (t list)` | Expr〈t〉

T ::= ({f : b}) list`

Γ,∆ ::= · | Γ, x : t

e ::= c | x | op(e) | lift e | fun(x)→ e | rec f(x)→ e | (e, e)
| fst e | snd e | {f = e} | e.f | yield e | []
| e @ e | for x in e do e | exists e | if e then e | run e
| <@ e @> | (% e ) | database(x)

Figure 1. Syntax of language and types

We remark on some of the interesting constructs: c denotes
built-in constants, such as integers and booleans. op denotes built-
in operators, such as addition and logical connectives. lift e lifts
an expression of type t to type Expr〈t〉. for x in e1 do e2 is used
to express list comprehensions where x is bound successively to
elements in e1 when evaluating e2. The results of evaluating e2

for each element are then concatenated. run e denotes running
a quoted expression e. This involves generating an SQL query
based on the quoted term. e1 @ e2 denotes concatenation of e1

and e2. Section 2.2 provides further details. exists e evaluates to
true if and only if the expression e does not evaluate to the empty
list. This can be used to check if the result of a query is empty.
Similarly, if e1 then e2 evaluates to e2 if e1 evaluates to a non-
empty list and to [] otherwise. yield e denotes a singleton list
consisting of expression e. <@ e @> denotes a quoted expression e.
The language allows only closed quoted terms, since this simplifies
the semantics of the language and is still able to express all the
desired concepts. Quoted functions can be expressed by abstracting
in the quoted term as opposed to abstracting on the level of the host
language. (% e ) denotes antiquotation of the expression e, and
allows splicing of quoted expressions into quoted expressions in a
type-safe way.

Security type language The security type language is defined by
annotating a standard type language for a functional fragment with

1 http://www.cse.chalmers.se/~schoepe/selinq/
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quotations with security levels `. Without loss of generality the se-
curity levels are taken from the two-element security lattice consist-
ing of a level L for non-confidential information and a level H for
confidential information. Information-flow integrity policies can be
expressed dually [14]. The types are split into base types (b), which
can occur as types of columns in tables (T ), and general types (t)
which include function types, lists, and quoted expressions.

As is common, we consider a database to be a collection of
tables. Each table consists of at least one named column, each
of which is equipped with a fixed security level annotated type.
The security levels on types for database columns express which
columns contain confidential data and which columns do not.

To express security policies for databases, each database is
given a type signature. Such a type signature describes tables as
lists of records. Each record field corresponds to a column in the
sense that the field name matches the name of the column in the
database. A column is specified as confidential or public by using a
suitable type for the corresponding field in the record. The ordering
of elements in a list used to represent table contents is irrelevant.

To illustrate the addition of security levels to the type system in
the case of databases, consider an example, adapted from Cheney
et al. [16], involving a database of people and couples, PeopleDB.
In this scenario, we assume that the names of people are confi-
dential, while the age is not, which leads to the following type for
PeopleDB.
PeopleDB :

{ People :
{ Id : int^L; Name : string^H; Age : int^L } list^L

; Couples :
{ Person1 : int^L ; Person2 : int^L } list^L

}

Now consider the situation where we want to query the database
for couples where one partner is more than 10 years older than the
other partner. This can be done by iterating once over all couples in
the database and then iterating twice over all people in the database.
For each couple and pair of persons, one then checks if they are
part of the couple that is being considered and checks if the age
difference is higher than 10. If that is the case, the name of the
first partner along with the age difference is returned as part of the
result, which is a list of records consisting of a name and the age
difference.
let db = <@ database "PeopleDB" @>

type ResultType = {name : string^H ; diff : int^L}

let differences : Expr < ResultType list ^ L > =
<@ for c in (% db).Couples do

for p1 in (% db).People do
for p2 in (% db).People do
if (c.Person1 = p1.Id) &&

(c.Person2 = p2.Id) &&
(abs (p1.Age - p2.Age) > 10) then

yield ({ name = p1.Name
; diff = p1.Age - p2.Age })

@>

let main = run differences

As can be seen in the above program the information-flow pol-
icy for this program is specified by giving a type annotation to the
quoted expression that generates the query, i.e., a type annotation
for differences. In particular, the name components of the result
are typed confidential, while the age differences are public. This
matches the policy specified for the database contents, in which
the names of people are confidential while their ages are not. The
type system ensures that the result type of differences is in fact

compatible with the policy specified for the database. Changing the
security annotation of the name field from secret to public as follow
results in a type error.
// No longer well-typed:
type ResultType = {name : string^L ; diff : int^L}

2.2 Operational Semantics
We denote evaluation of an expression e using database data in Ω
to another expression e′ by e −→Ω e′. Ω is a function that maps
database names to the actual content of the database it refers to, and
δ is a mapping that maps operators to their corresponding seman-
tics. Σ maps constants and databases to their respective types.

We assume that Ω is consistent with the typing for databases
given in Σ: for each database Ω(db) is assumed to be a value of
type Σ(db).

The evaluation rules in Figures 2, 3, 4, and 5 follow [16].
Let −→∗Ω be the reflexive-transitive closure of −→Ω. Evalua-
tion and normalization of the quoted language is denoted by
evalΩ(norm(e)). This evaluation entails generating database
queries that can be executed by actual database servers. In par-
ticular, higher-order features such as nested records or function
applications need to be evaluated to obtain computations that can
be expressed in SQL. Figure 6 shows the syntax. The semantics is
call-by-value with left-to-right evaluation of terms. This is formal-
ized using evaluation contexts E . Quotation contexts Q are used to
ensure that there are no antiquotations left of the hole.

We denote substitution of free occurrences of a variable x in
expression e with another expression e′ by e[x 7→ e′].

V ::= c | fun(x)→ e | rec f(x)→ e | (V, V ) | {f = V }
| [] | yield V @ . . . @ yield V | <@ Q @>

Q ::= c | op(Q) | lift Q | x | fun(x)→ Q | Q Q | (Q,Q)

| {f = Q} | Q.f | yield Q | [] | Q @ Q | for x in Q do Q
| exists Q | if Q then Q | database(db)

E ::= [] | op(V , E ,M) | lift E | E e | V E | (E , e) | (V, E)

| {f = V , f ′ = E , f = e} | E .f | yield E | E @ e | V @ E
| for x in E do e | exists E | if E then e | run E
| <@Q[(% E )] @>

Q ::= [] | op(Q,Q, e) | fun(x)→ Q | liftQ | Q e | V Q
| (Q, e) | (Q,Q) | {f = Q, f ′ = Q, f = e} | Q.f
| yieldQ | Q@ e | V @Q | for x inQ do e | for x in Q doQ
| existsQ | ifQ then e | if Q thenQ | runQ

Figure 2. Values and evaluation contexts

2.3 Security Condition
The goal of the type system is to enforce a notion of noninterfer-
ence for functional language. Noninterference formalizes computa-
tional independence between secrets and non-secrets, guaranteeing
that no information about the former can be inferred from the latter.
More precisely, this is expressed as the preservation of an equiva-
lence relation under pairwise execution; given two inputs that are
equal in the components that are visible to an attacker, evaluation
should result in two output values that also coincide in the compo-
nents that can be observed by the attacker.

To that end this section introduces a notion of low-equivalence
denoted by ∼ that demands that parts of values with types that are
annotated with L are equal, while placing no demands on the secret
counterparts. More formally, we introduce a family of equivalence
relations on values parametrized by types.



op(V ) −→ δ(op, V )

(fun(x)→ N) V −→ N [x 7→ V ]

(rec f(x)→ N) V −→M [f 7→ rec f(x)→ N, x 7→ V ]

fst (V1, V2) −→ V1

snd (V1, V2) −→ V2

{f = V }.fi −→ Vi

if true then M −→M

if false then M −→ []

for x in yield V do M −→M [x 7→ V ]

for x in [] do N −→ []

for x in L @ M do N −→ (for x in L do N) @ (for x in M do N)

exists [] −→ false

exists [V ] −→ true, |V | > 0

run Q −→ eval(norm(Q))

lift c −→ <@ c @>

<@Q[(% <@ Q @> )] @> −→ <@Q[Q] @>

M −→ N

E [M ] −→ E [N ]

Figure 3. Evaluation rules for host language

(fun(x)→ R) Q R[x 7→ Q]

{f = Q}.fi  Qi

for x in yield Q do R R[x 7→ Q]

for y in (for x in P do Q) do R for x in P do (for y in Q do R)

for x in (if P then Q) do R if P then (for x in Q do R)

for x in [] do N  []

for x in (P @ Q) do R 
(for x in P do R) @ (for x in Q do R)

if true then Q Q

if false then Q []

Figure 4. Symbolic reduction phase

for x in P do (Q @ R) ↪→
(for x in P do Q) @ (for x in P do R)

for x in P do [] ↪→ []

if P then (Q @ R) ↪→ (if P then Q) @ (if P then R)

if P then [] ↪→ []

if P then (if Q then R) ↪→ if P && Q then R
if P then (for x in Q do R) ↪→ for x in Q do (if P then R)

Figure 5. Ad-hoc reduction phase

Definition 1 (∼t). The family of equivalence relations ∼t is de-
fined inductively by the rules in figure 7.

S ::= [] |X |X @ X

X ::= database(db) | yield Y | if Z then yield Y
| for x in database(db).f do X

Y ::= x | {f = Z}

Z ::= c | x.f | op(X) | exists S

Figure 6. Normalized terms

` = L⇒ i = i′

i ∼int` i
′

` = L⇒ s = s′

s ∼string` s
′

` = L⇒ b = b′

b ∼bool` b
′

∀v1, v2, v
′
1, v
′
2,Ω1,Ω2.(Ω1 ∼Σ Ω2 ∧ v1 ∼t v2∧

e1[x 7→ v1] −→∗Ω1
v′1 ∧ e2[x 7→ v2] −→∗Ω2

v′2)⇒
v′1 ∼t′ v′2

fun(x)→ e1 ∼t→t′ fun(x)→ e2

∀v1, v2, v
′
1, v
′
2,Ω1,Ω2.

Ω1 ∼Σ Ω2 ∧ v1 ∼t v2∧
e1[f 7→ rec f(x)→ e1, x 7→ v1] −→∗Ω1

v′1∧
e2[f 7→ rec f(x)→ e2, x 7→ v2] −→∗Ω2

v′2 ⇒
v′1 ∼t′ v′2

rec f(x)→ e1 ∼t→t′ rec f(x)→ e2

v1 ∼t1 v
′
1 v2 ∼t2 v

′
2

(v1, v2) ∼t1∗t2 (v′1, v
′
2)

v ∼t w
{f = v} ∼{f :t} {f = w}

` = L⇒ (|[v]| = |[w]| ∧ v ∼t w)

[v] ∼(t list)` [w]

∀Ω1,Ω2.Ω1 ∼ Ω2 ⇒
evalΩ1(norm(e1)) ∼t evalΩ2(norm(e2))

e1 ∼Expr〈t〉 e2

Figure 7. Introduction rules for ∼t

When the type is evident from the context, we omit the subscript
on ∼. Moreover, we also write ∼ for sequences of values.

To present the relations in a more concise manner, we com-
bine the cases for different security levels using implication in the
premises; e.g. equality on base types is only required if the security
level is L.

Base types are compared using ordinary equality if the values
are considered public. In the case of function types and quoted
expressions, ∼t corresponds to noninterference for the bodies of
the functions.

Records are related by ∼ if they contain the same fields, and
each field’s contents are also related by∼. Two lists are required to
have the same length if the list type is annotated with L, but their
contents may differ based on the element type.

To illustrate this, consider two lists of integers l1 = yield 1 @ []
and l2 = yield 2 @ []. If the lists are typed with the type t =
(intH list)L, the length of the list is considered public, while the
contents are confidential. If in contrast the type is t′ = (intL list)L,
neither the contents nor the length of the list is confidential. Hence
l1 ∼t l2 holds while l1 ∼t′ l2 does not.

For simplicity, ∼t is stated from the point of view of an ob-
server on level L. ∼t can be generalized for an arbitrary lattice by



parametrizing it with the level of the observer. Instead of checking
if the level annotation on the type is equal to H, one then checks if
it is higher than the level of the observer.

Let Ω be a mapping from database names to database contents.
We define low-equivalence for database mappings structurally in
the following way.

Definition 2 (∼Σ). Ω1 ∼Σ Ω2 holds if and only if for all databases
db it holds that Ω1(db) ∼Σ(db) Ω2(db)

With this we are ready to define the top-level notion of security,
based on noninterference [28]. Since the family of low-equivalence
relations is parametrized by types the definition is done with respect
to the initial database type and the final result type.

Definition 3 (NI (e1, e2)Σ,t). Two expression e1 and e2 are non-
interfering with respect to the database type Σ and the exit type t
if for all Ω1, Ω2, v1 and v2 such that Ω1 ∼Σ Ω2, and ei −→∗Ωi

vi
for i ∈ {1, 2} it holds that

v1 ∼t v2

In particular for any given closed expression e, NI (e, e)Σ,t

should be read as e is secure with respect to the security policy
expressed by Σ and t, i.e., no secret parts of the database as defined
by Σ is able to influence the public parts of the returned value as
defined by t.

As common [1, 38, 48] in this setting, noninterference is
termination-insensitive [41, 52] in the sense that leaks via the ob-
servation of (non)termination are ignored.

2.4 Type System
Figure 8 presents the typing rules for the host language. Typing
judgments are of the form Γ ` e : t where Γ is a typing context
mapping variables to types, e is an expression, and t is a type. It
denotes that expression e has type t in context Γ. `t `′ denotes the
join of levels ` and `′, i.e., `t `′ = H iff H ∈ {`, `′}, and `t `′ = L
otherwise.

Figure 9 presents the typing rules for the quoted language.
Typing judgments in the quoted language have the form Γ; ∆ `
e : t, where Γ is the typing context for the host language and ∆ is
the typing context for the quoted language.

Most types contain a level annotation ` that denotes whether or
not the “structure” of the value is confidential. In the case of base
types such int or string, this means that their values are confidential
or not. In the case of (t list)`, the level ` indicates whether or not
the length of the list is confidential. If ` = H, the entire list value is
considered a secret, but if the ` = L, the length of the list may
be disclosed to a public observer. However, the elements of the
list may or may not be confidential depending on the level of the
elements given by the type t.

Record types, functions, and quoted expression types do not
carry an explicit level annotation, since their security level is con-
tained in sub-components of the type.

In the case of records, it suffices to annotate the type of each
field, since the structure of a record can not be modified dynam-
ically. The confidentiality of a function is contained in the level
annotation on the result type. The intuition is that, in the absence
of side effects, the only way for a function to disclose information
is via its result. For types for quoted expressions, i.e., types of the
form Expr〈t〉, the level annotation is already contained in t.

We assume that types for operators, constants, and databases are
given by the mapping Σ. Moreover, we also assume that each query
only uses a single database.

The typing rules for expressions in the host language and ex-
pressions in the quoted language are nearly identical with a few
exceptions:

• Recursion is only allowed in the host language.
• Quotations are only allowed in the host language.
• Expressions of the form database(x) are only allowed in the

quoted language.
• Antiquotations are only allowed in the quoted language.

CONST
Σ(c) = t

Γ ` c : t`

VAR
x : t ∈ Γ

Γ ` x : t

LIFT
Γ ` e : t

Γ ` lift e : Expr〈t〉

FUN
Γ, x : t ` e : t′

Γ ` fun(x)→ e : (t→ t′)

REC
Γ, x : t, f : t→ t′ ` e : t′

Γ ` rec f(x)→ e : t→ t′

APPLY
Γ ` e1 : t→ t′ Γ ` e2 : t

Γ ` e1 e2 : t′

OP

Σ(op) = t→ t Γ ` e : t`

Γ ` op(e) : t
⊔
`i

PAIR
Γ ` e1 : t1 Γ ` e2 : t2

Γ ` (e1, e2) : t1 ∗ t2

FST
Γ ` e : t1 ∗ t2
Γ ` fst e : t1

SND
Γ ` e : t1 ∗ t2
Γ ` snd e : t2

RECORD

Γ `M : t

Γ ` {f = M} : {f : t}

PROJECT

Γ ` L : {f : t}
Γ ` L.fi : ti

YIELD
Γ `M : t

Γ ` yield M : (t list)`

NIL

Γ ` [] : (t list)`

UNION

Γ `M : (t list)` Γ ` N : (t list)`
′

Γ ` N @ M : (t list)`t`
′

FOR

Γ `M : (t list)` Γ, x : t ` N : (t′ list)`
′

Γ ` for x in M do N : (t′ list)`t`
′

EXISTS

Γ `M : (t list)`

Γ ` exists M : bool`

IF

Γ ` L : bool` Γ `M : (t list)`
′

Γ ` if L then M : (t list)`t`
′

RUN
Γ `M : Expr〈t〉

Γ ` run M : t

QUOTE

Γ; · `M : t

Γ ` <@M @> : Expr〈t〉

SUB

` ≤ `′ Γ `M : t`

Γ `M : t`
′

Figure 8. Type system for host language

When lists are constructed using yield and [] they can be as-
signed an arbitrary level. Expressions of the form e1 @ e2 reveal
information about the structure of both lists and hence their security
levels are combined in the result type. Similarly, exists only reveals
information about the structure of the list, but nothing about the
contents. Therefore, the security level of list contents is discarded
and only the security level of the list itself is present in the result
type.



CONSTQ
Σ(c) = t

Γ; ∆ ` c : t`

FUNQ
Γ; ∆, x : t ` e : t′

Γ; ∆ ` fun(x)→ e : t→ t′

VARQ
x : t ∈ ∆

Γ; ∆ ` x : t

APPLYQ
Γ; ∆ ` e1 : t→ t′ Γ; ∆ ` e2 : t

Γ; ∆ ` e1 e2 : t′

OPQ
Σ(op) = t→ t Γ; ∆ `M : t`

Γ; ∆ ` op(M) : t
⊔
`i

PAIRQ
Γ; ∆ ` e1 : t1 Γ; ∆ ` e2 : t2

Γ; ∆ ` (e1, e2) : t1 ∗ t2

FSTQ
Γ; ∆ ` e : t1 ∗ t2
Γ; ∆ ` fst e : t1

SNDQ
Γ; ∆ ` e : t1 ∗ t2
Γ; ∆ ` snd e : t2

RECORDQ
Γ; ∆ `M : t

Γ; ∆ ` {f = M} : {f : t}

PROJECTQ
Γ; ∆ ` L : {f : t}
Γ; ∆ ` L.fi : ti

YIELDQ
Γ; ∆ `M : t

Γ; ∆ ` yield M : (t list)`

NILQ

Γ; ∆ ` [] : (t list)`

EXISTSQ
Γ; ∆ `M : (t list)`

Γ; ∆ ` exists M : bool`

IFQ

Γ; ∆ ` L : bool` Γ; ∆ `M : (t list)`
′

Γ; ∆ ` if L then M : (t list)`t`
′

UNIONQ

Γ; ∆ `M : (t list)` Γ; ∆ ` N : (t list)`
′

Γ; ∆ ` N @ M : (t list)`t`
′

FORQ

Γ; ∆ `M : (t list)` Γ; ∆, x : t ` N : (t′ list)`
′

Γ; ∆ ` for x in M do N : (t′ list)`t`
′

SUBQ
` ≤ `′ Γ; ∆ `M : t`

Γ; ∆ `M : t`
′

DATABASEQ
Σ(db) = {f : t}

Γ; ∆ ` database(db) : {f : t}

ANTIQUOTE

Γ ` e : Expr〈t〉
Γ; ∆ ` (% e ) : t

Figure 9. Typing rules for quoted language

Note that the rule QUOTE ensures that its arguments are typed in
an empty context for quoted expressions. This expresses that only
closed quoted terms are allowed in this language. Running a quoted
expression e of type Expr〈t〉 using run e results in a an expression
of type t (rule RUN).

Expressions of the for database(db) get their type from the
mapping Σ. The rule ANTIQUOTE allows to reference entities de-

fined in the host language from within a quoted expression. The
argument of an antiquotation must itself be a quoted expression.

The rules SUB and SUBQ allows raising the security level of an
expression. ` ≤ `′ holds if and only if ` = L ∨ ` = `′ = H.

To illustrate the type system further, we explain the typing rule
FOR rule in greater detail. Recall that for expressions are used to
denote list comprehensions. The typing rule assigns the resulting
list the join of the security level of both sub-expressions. The
following two examples demonstrate why this is required.

Consider the following program that uses a for expression to
leak the structure of the lists xs and ys. We assume xs to have type
(t list)` for some type t and level `, whereas ys has type (t′ list)`

′
.

for x in xs do ys

Since the resulting lists for each element of xs will be concate-
nated, the resulting list will have length |xs| × |ys| where |a| de-
notes the length of a. If either xs or ys contains only one element,
the length of the other list is revealed through the result. To account
for this information flow, the resulting list will be typed with level
` t `′.

2.5 Soundness Result
As explained above, the soundness result is stated in terms of non-
interference, i.e., as the preservation of a low-equivalence relation
under pairwise execution. If we start out in any two low-equivalent
environments then the result of running a well-typed program will
be low-equivalent with respect to the type of the program.

Assuming that the typing of the execution environment corre-
sponds to the capabilities of the attacker, noninterference guaran-
tees that all information readable by the attacker is independent
of confidential information. To make the connection between the
database policy Σ and the type system explicit we write Σ ` e : t
even though Σ was kept implicit in the type rules in Figures 8 and
9.

Theorem 1 (Typing soundness). If Σ ` e : t, then NI (e, e)Σ,t.

Proof of theorem 1. Immediate from Lemma 1 by expanding the
definition of NI since e is a closed term.

Lemma 1 (Typing soundness (generalized)). If x : t ` e : t,
e[x 7→ v1] −→∗Ω1

v′1, e[x 7→ v2] −→∗Ω2
v′2, Ω1 ∼Σ Ω2 and

v1 ∼ v2, then v′1 ∼t v′2.

Proof. Mutual induction over the typing derivation Γ ` e : t and
analogous statement for the quoted language. The full proof can be
found in the full version of the paper.

3. Implementation
Since F# contains an abundance of features not relevant to the cur-
rent development we implement the language presented in Sec-
tion 2, rather than attempting to enrich the F# implementation with
security types. Our implementation compiles programs in this lan-
guage to executable F# code. Given that the presented language is
a subset of F#, the compilation consists mainly of removing level
annotations in types in the program and establishing a connection
to the database server.

This allows reusing the F# infrastructure for language-integrated
query, as well as the improvements to this mechanism [16].

To simplify writing programs in the presented language, we im-
plement a type inference algorithm supporting polymorphism for
both levels and types. The basic approach that is used is based on
constraint generation and unification [23]. For efficiency reasons
the implementation is based on equality constraints, even though
full inference would require inequality constraints. Interpreting in-
equality constraints as equality constraints introduces inaccuracies
that prevents the types of some programs to be inferred properly.



However, since constraints are only generated in case they cannot
be shown to be satisfied at the point of introduction it is always pos-
sible to resolve any such inaccuracies by providing type informa-
tion in the form of type annotations. In practice, the type inference
allows us to leave out many type annotations as witnessed by the
examples in this paper.

The type-checker and compiler are implemented in Haskell,
using the BNFC tool [3] for generating parsing and lexing code.
The resulting binary takes a program in the language presented in
Section 2.1 and produces F# code as output if the program is well-
typed. If the program is not well-typed an error message detailing
the reason for the type-checking failure is produced.

To illustrate the compilation, consider the output of the compiler
for the example from Section 2.1 that queries the database for
couples where the age difference between partners is greater than
10 years.
// import statements omitted

let ConnectionString_PeopleDB =
"Data Source=.\MyInstance;Initial "\
"Catalog=PeopleDB;Integrated Security=SSPI"

type dbSchema_PeopleDB =
SqlDataConnection<ConnectionString_PeopleDB>

let db_PeopleDB = dbSchema_PeopleDB.GetDataContext()
let db = <@ db_PeopleDB @>
type ResultType = {name : string; diff : int; }
let differences : Expr<ResultType IQueryable> =
<@ query { for c in (%db).Couples do

for p1 in (%db).People do
for p2 in (%db).People do
if (c.Person1 = p1.Id) &&

(c.Person2 = p2.Id) &&
(abs (p1.Age - p2.Age) > 10) then

yield { name = p1.Name
; diff = p1.Age - p2.Age } }

@>
let main = PLinq.Query.qquery

{ for x in (%differences) do yield x }
main

The above code example first imports all necessary libraries as
well as the implementation of the supplementary concepts [16].
The subsequent part handles establishing a connection to the
database server running on the same machine. The compiler gen-
erates a separate connection to the server for each database that is
used by the program. Type synonyms and function definitions are
compiled in a straight-forward way. The main difference is that all
security levels have been removed from any types in the program.

For technical reasons, F# does not support query generation
for quoted list expressions and therefore the compiler translates
occurrences of the list type to IQueryable instead. Moreover, we
translate expressions of the form run e into calls to a function
testPLinqQ from the implementation accompanying [16]. This
function takes a quoted expression, translates it into an SQL query,
executes it and then returns the results.

Since our approach is purely static, and all security type in-
formation is erased during compilation, performance is unaffected,
compared to ordinary F# code. Additionally, by reusing the results
from Cheney et al. [16], we are able to benefit from the optimiza-
tions to F#’s LINQ mechanism presented there. Cheney et al. in-
clude a performance evaluation that is also valid for this imple-
mentation.

The code for the implementation is available online. The URL
is given in Section 1.

4. Algebraic Data Types
We extend the language presented so far with algebraic data types
and information-flow control for them.

This enriches the language with a way to express parametrized
recursive data types that subsumes tuples and records. The addition
is a proper extension to the language; neither tuples nor records
can be recursive or parametrized in our language. We argue that
introducing algebraic data types is a natural development due to
their expressiveness and easy deconstruction via pattern matching.
Encoding algebraic data types in an extended notion of records
would both require extensions to the existing constructs that are
similar to the extension needed to add algebraic data type and the
result would be significantly less elegant.

Algebraic data types allow for the definition of new data types
by composing existing data types. An algebraic data type consists
of one or more constructors that can contain another type as their
argument, including recursive occurrences of the defined data type.
Pattern-matching is used deconstruct values in an algebraic data
type by matching against the different constructors and parameters.
The data contained in the parameters of a value in the data type can
be extracted by giving a variable in the pattern.

Syntax Without loss of generality, consider an algebraic data type
T with type argument α, which can be a product of several type
variables. Constructors C1, . . . , Cl have the form Ci of ti where ti
is the argument of the constructor. Constructors with no arguments
can be considered to take a value of unit type as an argument. For
clarity, we only match on the outermost constructor of a single
expression at a time. To track information flow, a security level
annotation is then added to the type T . The expressions and values
are extended as follows:
e ::= . . . | Ci e | match e with C1 x1 → e1 ; . . . ; Ck xk → ek

E ::= C1 E | . . . | Ck E
| match E with C1 x→ e; . . . ; Ck x→ e

Q ::= C1 Q | . . . | Cl Q
| matchQ with C1 x→ e; . . . ; Ck x→ e

V ::= . . . | Ci V
Semantics The semantics is extended with the following rules for
evaluation of constructors and pattern matching.

(match Ci v with
| C1 x1 → e1

| . . .
| Ck xk → ek) −→ ei[xi 7→ v]

These rules correspond to the usual semantics of algebraic data
types in other functional languages. Constructors with values as ar-
guments are themselves values and cannot be evaluated further. If a
constructor argument is not a value, it is evaluated. match expres-
sions evaluate the expression that is being matched on first, and
then evaluate the appropriate branch while binding the argument to
the constructor to a name.

Type system To support algebraic data types in the type system,
we use two rule schemas which generate several typing rules for
each algebraic data type in the program. For each algebraic data
type with l constructors, one rule for match expressions is added
and l typing rules for the constructors.

The rule schema for constructors takes into account that type
arguments to constructors might contain the type that is being
defined. In that case their level annotations need to be combined
to keep the structure of the value confidential. T ` ∈ ti holds for all
components of ti of the for α T `.



In the case of match expressions, the structure of the algebraic
data type is used to decide which branch to evaluate. To track this
flow of information, the type of the branches needs to be upgraded
to the level annotation of the algebraic data type. For this, we define
an upgrade function upg(t, `) which denotes upgrading the type t
to have at least level ` in its outermost components.

Definition 4 (Upgrade function). upg(t, `) is defined by recursion
on the structure of t.

upg(int`, `′) = int`t`
′

upg(bool`, `′) = bool`t`
′

upg(string`, `′) = string`t`
′

upg(t→ t′, `′) = t→ upg(t′, `′)

upg(t1 ∗ t2, `′) = upg(t1, `
′) ∗ upg(t2, `

′)

upg({f : t}, `′) = {f : upg(t, `′)}

upg((t list)`, `′) = (t list)`t`
′

upg(Expr〈t〉, `′) = Expr〈upg(t, `′)〉

upg((α T )`, `′) = (α T )`t`
′

CONSTR
e : ti

Γ ` Ci e : T
⊔

T`∈ti
`

MATCH

Γ ` e : (α T )` ∀1 ≤ i ≤ l.Γ, xi : ti ` ei : t

Γ ` (match e with | C1 x1 → e1 | . . . | Ck xk → ek) : upg(t, `)

In the rule CONSTR,
⊔
T `∈ti ` denotes the join of all levels

on occurrences of T in the type ti. This ensures that the level
annotation on the resulting value is not lower than its components.
For instance, the constructor rule for the node constructor of a
binary tree type will require the structure of the constructed tree
to be at least as confidential as the structure of the two sub-trees.

To be able to extend the soundness result for the type system
to algebraic data types, the family of equivalence relations ∼ also
needs to be extended for each algebraic data type. In doing so, we
follow the intuition given for ∼ in the base language. The level
annotation ` on (α T )` corresponds to the confidentiality of the
structure of the type, i.e. which constructor a value consists of. If `
is high, we consider the entire value, including components, to be
confidential.

It should be pointed out that the rule schemas assume that the
defined algebraic data types are well-formed, i.e.,

• recursive occurrences of the defined type must have the same
type argument α, and

• the only type variables that can occur in arguments to construc-
tors must be type variables in α.

Soundness The low-equivalence relation is extended to the val-
ues of algebraic data types. As for the built-in list data type, if
` = L, arguments to constructors may or may not be confidential,
depending on their level annotations.

` = L⇒ (i = j ∧ v1 ∼ti v2)

Ci v1 ∼α T ` Cj v2

We prove the same soundness theorem as for the base language
in this extended setting.

Theorem 2. If ` e : t, Ω1 ∼Σ Ω2, e −→∗Ω1
v1 and e −→∗Ω2

v2,
then v1 ∼t v2.

Proof. Extension of proof for Lemma 1 for the new typing rules
that are induced by algebraic data types.

Note that while the theorem statement is the same, the set of
types and expressions is now potentially larger, since it is extended
in accordance with the algebraic data types defined in e.

Example: lists One common use for algebraic data types is to
define recursive structures such as list. To demonstrate that our
extension is capable of supporting such use cases, consider the
following user-defined list data type:
type ’a MyList =
| Nil
| Cons of (’a, ’a MyList)

Instantiating the above rule schemas for the user-defined list
type MyList yields the following three type rules; two for the
constructors, and one for the matching.

Γ ` Nil : ′a MyList`
Γ ` e1 : ′a Γ ` e2 : ′a MyList`

Γ ` Cons (e1, e2) : ′a MyList`

Γ ` e : ′a MyList`

Γ ` e1 : t Γ, x : (′a, ′a MyList`) ` e2 : t

Γ ` match e with | Nil→ e1 | Cons x→ e2 : upg(t, `)

The generated rules match the intuitions given for the rest of
the type system. Since match expressions information about the
results of the branches (which have level `′) as well as the structure
of the list (i.e. level `) that the expression matches on, the level
of the resulting list is ` t `′. Moreover, the type system allows
us to define corresponding functions for the yield, exists, @, and
for constructs that are built into the language. The inferred type of
each definition is given as a comment. Since the implementation
sometimes generates extraneous type variables in inferred types
that have no effect on generality, we give slightly simplified but
equivalent types here.
// t → (t MyList)`

let yield’ =
fun x -> Cons (x, Nil)

// (t MyList)` → bool`

let exists’ = fun xs -> match xs with
| Nil -> False
| Cons xs’ -> True

// (t MyList)` → (t MyList)` → (t MyList)`

let rec union’ = fun xs -> fun ys -> match xs with
| Nil -> ys
| Cons xs’ -> Cons (fst xs’, union’ (snd xs’) ys)

// (t1 MyList)`1 → (t1 → (t2 MyList)`1t`2)
// → (t2 MyList)`1t`2

let rec for’ =
fun xs -> fun f -> match xs with
| Nil -> Nil
| Cons xs’ -> union’ (f (fst xs’))

(for’ (snd xs’) f)

Note that the types of these functions correspond roughly to the
typing rules given for the built-in constructs. However, in the case
of union’ and for’, the type is slightly more restrictive than the
typing rule, due to the way recursion is type-checked. However,
these restrictions only affect the type of arguments and may only
require lifting an argument expression to a higher security level.



Example: trees To further illustrate algebraic data types in the
context of information flow, we discuss another common use,
namely tree structures. We define an algebraic data type for binary
trees:
type ’a BinTree =

| Leaf
| Node of ((’a BinTree * ’a) * ’a BinTree)

In the same manner as for the user-defined list type, this will
result in one rule for match expressions and two rules for the
constructors:

Γ ` Leaf : (′a BinTree)`

Γ ` e : (((′a BinTree)`1 ∗ ′a) ∗ (′a BinTree)`2)

Γ ` Node e : (′a BinTree)`1t`2

Γ ` e : (′a BinTree)`1t`2 Γ ` e1 : t

Γ, x : (((′a BinTree)`1 ∗ ′a) ∗ (′a BinTree)`2) ` e2 : t

Γ ` match e with | Leaf→ e1 | Node x→ e2 : upg(t, `1 t `2)

The two typing rules for the constructors ensure that confiden-
tiality of the tree structure is propagated correctly from the subtrees
that are passed to the Node constructor. This construction is analo-
gous to typing rules for lists in that the structure of the tree might
be public while the tree elements might be confidential.

To illustrate the last point, consider a tree where the structure of
the tree is not confidential while its elements are secrets:
let privTree : (int^H BinTree)^L =

Node ((Leaf, (5 : int^H)),
Node ((Leaf, (6 : int^H)), Leaf))

Since only the content at the leaves is considered private, count-
ing the number of leaves of this tree can be typed with L:
let rec countLeaves =

fun t -> match t with
| Leaf -> 1
| Node x -> countLeaves (fst (fst x)) +

1 +
countLeaves (snd x)

let result : int^L = countLeaves privTree

In contrast, trying to add all the integers in this tree and an-
notating the result with a low type will not type-check, since the
computation involves more than merely the structure of the tree:
let rec sumElements =

fun t -> match t with
| Leaf -> 1
| Node x -> sumElements (fst (fst x)) +

snd (fst x) +
sumElements (snd x)

// this is not well-typed:
let result’ : int^L = sumElements privTree

5. Case Study: Movie Rental Database
In this section we exemplify the type system on a realistic ex-
ample, a database to keep track of customer records by a movie
rental chain, depicted in Figure 10. The example data and database
schema [10] are courtesy of postgresqltutorial.com with per-
mission to use their sample database in this work. The database
contains information about approx. 16000 rentals, 600 customers,

and 1000 movies. We use an existing sample database to demon-
strate that our technique is applicable for database schemas that
were not designed with information flow security in mind.

We first introduce a security policy for the database and consider
various interesting queries that can be performed. Using the same
setting, we illustrate the use of algebraic data types.

5.1 Basic Queries
The database keeps track of various information related to the
movie rentals. Each rental is associated with a film, a customer,
and a payment. The payments contain payment information and
identifies the staff and the customer involved in the transaction. For
both staff and customers address information is stored.

A reasonable security policy for such a database is to consider
the names and exact addresses of customers and staff as confiden-
tial, while the rest of the data is considered public. In particular, the
city of customers and the payment information are not considered
confidential. The former is not a problem unless the city uniquely
identifies a person and the latter does not contain any sensitive in-
formation. This security policy allows for querying the database for
various interesting statistical information without disclosing confi-
dential information about the customers.

Consider, for instance, the following example, which collects all
rental ids for a given city.
let db = <@ database "Rentals" @>

let findCityId =
<@ fun city -> for c in (%db).City do

if c.City1 = city then
yield c.City_id @>

let cityRentals : Expr<string^L -> int^L list^L> =
<@ fun city -> for cid in (%findCityId) city do

for r in (%db).Rental do
for cu in (%db).Customer do
for a in (%db).Address do
if a.City_id = cid &&

cu.Address_id = a.Address_id &&
r.Customer_id = cu.Customer_id

then yield r.Rental_id @>

First in the example is the function findCityId that collects
the city ids for a city of a given name. This function is used in
cityRentals to look for rentals by customers living in that city.
Note that while customer data is used, the type system ensures that
only non-sensitive data affects the computation of the result. The
rental ids can easily be used to produce interesting statistics about
the relative popularity of films for different cities.

In contrast, trying to find all customers who rented a particular
movie while forces the result to be secret, since the names of the
customers are confidential. Thus, the following program is rejected
by the type checker:
let rentalsForMovieTitle =
<@ fun title -> for f in (%db).Film do

for r in (%db).Rental do
for i in (%db).Inventory do
if f.Title = title &&

r.Inventory_id = i.Inventory_id &&
i.Film_id = f.Film_id

then yield r @>

let customersWhoRented
: Expr< string^L -> string^L list^L > =

<@ fun title ->
for r in (%rentalsForMovieTitle) title do
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Figure 10. E-R diagram of movie rental database (image courtesy of postgresqltutorial.com)

for c in (%db).Customer do
if c.Customer_id = r.Customer_id
then yield c.Last_name @>

The reason for the (correct) type error is that first and last
names of customers are typed as stringH while the function
customersWhoRented attempts to return a list containing ele-
ments of type stringL. Changing the security annotation to reflect
this makes the type system accept the program.

More complicated queries can be handled with the same ease as
the simpler above examples. Consider, for instance, the following
query that finds all movies that were rented at least twice by the
same customer:
let moviesRentedTwice : Expr< int^L list^L > =
<@ for r1 in (%db).Rental do

for r2 in (%db).Rental do
for i in (%db).Inventory do
for f in (%db).Film do
for c in (%db).Customer do
if not (r1.Rental_id = r2.Rental_id) &&

r1.Inventory_id = i.Inventory_id &&
r2.Inventory_id = i.Inventory_id &&
i.Film_id = f.Film_id &&

r1.Customer_id = c.Customer_id &&
r2.Customer_id = c.Customer_id

then yield f.Film_id @>

Thus, the above examples illustrate the power of the method
clearly. By giving a security policy for the contents of the database
we are able to track information flow in advanced queries in term
of the information flow of the quoted language. Not only does this
allow us to establish security information flow in programs that
interact with databases, it does so in a way that is intuitively simple
to understand; an additional benefit of expressing the database
interaction in a homogeneous way is that it makes the information
flow in the interaction more immediate.

5.2 Algebraic Data Types
To demonstrate the usefulness of information-flow tracking for al-
gebraic data types discussed in Section 4 in a more practical set-
ting, we will now consider an example demonstrating information-
flow tracking from values stored in the database in conjunction with
user-defined algebraic data types.

One plausible scenario for the use of such a database is to
aggregate some information about the customer in order to make
predictions about which movies he would be interested in. For
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instance, one might want to determine a user’s favorite category
along with the movies he watched in that category. To that end,
we can introduce the following algebraic data type that encodes
a category along with a list of movie ids. (We only consider two
categories for simplicity.):
type Category =

| Action of (int^L list^L)
| Scifi of (int^L list^L) ;;

Moreover, this information could be part of a larger record
that stores information about a customer, where some information
might be confidential and should not be used when the program
output can be observed by the attacker. As an example, we consider
a program that produces records of the following form:
type UserInfo =

{ uid : int^L
; firstName : string^H
; lastName : string^H
; favoriteCategory : Category^L
} ;;

With this type, information about the favorite movie genre of
a user can be used for prediction purposes, while the actual name
of the customer cannot be retrieved without the resulting program
being typed as H.

The following code produces a list of categories along with
movie ids that a user, identified by their id, has rented:
let filmsByCustomer =

<@ fun uid ->
for r in (%db).Rental do
for i in (%db).Inventory do
for f in (%db).Film do
if r.Customer_id = uid &&

r.Inventory_id = i.Inventory_id &&
i.Film_id = f.Film_id

then yield f.Film_id @> ;;

let filmCategories =
<@ fun fid ->

for c in (%db).Category do
for cf in (%db).Film_category do
if cf.Film_id = fid &&

cf.Category_id = c.Category_id
then yield c.Name @> ;;

let userMovieInfo =
<@ fun uid ->

for fid in (%filmsByCustomer) uid do
for cname in (%filmCategories) fid do
yield { catname = cname ; fid = fid } @> ;;

Since the LINQ framework in F# does not allow producing
values of user-defined algebraic data types from within a query,
we first need to produce a record that contains the list of categories
and movie ids returned by userMovieInfo.
let compileStats : Expr< UserInfo list^L > =

<@ for cust in (%db).Customer do
yield { uid = cust.Customer_id

; firstName = cust.First_name
; lastName = cust.Last_name
; movieCategories =

(%userMovieInfo) cust.Customer_id } @>

To turn the information in the movieCategories field into
an element of the defined algebraic data type, the following code
counts the given list of movie data and then produces a value of type
Category depending on which category occurs more often. (This

is intentionally not written in a functional style to avoid having to
introduce many additional auxiliary functions commonly found in
functional languages.) The code then constructs a new record with
the movieCategories replaced by the users favorite category.

Note that this computation now takes place in the host language,
and security levels from the query result are propagated to these
functions.
let updateCount =
fun minfo -> fun statsrec ->

{ actionMovies =
if’ (minfo.catname = "action")

(yield minfo.fid) [] @
statsrec.actionMovies

; scifiMovies =
if’ (minfo.catname = "scifi")

(yield minfo.fid) [] @
statsrec.scifiMovies }

let emptyCounts = { actionMovies = [] ; scifiMovies = [] }

let countCategories =
fun catList -> fold catList updateCount emptyCounts

let favoriteUserCategory =
fun minfos ->
let statsrec = countCategories minfos
in (if’ (length statsrec.actionMovies >

length statsrec.scifiMovies)
(Action (statsrec.actionMovies))
(Scifi (statsrec.scifiMovies)))

let stats = map (fun x ->
{ uid = x.uid
; firstName = x.firstName
; lastName = x.lastName
; favoriteCategory =

favoriteUserCategory (x.movieCategories) })
(run compileStats)

let getCategories : Category^L list^L =
map (fun x -> favoriteUserCategory

(x.movieCategories))
(run compileStats)

The type system then correctly infers that the computation of the
category does in fact not depend on confidential information about
the user, while the name and email fields of the resulting records do.
if’ works like the built-in if construct except that it can produce
values that are not lists and also requires an expression for the else
case.

Moreover, attempting to find the favorite category of one partic-
ular user, identified by name, and typing the result with L will be
prevented by the type checker. Concretely, an example such as the
following, will be rejected by the type checker:
let attack : Category^L list^L =
for x in getCategories do
if x.firstName = "John" && x.lastName = "Doe"
then yield x.favoriteCategory

6. Related Work
Until recently, little work has been done on bridging information-
flow controls for applications [13, 29, 30, 41] and databases they
manipulate. While mainstream database management systems such
as PostgreSQL [7], SQLSever [8], and MySQL [6] include pro-



tection mechanisms at the level of table and columns, as is, these
mechanisms are decoupled from applications.

Below, we focus on the work that shares our motivation of in-
tegrating the security mechanisms of the application and database,
with the goal of tracking information flow.

WebSSARI by Huang et al. [32] is a tool that combines static
analysis with instrumented runtime checks. The focus is on PHP
applications that interact with an SQL database. The system suc-
ceeds at discovering a number vulnerabilities in PHP applications.
Given its complexity, its soundness is only considered informally.

Li and Zdancewic [35] present an imperative security-typed
language suitable for web scripting and a general architecture that
includes a data storage, access control, and presentation layers. The
focus is on suitable labels for confidentiality and integrity policies
as well as the possibilities of safe label downgrading [44]. No
soundness results for the type system are reported.

A line of work has originated from, or influenced by, from
Links by Cooper et al. [21], a strongly-typed multi-tier functional
language for the web. Links supports higher-order queries. On the
other hand, Links comes with a non-standard database backend,
making its interoperability non-trivial.

DIFCA-J by Yoshihama et al. [53] is an architecture for dy-
namic information-flow tracking in Java. The architecture covers
database queries as performed by Java programs via Java DataBase
Connectivity (JDBC) APIs.

Baltopoulos and Gordon [12] study secure compilation by aug-
menting the Links compiler with encryption and authentication of
data stored on the client. Source-level reasoning is formalized by
a type-and-effect system for a concurrent λ-calculus. Refinement
types are used to guarantee that integrity properties of source code
are preserved by compilation.

SELinks by Corcoran et al. [22] also builds on Links. With the
Fable type system by Swamy et al. [49] at the core, the authors
study the propagation of labels, as described by user-defined func-
tions, through database queries. Fable’s flexibility accommodates
a variety of policies, including dynamic information-flow control,
provenance, and general safety policies based on security automata.

DBTaint by Davis and Chen [24] shows how to enhance
database data types with one-bit taint information and instantiate
with two example languages in the web context: Perl and Java.

Chlipala’s UrFlow [18] offers a static information-flow analy-
sis as part of the Ur/Web domain-specific language for the devel-
opment of web applications. Policies can be defined in terms of
SQL queries. User-dependent policies are expressed in terms of the
users’ runtime knowledge.

Caires et al. [15] are interested in type-based access control
in data-centric systems. They apply refinement types to express
permission-based security, including cases when policies dynami-
cally depend on the state of the database. This line of work leads to
information-flow analysis by Lourenço and Caires [37]. This analy-
sis is presented as a type system with value-indexed security labels
for λ-calculus with data manipulation primitives. The type system
is shown to enforce noninterference.

Hails by Giffin et al. [27] is a web framework for building
web applications with mandatory access control. Hails supports a
number of independently such useful design pattern as privilege
separation, trustworthy user input, partial Lourenço and Caires [37]
update, delete, and privilege delegation.

IFDB by Schultz and Liskov [46] proposes a database manage-
ment system with decentralized information-flow control. IFDB is
implemented by modifying PostgreSQL as well as modifying ap-
plication environments in PHP and Python. The underlying model
is the Query by Label model that provides abstractions for manag-
ing information flows in a relational database. This powerful model

includes confidentiality and integrity labels, and models decentral-
ization and declassification.

LabelFlow by Chinis et al. [17] dynamically tracks information
flow in PHP. It is designed to deal with legacy applications, and so it
transparently extends the underlying database schema to associate
information-flow labels with every row.

The SLam calculus by Heintze and Riecke [31] pioneers
information-flow control in a functional setting. The security type
system treats a simple language with first-class functions, based on
the λ-calculus. This is the first illustration of how noninterference
can be enforced in the functional setting. Our security type system
adopts as the starting point the security type system by Pottier and
Simonet [40], which they have developed for a core of ML, and
which serves as the base for the Flow Caml tool [48]. Compared
to that work, our system includes the formalization and implemen-
tation of algebraic data types and pattern matching. Experiments
with Flow Caml indicate support for algebraic data types but with-
out evidence of soundness [40].

The tools like SIF [19], SWIFT [20], and Fabric [36] allow the
programmer to enforce powerful policies for confidentiality and in-
tegrity in web applications. The programmer labels data resources
in the source program with fine-grained policies using Jif [38], an
extension of Java with security types. The source program is com-
piled against these policies into a web application where the poli-
cies are tracked by a combination of compile-time and run-time
enforcement. The ability to enforce fine-grained policies is an at-
tractive feature. At the same time, SIF and SWIFT do not provide
database support. Fabric supports persistent storage while leaving
interoperability with databases for future work.

A final note on related work is that care has to be taken when
setting security policies for sensitive databases. Narayanan and
Shmatikov’s widely publicized work [39] demonstrates how to
de-anonymize data from Netflix’ database (where names were
“anonymized” by replacing them with random numbers) using
publicly available external information from sources as the Internet
Movie Database [9].

7. Conclusion
We have presented a uniform security framework for information-
flow control in a functional language with language-integrated
queries (with Microsoft’s LINQ on the backend). Because both the
host language and the embedded query languages are both func-
tional F#-like languages, we are able leverage information-flow
enforcement for functional languages to obtain information-flow
control for databases “for free”, synergize it with information-
flow control for applications, and thus guarantee security across
application-database boundaries . We have developed a security
type system with a novel treatment of algebraic data types and
pattern matching, and established its soundness. We have imple-
mented the framework and demonstrated its usefulness in a case
study with a realistic movie rental database.

A natural direction for future work includes support of declas-
sification [44] policies. This will enable more fine-grained labels
and richer scenarios with intended information release. The func-
tional setting allows for particularly smooth integration of policies
of what [34, 35, 43] is released, where we can express aggregates
through escape hatches [42], as represented by functions with no
side effects. We believe that enriching the model with these poli-
cies will also open up for direct connections to the database infer-
ence [26] problem, much studied in the area of databases.
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