
Limiting Information Leakage in Event-based Communication

Willard Rafnsson
Chalmers

Andrei Sabelfeld
Chalmers

Abstract
Event-based communication is a major source of power and flex-
ibility for today’s applications. For example, in the context of
a web browser, the dynamism of user experience is driven by
events: fine-grained interaction of the user with a web application
triggers events reactively handled by JavaScript code. This paper
explores channels for leaking sensitive information through con-
structs in a reactive language. We propose a general and realiz-
able security framework for preventing information leaks in a re-
active setting with such features as new handler creation and hier-
archical event structures. While prior work largely takes an all-or-
nothing approach to information flows due to intermediate output,
our framework tightly regulates the bandwidth of such flows: at
most log(n+1) bits are allowed to be released, where n is the num-
ber of public inputs to the program. We gain flexibility from distin-
guishing between the security levels of message existence and con-
tent. A combination of flow-sensitive analysis and buffering output
enables us to enforce security without being overly restrictive.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.4.6 [Security and
Protection]: Information flow controls

General Terms Languages, Security

Keywords Information flow, event model, reactive programming

1. Introduction
Event-based communication is a major source of power and flex-
ibility for today’s applications. For example, in the context of a
web browser, the dynamism of user experience is driven by events:
fine-grained interaction of the user with a web application triggers
events reactively handled by JavaScript code. Unfortunately, the
power of event-based communication opens up channels for leak-
ing sensitive information. This is a concern where programs operate
on data of different levels of sensitivity. For example, a web mashup
is a web application that integrates several services into a new com-
bined service. Typically, a web mashup contains JavaScript code
from different Internet domains integrated into a single page. It is
essential that sensitive information such as user clicks or input form
data (say, in an online shopping part of the mashup) is not propa-
gated to a third party (say, an advertisement part of the mashup).
At the same time, separation and isolation based on safe language

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLAS’11 5 June 2011, San Jose, California, USA
Copyright c© 2011 ACM [copyright data to be supplied]. . . $10.00

subsets and reference monitoring [12, 16, 28, 29, 35] is often too
restrictive: isolating Google Maps in a mashup from the rest of the
web application renders the map-service mashup useless. Hence, a
fine-grained approach is desirable, where information flow between
inputs and outputs is tracked as it is propagated by program con-
structs [30, 47]. However, information flow in such a scenario is a
delicate problem. In the presence of events, there are channels for
leaking information that do not arise in standard programming lan-
guages [47]. We illustrate the delicacies with web-based examples,
but note that the nature of this problem is general.

Attacker model We are interested in securing reactive programs
that do not possess any secrets initially. However, a program in-
teract with its environment by input and output events. Input events
might carry secret information (e.g., reading the content of a cookie
in JavaScript). Programs may generate output events that might
carry public information (e.g., loading an image from a third-party
server). Assuming the attacker observes (or controls) public input,
the attacker’s goal is to deduce information about secret inputs from
public outputs. In this model, the only attacker-observable behavior
is public output. Internal program behavior such as variable assign-
ment and (non)termination are invisible from outside.

Tracking information flow Some events are more secret than
others, e.g., user clicks in an online banking application might need
to be protected, while clicks in an online shopping application can
be released to a statistics service. The challenge is not to release
too much: the fact that a user has submitted a credit-card form
can be released, but the credit card number must stay secret. We
thus distinguish between the security level of event existence and
content. In the former example, both are secret, but in the latter the
existence is public and content is secret. Our model is similar to
security labels for structured datatypes [36, 37].

In a standard reactive language, an event triggers a single han-
dler. In a more general setting, a single event might lead to trig-
gering several handlers in an event hierarchy. Coming back to the
web setting, an event hierarchy is induced by the Document Ob-
ject Model (DOM) [22] tree, a language-independent interface that
regulates access to the tree structure of the underlying HTML doc-
ument. For example, it is possible to set onclick handlers in both
the body part and a div part inside the body. In the event of a click
inside the div part, both will be triggered and run in sequence.

Balancing security and permissiveness Motivated by the sce-
nario of running potentially malicious JavaScript in a browser,
we assume the code is in the hands of the attacker. Hence, all
possible channels of information leaks by malicious code need
to be addressed. The baseline security condition of noninterfer-
ence [10, 19] prescribes independence of public output from secret
input. In a reactive setting, the possibility of observing interme-
diate outputs needs special attention as it allows high-bandwidth
leakage of secrets to the attacker. To this end, existing baseline se-
curity conditions in a setting with communication primitives offer
two choices of treating intermediate output. We use the terminol-

ogy of progress-(in)sensitivity to highlight the difference. Progress-
sensitive noninterference (PSNI) (e.g., [3, 38]) demands that the
sequence of outputs produced by programs is fully independent of
secrets. This is a strong guarantee, which comes at a price of re-
strictiveness when enforcing it: Typically, looping on secret data is
disallowed [53]. At the other extreme is progress-insensitive non-
interference (PINI) (e.g., [2, 3, 7]) that allows programs looping on
secret data as long as there are no public side effects in the body
loop. However, PINI is vulnerable to brute-force attacks. Consider
the source for the following simple web page in Figure 1, where
function brute is based on an example by Askarov et al. [2].

<html> <head> <script type="text/javascript">
function out(v) {

req=new XMLHttpRequest();
req.open("GET","a.php?guess=" + v,false);
req.send(); }

function save() {
h = document.getElementById(’secret’).value; }

function brute() {
l = 0 ;
while(1){

out(l) ;
while(l==h){} ;
l = l + 1 ;

} ; }
</script> </head> <body> <center>
<input type="text" id="secret"/>
<input type="button" value="Save" onclick="save()"/>

<input type="button" value="Brute" onclick="brute()"/>
</center> </body> </html>

Figure 1: Brute-force attack in JavaScript

Assume h, secret and save-clicks are secret and brute-clicks
public. This web page lets the user save a secret value in variable
h, and then have the program brute-force the value stored on h
by successively guessing from 0 to h. Note that there is no explicit
passing of sensitive data to the adversary in the code. Nevertheless,
when this script diverges, it has already sent the value from h to a
server-side script a.php (through GET-attribute guess) which can
then log it for the world to see. This problematic program is deemed
secure by PINI and enforcement mechanisms for it [2, 3, 7]).
The overrestrictiveness of PSNI and entire-secret leaks of PINI
currently leave no choice for anything in-between.

This motivates the need for deeper understanding of security
specification and enforcement for reactive languages. While the
main long-term motivation for our work is the reactive part of
JavaScript in a browser, our results are general and applicable to
languages with various flavors of intermediate output. Our results
are particularly relevant to languages that feature events, like Er-
lang, Java, and Smalltalk. Once we gain fundamental understand-
ing of the impact of events, we are in a good position to advance
implementation and practical evaluation in a browser setting.

The paper presents the following contributions to securing in-
formation flow in event-based systems:

Security framework We introduce a general framework for rea-
soning about security of reactive programs. A novel contribution
is a security framework that addresses the challenge of adequately
treating intermediate output. Our security condition occupies the
sweet spot between the restrictive PSNI and leaky PINI. It is more
restrictive than the latter (preventing brute-force leaks) and more
permissive than the former (allowing loops on high data). The con-
dition is a form of noninterference [10, 19], that builds insensitivity
to computation progress into phases of computation between public
inputs. The condition requires that once a public input is consumed,
no matter what the secret inputs to the system are, there are only
two outcomes until the system is ready to consume another public
input: either silent divergence or convergence with the same public

PINI

TPINI

IBNI

PSNI

TPSNI

Figure 2: Relative permissiveness of enforcement

output. Thus, a reactive system that diverges while handling an ob-
servable phase handles that phase silently. Our approach enables
tight control over the bandwidth of allowed leaks by connecting it
to the number of processed inputs: we show at most log(n+1) bits
are allowed to be released, where n is the number of public inputs
to the program. Thus, by controlling the number of public inputs
to be processed, we have full control of the amount of released
information. This is a major improvement over PINI, where there
is no bound on how much information is leaked when handling
a single input. Further, the framework includes the possibility for
each channel to distinguish between the security levels of message
presence and message content. We then develop a JavaScript-like
language with such features as new handler creation and hierarchi-
cal event handling, to model and analyze code-in-a-browser in this
framework. We model a general notion of a hierarchy that includes
such tree-like structures as the DOM tree in browsers.

Permissive enforcement We support the language with permis-
sive enforcement based on a novel combination of static analysis
and transformation. One source of permissiveness is flow sensitiv-
ity. Our static analysis computes a mapping from each sink (output
channel) to the set of sources (input channels) from which input
can leak on that sink. Another important source of permissiveness
is output buffering, realized as a transformation that replaces out-
puts by appending to a queue and flushes the queue immediately
before getting ready to receive new input. This transformation re-
moves information leaks from intermediate observations as in the
example in Figure 1. Further, we show that all potentially leaking
programs that satisfy PINI are repaired by buffering. Buffering out-
put to protect against brute-force attacks is the main thrust of our
work, and we expect it have most practical consequences.

The set-inclusion diagram in Figure 2 illustrates the relative per-
missiveness of our enforcement. Bold circles correspond to the sets
of programs that satisfy the increasingly liberal security conditions
PSNI, IBNI, and PINI (where IBNI is our input-bounded nonin-
terference condition). The dashed shapes correspond to the sets of
programs that are certified by type-based enforcement TPSNI and
TPINI for PSNI and PINI, respectively. The arrows correspond to
buffering: programs that are typable with the type system for PINI
are moved by buffering from the set TPINI into the set of IBNI
programs. This illustrates that we are able to deal with programs in
TPINI (in contrast to the restrictive TPSNI) and at the same time
guarantee the security property IBNI (in contrast to the leaky PINI).

The rest of the paper is organized as follows. Section 2 presents
a stream-based model for reactive systems. Section 3 motivates and

introduces IBNI and gives its quantitative implication. Section 4
presents a simple reactive language with new handler creation.
Section 5 presents a sound enforcement mechanism for IBNI in
this language. Section 6 discusses related work. Section 7 contains
conclusions and directions for future work.

2. Stream model
Our goal is to secure information flow in systems producing in-
termediate output. We address this issue in an incarnation of a
gradually-maturing stream-based security model for reactive sys-
tems [2, 7, 9, 38]. Here, information can only enter and exit our sys-
tems through channel-based message passing. Each channel comes
with a label expressing the confidentiality level of the information
it carries. We then compare each possible input sequence to the re-
sulting output sequence and ensure that confidential information in
inputs does not leak into public outputs. An important issue this
model deals with is that of feedback loops. Since some inputs can
be generated as a function of outputs, it would seem that we have to
consider the behavior of the environment when performing infor-
mation flow security analysis on our systems, like in [38]. However,
as proved in [9], for deterministic programs, it is sufficient to con-
sider only input sequences which are independent of outputs, as
quantifying over all these in our security conditions will necessar-
ily include dependent input sequences. This yields compositional
results, as we do not have to take into account the behavior of the
environment. A sequence of inputs or outputs can then be given as a
single stream, i.e., a (possibly infinite) list of messages. We assume
that the environment supplies an input and output buffer for the
input and output stream, thus making the communication between
our reactive system and its environment asynchronous. This greatly
simplifies our framework, as a reactive system can be considered
as a stream transducer, transforming a given input stream I into an
output stream O, much like a batch-job program transforms an ini-
tial memory to a final memory, a scenario thoroughly explored in
information-flow security [47]. Still, there is a key difference from
batch-job computation: the possibility of producing intermediate
outputs. We will return to this difference and show how to secure
the information-flow channel (progress) it introduces.

This model appears in its most mature form in [7], and it is this
model ours resembles most. Like [7], we treat deterministic reac-
tive systems which operate on streams. However, instead of defin-
ing streams and relations on these coinductively, our treatment of
streams resembles the one used in Scheme and Haskell, and re-
lations on streams are defined inductively. Furthermore, our secu-
rity policies are more fine-grained, distinguishing the confidential-
ity level of message existence and content.

2.1 Reactive systems
Our computation model is that of reactive systems, in which com-
putation occurs as a reaction to an external event. These events,
which could e.g. represent a keystroke, GUI button click, network
packet reception, sensor reading, or timer event, are triggered in
the system by the environment in which the system runs. This en-
vironment could for instance consist of users, hardware, or other
systems, such as a web browser, as in our setting where the reactive
system is a JavaScript program. Indeed, as exemplified by a web
browser running in an environment consisting of a user and other
computers on the network, a reactive system can itself be a reac-
tive system running in an even greater environment. While reacting
to an event, a reactive system can change its state, as well as trig-
ger zero or more events in its environment. This interaction of a
reactive system with its environment is modeled by channel-based
message-passing. Each event the system reacts to is associated an
input channel, and the environment triggers a given event in the
system by sending a message, containing a value, to the system

on the associated channel. Likewise, the system triggers events in
its environment by sending messages on output channels. Inputs i,
outputs o, and messages s are then given by

i ::= ch(v) o ::= c̄h(v) | • s ::= i | o

where ch(v) (resp. c̄h(v)) denotes a message received (resp. sent)
on channel ch carrying value v, and • denotes that a silent, internal
step, or “tick” occurred in the source of the • (e.g. an internal chan-
nel synchronization, memory assignment, etc.). These channels are
the only external interface to the reactive system, and therefore, the
only medium by which information can enter and exit our systems.

The behavior of a reactive system can now be given by a labeled
transition system with actions ranged by i and o. That is, a triple

(Q,A, { a−→| a ∈ A}),

whereQ is a set of states,A a set of actions, and a−→⊆ Q×Q, for all
a ∈ A. Intuitively, if q is a state which can, as its next computation
step, input i and enter state q′, then q i−→ q′. Likewise, q o−→ q′ if q
can output o and enter state q′ as its next step. Practical computation
models native to this paradigm include event loops, actors in the
Actor Model, and, of interest here, JavaScript programs.

2.2 Streams
Consider the classic list operators cons, head and tail, given by

cons(x,X) = x :: X head(x :: X) = x tail(x :: X) = X.

Here, (::) is a data constructor, where x :: X represents X with
x prepended (or “cons”ed). For languages with lists, we define
the next operator � to evaluate a term X until it reaches the form
x :: X ′ for some terms x and X ′1. Without further evaluating x
and X ′, � then yields x :: X ′. So, X � x :: X ′. For example, given

inc(n) = n :: inc(n+ 1),

head(inc(3)) will first evaluate to head(3 :: inc(3 + 1)) since
inc(3)�3 :: inc(3+1). At this point, with an appropriate evaluation
strategy, head(3 :: inc(3 + 1)) can evaluate directly to 3, without
first evaluating inc(3 + 1) to a value. This idea of reducing a term
only as needed (i.e. lazily) to yield the head-and-tail of a list exists
as streams in Scheme and lists in Haskell, with which you can
express finite or infinite lists. Now, S is a (non-empty) message
stream if S�s :: S′ for some s and S′. If � is not defined on S, then
S is an empty message stream, denoted by the empty list symbol
[]. Input streams I and output streams O are defined similarly.
Throughout the paper, we frequently denote by s :: S′ any stream
S for which S � s :: S′.

How do we compare possibly infinite lists? We use the idea that
two streams are equivalent if they cannot be distinguished. S1 and
S2 are distinct, written S1 ≡̇ S2 if a component-wise equality check
of S1 and S2 eventually2 fails. S1 ≡̇ S2 is defined in Figure 3.
Throughout the paper, if a rule is labeled with (∗) on its right, then
we have, for brevity, neglected to write the symmetric counterpart
of the (∗)-labeled rule into the definition (to obtain the symmetric
counterpart of the (∗)-labeled rule in Figure 3, swap s1 :: S1 and
[]). We then define stream equivalence as

S1 ≡ S2
def
= ¬(S1 ≡̇ S2).

2.3 Runs as streams
Viewed externally, a run (trace) of a reactive system state q on an
input stream I , denoted q(I), is a sequence of messages consisting

1 That is, x :: X′ is the head normal form of X .
2 After a finite number of equality checks.

s1 6= s2

s1 :: S1 ≡̇ s2 :: S2

s1 = s2 S1 ≡̇ S2

s1 :: S1 ≡̇ s2 :: S2

−
s1 :: S1 ≡̇ []

(∗)

Figure 3: Distinction of streams.

of the inputs in I interleaved with the outputs emitted while q reacts
to each input. We interpret a run as a message stream in Figure 4
by defining � on runs. While this definition allows runs to be
nondeterministic, we assume q(I), and thus q, to be deterministic,
as we are ultimately interested in the reactive part of JavaScript
(which is deterministic and single-threaded). However, the step to
nondeterminism in our results is small: Nondeterministic choice
can be resolved through a labeled reduction. By giving a random
choice stream to a run, we effectively “factor out” nondeterminism
into streams, as per O’Neil et al. [38].

q
i−→ q′

q(i :: I) � i :: q′(I)

q
o−→ q′

q(I) � o :: q′(I)

Figure 4: Next operator for a run.

When we are only interested in the outputs in a stream, we re-
interpret the stream, using the definition of � in Figure 5. The re-
interpretation can be viewed as an operator (·o) which “filters” (by
need) the inputs from a stream3, yielding the outputs.

So � o :: O

(i :: S)o � o :: O

−
(o :: S)o � o :: So

Figure 5: Outputs in a stream.

When defining security for reactive systems, we need only con-
sider input streams of finite length. Assume a given infinite input
stream causes our system to leak. Then there must be a finite in-
put stream which causes the same leak. Otherwise, the “attack” re-
quires infinite consumption to succeed, in which case the attack
never finishes. Similarly, we only need to consider messages which
are finitely far into the output stream. Therefore it suffices to define
conditions on streams in security definitions inductively.

In summary, a stream is a possibly infinite list of messages. A
run q(I) of a reactive system q on an input stream I can be seen as
a possible interaction of q with an environment that feeds I to q. In
that case, q transduces I to the output stream O = (q(I))o.

3. Security of reactive systems
We now formalize a notion of information security which rejects
leaking systems. As mentioned earlier, the observables of a reactive
system are its inputs and outputs. Intuitively, if an I is changed in
a way that cannot be observed, then there must be no observable
difference in the resulting O. This intuition corresponds to the
notion of noninterference [9, 10, 19].

Whether a message on a channel is observable or not is indi-
cated by a security label associated with the channel. We assume a
lattice of security levels (L,v) expressing levels of confidentiality.
In our examples, L = {H,L} and v= {(H,H), (L,H), (L,L)},
with H for “high” and L for “low” confidentiality. We let lbl(ch),

3 Like “filter” in Python, Erlang and Haskell.

the security label we associate with a channel ch , be a pair of secu-
rity levels from L. Here, if lbl(ch) = llec , then lc is the confidential-
ity of values (content) passed on ch , and le the confidentiality of the
existence of a message on ch . For instance, a channel carrying se-
cret values but where the presence of messages is public has label
HL. We note that le v lc, since being capable of observing val-
ues on ch necessarily implies being capable of observing that some
message was transmitted on ch . So LH is impossible. We abbrevi-
ate channel labels HH , HL and LL by H , M and L, respectively.
In our examples we denote a channel by its label when its name
does not matter. We let lbl(ch(v)) = lbl(c̄h(v)) = lbl(ch). When
lbl(•) = llec , then lc = le, which in our examples equals H . The
distinction of existence and content levels is similar to that for gen-
eral datatypes. For example, Jif [36, 37] allows arrays, where the
length of the array is public but the individual elements are secret.

The security labels express who can observe what. An observer
is associated a security label l from L, indicating the observer is
capable of observing the value in a message s with lc v l, and
the presence of a message with le v l, where lbl(s) = llec . The
l-observables in s, obsl(s), are thus

obsl(•) =

{
• if le v l
· otherwise

obsl(ch(v)) =

 ch(v) if lc v l
ch(·) if lc 6v l ∧ le v l
· otherwise

obsl(c̄h(v)) defined in the same manner as obsl(ch(v))

where ·means nothing is observed4. We also use obsl(s) as a pred-
icate, where obsl(s) is false when obsl(s) = · and true otherwise.
Also, we define s1 =l s2 iff obsl(s1) = obsl(s2).

We are most interested in observable messages in message
streams in our security definitions. This motivates the stream re-
interpretation in Figure 6, which can be viewed as an operator (·l)
which “drops” unobservables from a stream, until an observable is
found5. We denote by s ::l S

′ any stream S for which Sl � o :: S′.

¬obsl(s) Sl � s
′ :: S′

(s :: S)l � s
′ :: S′

obsl(s)

(s :: S)l � s :: S

Figure 6: Next l-observable in a stream

We say S is l-silent, written sill(S), when S produces no l-
observables, that is, when Sl ≡ []. The finite stream predicate,
fin(S), is defined Figure 7.

−
fin([])

fin(S)

fin(s :: S)

Figure 7: Finite stream predicate

If we were not interested in unobservables at all, we would use
the re-interpretation (·!l) in Figure 8 which filters all unobservables
from a stream. However, (·!l) hides whether a stream is silent and
finite or silent and infinite. It is this subtle detail which is of key
importance in the distinction between the security definitions we
study in the next section.

4 The observer only learns that a message occurred on ch by observing
ch(·) or c̄h(·). The observer knows the specification of the reactive system,
so this might enable the observer to infer on the reactive system state.
5 Like “dropwhile” in Python, Erlang and Haskell.

¬obsl(s) S!
l � s

′ :: S′

(s :: S)!
l � s

′ :: S′
obsl(s)

(s :: S)!
l � s :: S!

l

Figure 8: l-observables in a stream

3.1 Progress and Termination
The choice on how to deal with diverging runs which produce no
observables leads to different security conditions. They differ in
whether or not they secure progress and termination observations.
An observer capable of observing termination will know, by in-
specting its observables, whether a program is currently diverging
or not. Such an observer would be capable of learning whether h is
“true” or not in the following program.

in M(h); while h {skip} (1)

This program inputs a (secret) value on M , binds it to h, and
then loops on h. Noninterference definitions which secure such
observations are termination-sensitive, and those that do not are
termination-insensitive. As we mention in the introduction, the
attacker in our reactive setting does not observe divergence because
of its internal nature; observers can only reason about the behavior
of our systems by observing message transmissions. An observer
capable of observing progress, on the other hand, will know how
far a program is in its computation. Such an observer would learn
the value of h in the following program.

in M(h); l := 0;
while l <= h {
out L(l); l := l + 1 }

(2)

After assigning an input v on M to h, this program outputs
the sequence of numbers 0..v on L. Observers not capable of
observing progress would, upon observing an output sequence
[L(0), L(1), L(2)] not know whether L(2) is the final output of the
program (meaning h = 2), or whether L(3) will follow. Thus, the
observer would never know the exact value of h. Noninterference
definitions which secure these observations are progress-sensitive,
and those that do not are progress-insensitive.

Bohannon et al. [7] define several noninterference notions, and
note two of them to be of practical interest. As they coincide on
finite streams, the interesting bit is how they treat infinite streams,
in particular, streams which eventually become silent and infinite.
The first definition, ID (indistinguishable) security, is given as

Definition 3.1. q is ID-secure iff, for all l, I1 and I2,

I1 ∼l I2 =⇒ (q(I1))o ∼l (q(I2))o,

where S1 ∼l S2
def
= ¬(S1 ∼̇l S2).

s1 6=l s2

s1 ::l S1 ∼̇l s2 ::l S2

s1 =l s2 S′1 ∼̇l S
′
2

s1 ::l S1 ∼̇l s2 ::l S2

sill(S2) fin(S2)

s ::l S1 ∼̇l S2
(∗)

Figure 9: ID-difference of streams

(∼̇l) is given in Figure 9. Intuitively, for S1 ∼l S2 to hold,
the l-observables of S1 and S2 must be component-wise equal,
until either a) both Sj have no more l-observables, or b) one Sj is
silent and infinite. ID-security rejects programs like (2). One might
therefore be lead to believe that ID-security is progress-sensitive.
However, by exploiting the exception in b), (2) can leak all of h

when progress is observable, as follows.

in M(h); l := 0;
while l <= h {
out L(l); l := l + 1
}; while 1 {skip}

(3)

In fact, program (3) has the same input-output behaviour as the
brute-force attack in Figure 1, extracted in program (4).

in M(h); l := 0;
while 1 {
out L(l);
while l = h {skip};
l := l + 1 }

(4)

ID-security is thus both progress- and termination-insensitive. One
might disregard this issue, thinking that, while there are leaky PINI-
secure programs, PINI-enforcements will surely reject them. How-
ever, the way programs like (4) exploit the “progress channel” can-
not be detected by current PINI-enforcements, since they contain
no explicit leaks of h or L effects in a H context (loop/branch).

The other definition noted to be of practical interest in [7] is CP
(co-productive) security, defined as follows.

Definition 3.2. q is CP-secure iff, for all l, I1 and I2,

I1 'l I2 =⇒ (q(I1))o 'l (q(I2))o,

where S1 'l S2
def
= ¬(S1 '̇l S2).

s1 6=l s2

s1 ::l S1 '̇l s2 ::l S2

s1 =l s2 S′1 '̇l S
′
2

s1 ::l S1 '̇l s2 ::l S2

sill(S2)

s ::l S1 '̇l S2
(∗)

Figure 10: CP-difference of streams

('l) is given in Figure 10. Observe the minute, yet key,
difference between ('̇l) and (∼̇l). Intuitively, for S1 'l S2

to hold, the observables of Si must match exactly. Indeed, we have
S1 'l S2 ⇐⇒ S1

!
l ≡ S2

!
l. CP-security rejects programs

like (4), and is thus progress-sensitive. It will, however, accept
programs like (1), where the only (possibly) observable behavioral
difference is whether the program diverges or not. So CP-security
is termination-insensitive.

We have now seen most of Figure 2. ID-security is PINI, the
set of programs proven ID-secure through enforcement make up
TPINI, CP-security is PSNI and the set of programs proven CP-
secure through enforcement make up TPSNI. While ID-security
can leak everything, CP-security leaks nothing in our setting since
we do not consider the termination channel exploitable6. Since
leaking arbitrarily on the progress channel is unacceptable in prac-
tice, CP-security is a much more reasonable property to aim for.
However, CP-security is hard to enforce permissively [53]; typi-
cally, looping on high data is disallowed.

3.2 IB-security
What makes the brute force attack successful is that before the
program reaches a point in its control flow where it will diverge,
the program has already leaked its secret through intermediate out-
puts. We devise a new security notion, IB-security (input-bounded),
which deals with this problem by requiring that a reactive sys-
tem that diverges while handling an observable phase handles that

6 If the termination status of a program is observable, then CP-security will
leak at most 1 bit (per execution) [2] in any case.

phase silently. Phases arise from the idea that an observer might
consider it possible for unobservables to appear before any observ-
able he sees in a stream, and after the last observable he sees. If S
is silent, all of S is one phase. Otherwise, the first phase of S are
all the messages in S up to (and including) the first observable. The
next phase is then the first phase in the rest of the stream. Figure 11
partitions a stream this way by placing a ∗ into the stream between
phases. Let o ::= ∗ | o , s ::= i | o and S be streams of s. We set
lbl(∗) = ⊥⊥ (= L in our examples), so obsl(∗) = ∗, for all l.

¬obsl(i)

(i :: S)p0l � i :: Sp0
l

obsl(i)

(i :: S)p0l � i :: Sp1
l

−
(o :: S)pkl � o :: Spk

l

−
(i :: S)p1l � ∗ :: (i :: S)p0l

Figure 11: Partition stream into observable phases. Sp
l

def
= Sp0

l

Definition 3.3. q is IB-secure iff, for all l, I1 and I2,

I1 ≈l I2 =⇒ (q(I1))p,lo ≈l (q(I2))p,lo ,

where Sp,l
o

def
= (Sp

l)o and S1 ≈l S2
def
= ¬(S1 ≈̇l S2).

s1 6=l s2

s1 ::l S1 ≈̇k
l s2 ::l S2

S1 ≈̇0
l S2

∗ ::l S1 ≈̇k
l ∗ ::l S2

s1 =l s2 S1 ≈̇1
l S2

s1 ::l S1 ≈̇k
l s2 ::l S2

sill(S2) fin(S2)

s ::l S1 ≈̇0
l S2

(∗)
sill(S2)

s ::l S1 ≈̇1
l S2

(∗)

Figure 12: IB-difference of partitioned streams. ≈̇l
def
= ≈̇0

l

(≈̇l) is given in Figure 12. IB-difference behaves like ID-
difference (this is (≈̇0

l)) until an observable message is found
in both S1 and S2; then it behaves like CP-difference (this is
(≈̇1

l)). As soon as a ∗ is observed in both S1 and S2, however, IB-
difference goes back to behaving like ID-difference. In both these
cases, observable messages, and ∗, have to match.

IB-security rejects Program (3). For instance, let I1 = [H(1)]
and I2 = [H(2)], each an input stream with a single phase.
Running (3) on these streams yields outputs that are IB-equivalent
to the lists O1 = [L(1), ↑] and O2 = [L(1), L(2), ↑], respectively
(where ↑ denotes silent divergence). However, O1 ≈̇l O2 since,
after matching L(1), one stream is silent and the other is not.

It should not be too surprising that IB-security resides between
ID-security and CP-security. The proofs of these and further formal
results are given in the full version of this paper [40].

Proposition 3.1. If q is CP-secure, then q is IB-secure.

Proposition 3.2. If q is IB-secure, then q is ID-secure.

IB-security does not stop progress leaks entirely. For instance,
the “guess” attack in (5) is IB-secure while an observer can learn
the correctness of his guess by probing the responsiveness of (5).

in H(h);
while 1 {
in L(l);
while l = h {skip};
out L(l); }

(5)

A JavaScript modeling of this program is given in Figure 13. Here,

<html> <head> <script type="text/javascript">
/* functions out(v) and save() same as in Figure 1 */
function guess(v) {

while(v==h){};
out(v);

}
</script> </head> <body> <center>
<input type="text" id="secret"/>
<input type="button" value="Save" onclick="save()"/>

<input type="text" id="public"/>
<input type="button" value="Guess"
onclick="guess(document.getElementById(’public’).value)"/>
</center> </body> </html>

Figure 13: Guess attack in JavaScript

the guess is fed by the user through (public) clicks on a guess
button7. The key difference between programs (3) and (5) is that
program (5) leaks only “a little” as a reaction to each phase, and
thus has a lower bandwidth on the progress channel. A crucial
question arises: What is the maximum bandwidth of leaks IB-
security permits on the progress channel? We answer this question
in the following section.

3.3 Quantitative guarantee
Our security condition entails a tight quantitative security guar-
antee. We utilize Smith’s recent model for quantitative security.
Smith [51] defines the notion of vulnerability V (X) as the worst-
case probability of guessing the value of secret X by an adversary
in one try. The measure of information quantity is then defined as
− log V (X), which corresponds to min-entropy. Based on the in-
tuition

information leaked = initial uncertainty − remaining uncertainty,

Smith defines information leakage, which for deterministic pro-
grams and uniformly distributed secrets amounts to log |S|, where
|S| is the size of the set of possible public outputs S given that the
public input is fixed. |S| translates to the number of indistinguisha-
bility classes for the high input, which, in effect, is the number of
different possibilities for the phases of an input stream. This is also
in line with Lowe [27], who measures the number of secret behav-
iors distinguished by an attacker in a nondeterministic setting.

Smith’s model allows us to obtain a quantitative guarantee with-
out reasoning about probabilities. Indeed, it suffices to give an
estimate on the number of possible public observations in order
to derive min-entropy. For the quantitative results, we assume in-
put streams are drawn from a finite universe U(IL), where IL

is a (fixed) stream of observables where IL ≡ I !
l holds for each

I ∈ U(IL). Given that the number of input streams satisfying this
criteria is infinite, and that we thereby seemingly lose precision by
assuming a finite universe, we note that the result which is based on
this assumption holds regardless of how we fix our finite universe.

Let E be an equivalence relation, [a]EA the E-equivalence class
of a inA, andA/E the set ofE-equivalence classes inA. Formally,

[a]EA
def
= {b ∈ A | (a, b) ∈ E}

A/E
def
= {[a]EA | a ∈ A}.

Definition 3.4 (k-bit security). Let IL and U(IL) be given, U(IL)
uniformly distributed, and q be a system taking input from U(IL).
Then q is k-bit secure if k ≤ log2 |S|, where

q(U(IL))
def
= {(q(I))o | I ∈ U(IL)}

S
def
= q(U(IL))/ 'l

7 A similar example can be made where the guess comes from the network.

In our setting, a k-bit secure program leaks at most k bits. The
following program leaks whether the first value received on theM -
channel (if any) is even or odd.

in M(h); while (h % 2) {skip}; out L(0) (6)

For fixed low inputs in an input stream with at least 1 M -message,
the observer sees at most two kinds of outputs: those equivalent
to [] and [L(0)] (by 'l) respectively. As log2 |S| = log2 2 = 1,
Program (6) is at most 1-bit secure. Program (3), on the other
hand, eventually outputs the exact value received last on the H-
channel. In this case we have at most m possible outputs, where
m is the number of integers in U(IL). Since log2 |S| = log2 m,
and since all these bits come from a single secret input value,
Program (3) leaks that whole value. At last, the number of bits
leaked by Program (5) is a function of the length of the observables
IL. If IL has n messages, then IL has n + 1 phases. Depending
on the secret, the program can diverge when handling any of these
phases, or in none of them. The last phase must be handled silently.
We thus have n + 1 classes of outputs, so Program (5) is at most
log2(n+ 1)-bit secure.

Theorem 3.1. If q is IB-secure, then q is at most log2(n + 1)-bit
secure, where n is the nr. of observables in q’s input.

3.4 Buffering improves security
The reader might wonder which reactive systems in general are
IB-secure. It turns out that ID-secure systems which buffer outputs
between handling of inputs are IB-secure8. We give a buffered
re-interpretation of a stream in Figure 14, which buffers outputs
between each input. Basically, if S � o :: S′ for some o and S′,
then SB � o :: S′′ for some S′′ only if an input follows o in S, or S
is a finite number of outputs. We realize this idea with a two-mode
re-interpretation: buffer (annotation B), and flush (annotation F).
(S,O)B will, when the next operator is applied on it, queue non-•
outputs from S in O using the reverse “cons” constructor9. This
constructor interacts with the next operator as follows.

[] :: s � s :: [] (s :: S) :: s′ � s :: (S :: s′)

When an input is encountered,O is flushed. So,O practically takes
over for S until exhausted.

−
([], o :: O)B � o :: O

−
(• :: S,O)B � • :: (S,O)B

o 6= •
(o :: S,O)B � • :: (S,O :: o)B

(i :: S,O)F � s :: S′

(i :: S,O)B � s :: S′

−
(S, o :: O)F � o :: (S,O)F

−
(i :: S, [])F � i :: (S, [])B

Figure 14: Buffered stream. SB
def
= (S, [])B

Let qB be like q in every way, except when run on an input
stream I . The resulting stream is then (q(I))B instead of q(I).

Theorem 3.2. If q is ID-secure, then qB is IB-secure.

This theorem is central. It states that we can drastically reduce
the leak on the progress channel by running the program in a con-
text which buffers output. In practice, however, having the context
do this buffering is not always an option; in JavaScript, for instance,

8 While it is sufficient to buffer output between handing of observable input
phases, doing so is not viable in practise where there might be multiple (un-
known) observers at different observation levels (for instance, in a Mashup).
9 “snoc” in Haskell.

this would require changing the JavaScript interpreter. However, in
such a scenario, buffering can be realized through program trans-
formation, by “inlining” the buffering into the JavaScript program.
Then, provided the JavaScript program can be enforced to be ID-
secure, applying the buffering transformation on the program will
make it IB-secure. We now give a concrete example of an ID-
security enforcement and a buffering program transformation in a
JavaScript subset. The language extends the one given in [7], but
the enforcement and program transformation are ours.

4. Language
We now present a simple core language for reactive imperative sys-
tems, given in Figure 15. The language is a subset of JavaScript,
sharing many of its features and assumptions. In this language,
when reacting to an event, a reactive system runs a handler associ-
ated with that event, as well as all handlers above it in its hierarchy
of event handlers. Each such handler can change the state of the
reactive system, and trigger zero or more events in its environment.
Abstractly, our systems repeat the following: i) take the next avail-
able input, ii) produce zero or more outputs. Inputs are buffered,
and then handled in the order they are received in. Our programs
are single-threaded in the sense that it does not handle input mes-
sages concurrently. Input and output channels are disjoint, so our
programs cannot send messages to themselves. This last restriction
is not severe; in JavaScript, events generated procedurally are im-
plemented as procedure calls10. Besides, we are most interested in
how our systems react to their environment.

4.1 Syntax

p ::= · | ha; p
ha ::= ch(z){c}
c ::= skip
| c; c
| x := e
| if e {c} {c}
| while e {c}
| out ch(e)
| new ha

Figure 15: Syntax

Let programs, handlers, commands
and expressions be ranged by p,
ha , c, e, respectively, and let the
sets C, X, and V of channels, vari-
ables and values respectively be
ranged by ch , x, and v. A pro-
gram p is a list of handlers. When
p processes an input ch(v), it looks
through its list of handlers for a
ch-handler, ch(z){c}. If none is
found, ch(v) is dropped. If found,
p will execute the body of the han-
dler, c, with v in place of the for-
mal parameter z. A command is merely a program in a while lan-
guage, extended with output and handler creation. Beyond memory
inspection and modification, branching and looping, c can output
messages, and add/replace a handler to/in p. A memory, ranged by
µ, is a X→ V mapping which, initially, is 0 for all x. This memory
is global, so when p processes an input, the change in memory can
affect how other handlers process future input.

After (if) c terminates, p consults a hierarchy of channels H ,
processing ch(v) as if it were an input to the parent of ch (ef-
fectively forwarding ch(v) to the parent of ch). H(ch) yields the
parent channel of ch , or> if ch has no parent. In effect,H is a tree
(or a forest) and can be used to model e.g. the DOM tree. Once a
message has been forwarded to >, p will enter a state where it is
ready to process a new input.

We assume the presence of an expression language, which can
be more or less arbitrary, except the relation µ ` e ⇓ v, which
under memory µ reduces e to v, must be given. This relation must
be side-effect free, deterministic and terminating. X and V must be

10 timeOut events are an exception. However, we can model these by
considering setTimeout("s", ms); in JavaScript as a request to the
browser to send a message on a reserved channel after time ms to the
JavaScript, which stands ready with a handler which reacts by running s .

−
(µ, p, skip; c)

•−→ (µ, p, c)

(µ, p, c1)
o−→ (µ′, p, c′1)

(µ, p, c1; c2)
o−→ (µ′, p, c′1; c2)

µ ` e ⇓ v
(µ, p, x := e)

•−→ (µ[x 7→ v], p, skip)

µ ` e ⇓ v v 6= 0

(µ, p, if e {c1} {c2})
•−→ (µ, p, c1)

µ ` e ⇓ 0

(µ, p, if e {c1} {c2})
•−→ (µ, p, c2)

µ ` e ⇓ v

(µ, p, out ch(e))
c̄h(v)−−−→ (µ, p, skip)

µ ` e ⇓ 0

(µ, p, while e {c}) •−→ (µ, p, skip)

µ ` e ⇓ v v 6= 0

(µ, p, while e {c}) •−→ (µ, p, c; while e {c})
−

(µ, p, new ha)
•−→ (µ, ha; p, skip)

Figure 16: Reduction relation for commands

disjoint, and 0 ∈ V as 0 is treated as Boolean false in branching
and looping instructions. In our examples we have arithmetic and
conditional expressions over X∪{z}∪V, with V = N and operators
defined as usual.

4.2 Semantics
The operational semantics of our language is given as a labeled
transition relation on system states, ranged by q. There are two
kinds of states. Consumer states denote a system ready to process
new input, and are given as a memory-program pair. Producer
states denote a system currently handling input, producing output
as it goes. Such states are given as a 4-tuple consisting of the
current memory, program definition, message being handled, and
command being executed in response.

q ::= (µ, p) | (µ, p, i, c)

The labeled transition relation on q is defined in terms of the
following intermediate judgments.

(µ, p, c)
o−→ (µ′, p′, c′): A small-step labeled reduction stating

that, in memory µ, with program p, command c produces o
in a single step, modifying µ and p to µ′ and p′ while doing so,
and becoming c′. This reduction relation is given in Figure 16.
The only non-standard rules are the out ch(e) rule and the
new ha rule. The former emits output, and the latter adds a
handler definition as the head of p.

(p, i) ⇓ c: A big-step reduction for handler selection stating that,
given program p and input i, c is the command to be executed
in response to i. c is the body of the first ch-handler in p, where
i = ch(v)11. In c, any occurrence of the formal parameter
z has been replaced by v (except those appearing in new ha

11 new ch(z){c} thus effectively replaces the ch-handler in p.

−
(·, i) ⇓ skip

(p, ch ′(v)) ⇓ c′ ch 6= ch′

(ch(z){c}; p, ch ′(v)) ⇓ c′

−
(ch(z){c}; p, ch(v)) ⇓ c[z 7→ v]

Figure 17: Reduction relation for handler selection

(p, i) ⇓ c

(µ, p)
i−→ (µ, p, i, c)

(µ, p, c)
o−→ (µ′, p′, c′)

(µ, p, i, c)
o−→ (µ′, p′, i, c′)

H(ch) = >

(µ, p, ch(v), skip)
•−→ (µ, p)

H(ch) = ch ′ (µ, p)
ch′(v)−−−−→ (µ, p, ch ′(v), c)

(µ, p, ch(v), skip)
•−→ (µ, p, ch ′(v), c)

Figure 18: Reduction relation for programs

statements). When there is no handler for i in p, command skip
is chosen. This reduction relation is given in Figure 17.

The labeled transition rules for system states, q s−→ q′, are given
in Figure 18. The initial state of a reactive system defined by p
is the consumer state (µ0, p). Here, µ0(x) = 0, for all x ∈ X.
A q

i−→ q′ transition corresponds to feeding input i to a system in
consumer state q (which in turn enters producer state q′). Here,
handler selection rules are used to determine which command c
to execute in response to i. A q

o−→ q′ transition corresponds to
receiving output from a system in a producer state q (which in turn
enters state q′). Output o is the result of taking 1 transition in c,
except when c = skip, in which case the channel hierarchy H is
consulted to check whether the last input channel has a parent. If
so, the last input is forwarded to the handler for that parent. If not,
the system enters a consumer state. In any case, • is emitted.

4.3 Examples
Program (7), upon receiving ch i(v), outputs ¯cho(5) when v = 0
and ¯cho(4) otherwise.

ch i(z){if z {out cho(4)} {out cho(5)}} (7)

Given I1 = [ch i(0)] and I2 = [ch i(1)], Program (7) yields
q0(I1) = [•, ¯cho(5), •] and q0(I1) = [• , ¯cho(4), •]. Here, q0
denotes the initial state of the program under consideration. Pro-
gram (8), upon receiving a message on ch2

i , replace its ch1
i -handler

with a handler that, instead of forwarding ch1
i messages to cho un-

touched, adds 1 to the transmitted value.

ch1
i (z){out cho(z)}

ch2
i (z){new ch1

i (z){out cho(z + 1)}} (8)

Given I1 = [ch1
i (0)] and I2 = [ch2

i (5), ch1
i (0)] , Program (8)

yields q0(I1) = [¯cho(0), •] and q0(I2) = [•, •, ¯cho(1), •]. Pro-
gram (9) models Program (4) in our language.

H (z){h := z}
L(z) {l := 0;
while 1 {
out L(l);
while l = h {skip};
l := l + 1 } }

(9)

Finally, Figure 19 gives an impression of how JavaScript programs
can be modeled in our framework. Here, just like in JavaScript

DOM Tree (fragment)
html

head body

p p

HTML Source
<html onclick=Z>
<head></head>
<body onclick=Y >
<p onclick=X1>

Paragraph 1</p>
<p onclick=X2>

Paragraph 2</p>
</body></html>

Channel Hierarchy
>

clickhtml

clickbody

clickp1 clickp2

Reactive System
clickhtml(z){Z}
clickbody(z){Y }
clickp1(z){X1}
clickp2(z){X2}

Figure 19: Modeling JavaScript in our Framework

where an onclick-event in paragraph 1 causes X1, Y and Z
to be executed in response (in that order (in Firefox)), sending
clickp1(v) to the corresponding reactive system will cause X1 to
be executed, whereafter v gets forwarded to the parent handler of
clickp1 (namely clickbody), causing Y to be executed, etc.

5. Enforcement
We now develop the static enforcement mechanism for ID-security
given in Figures 20 and 21. Along with a program transformation
which turns ID-secure programs into IB-secure programs through
dynamic enforcement (given in Section 5.1), these two parts form
a mechanized approach to rejecting IB-insecure programs12. Al-
though the enforcement is phrased as a type system, it is by no
means a fundamental choice as there are several viable alternatives
such as abstract interpretation [11] for representing the analysis.

Each channel ch has two sub-channels associated with it, one
for existence of messages on ch , denoted che, and one for con-
tent of messages on ch , denoted chc. If lbl(ch) = llec , then we set
lbl(che) = le and lbl(chc) = lc. The sources (resp. sinks) of our
system are the input (resp. output) sub-channels. When analyzing
information flow in p, we are interested in knowing how p relates
sources and sinks. We (over)approximate this relationship with a
mapping Γ. Γ(che), resp. Γ(chc), is the set of sources that an ob-
server capable of observing existence, resp. content, of messages
on ch can obtain information from (by observing presence of mes-
sages, resp. values passed, on ch). Γ(che) ⊆ Γ(chc), for all ch ,
since being capable of observing values on ch necessarily implies
being capable of observing that some message was sent on ch . The
type checker checks whether a Γ correctly (over)approximates in-
formation flows in p, in which case p has type Γ, written ` p : Γ.

We let Ce = {che | ch ∈ C} for any C ⊆ C. Likewise for Cc.
Then Γ : I → P(I), where I = Ce ∪ Cc is the set of sources and
sinks, ranged by a. The set of sink types is the powerset of sources.
These form a lattice, with v, u and t defined as ⊆, ∩ and ∪. In
this way, our enforcement mechanism resembles the flow-sensitive
security-type system of [24]. There the powerset of information
sources is a “universal” flow lattice LU which all other flow lattices
L′ can be defined in terms of, and that a principal type of L′ can
be derived from the principal type of LU. Γ v Γ′ if Γ(a) v Γ′(a),
∀a ∈ I, so the Γs themselves form a lattice. Any typable p thus has
a principal (that is, least) type.

12 You can in fact replace our type system with any sound enforcement of
ID-security.

pc1 ` Γ1 p {c} p′ Γ′1

pc2 ` Γ2 p {c} p′ Γ′2
p2 v p1, Γ2 v Γ1, Γ′1 v Γ′2

−
pc ` Γ p {skip} p Γ

−
pc ` Γ p {ha} pc : ha; p Γ

pc ` Γ p {c1} p′ Γ′ pc ` Γ′ p′ {c2} p′′ Γ′′

pc ` Γ p {c1; c2} p′′ Γ′′

Γ ` e : T
pc ` Γ p {x := e} p Γ[x 7→ T t pc]

Γ ` e : T
pc ` Γ p {out ch(e)} p Γ[ch 7→ 〈T, pc〉]

Γ ` e : pc′ pc t pc′ ` Γ pi−1 {ci} pi Γ′ i = 1, 2

pc ` Γ p0 {if e {c1} {c2}} p2 Γ′

Γ ` e : pc′ pc t pc′ ` Γ p {c} p′ Γ

pc ` Γ p {while e {c}} p′ Γ

Figure 20: Command Type Rules

−
` · : Γ

` ⊥ : ha; p : Γ

` ha; p : Γ

pc t čh
e ` Γ[z 7→ čh

c
] p {c} p′ Γ[z 7→ čh

c
] Γ ` p′

` (pc : ch(z){c}; p) : Γ

Figure 21: Handler Type Rules

The type system assumes that loops and handlers can run an
arbitrary number of times, handlers can be run in any order, and
any possible definition of a handler is considered possibly active at
any time. Therefore, when a new command is encountered during
typing, it is brought to the “top level” (in a sense “flattening” p),
and typed there in the pc the new command was discovered in. So
we are in fact type checking a (slightly) richer syntactic category,

p ::= p | pc : ha; p , of programs where handlers can be paired
with the pc they were discovered in. Notice that this (simplified)
version of our type system infers nothing. It requires Γs of the
form Γ : I ∪ X → P(I). We note, though, that a principal
Γ : I → P(I) can indeed be inferred from p. This inference
involves several fixed point computations to make sure the inferred
Γ is (over)approximative wrt. the above assumptions.

Let T range over P(I). Here, Γ[x 7→ T] replaces the set of
sources Γ says can leak into x, with T . This makes our type system
flow-sensitive, taking into account the order of command execution.
This is in sharp contrast to flow-insensitive type systems, such as
those of [7, 54], which over-approximate by assigning the same
type to l := h; out L(l); l := 0 and l := h; l := 0; out L(l),
for instance. However, Γ[ch 7→ 〈T, T ′〉] inserts the content of
T ∪ T ′ (resp. T ′) to the set of sources Γ says can leak into chc

(resp. che).

Γ[x 7→ T](x′) =

{
T if x = x′,
Γ(x′) otherwise.

Γ[ch 7→ 〈T, T ′〉](y) =

 Γ(y) t T ′ if che = y,
Γ(y) t T t T ′ if chc = y,
Γ(y) otherwise.

We let čh = {ch ′ ∈ C | ∃n ∈ N .Hn(ch ′) = ch}, that is, the
set of all descendants of ch . c can be run as a reaction to receiving

a message on any ch ′ ∈ čh , so c runs in the context containing
information about the existence of messages on all channels in čh .
z could contain content from any of the čh channels. We assume
the presence of a typing relation for expressions Γ ` e : T , with
the requirement that for each variable x in e, Γ(x) v T .

The command typing judgment pc ` Γ p {c} p′ Γ′ should be
read “under context pc, command c takes an initial flow approxima-
tion Γ and program p to Γ′ and program p′”. Most of the rules are
standard, save the first rule in Figure 20, referred to as the “weak-
ening rule”. While the other rules permissively approximate infor-
mation flow in c, this rule allows us to conclude that more flows oc-
cur in c (yielding a weaker guarantee). This is needed when typing
while commands and whole handler bodies, as the typing must ap-
proximate an arbitrary number of executions of these. The program
typing judgment ` p : Γ should be read “Γ (over)approximates in-
formation flows in p”. The only interesting rule in Figure 21 is the
last one, which types a handler together with the pc it was discov-
ered in while traversing p. It types the handler body c under context
pc t ˇche, where ˇche is the information conveyed by the existence
of a message on ch , and any of its subchannels.

We close this section with the type soundness theorem. Γ is
consistent with the channel labeling if ∀a ∈ dom(Γ) . ∀a′ ∈
Γ(a) . lbl(a′) v lbl(a). Also, p is well-typed if ` p : Γ for some
consistent Γ. At last,

Theorem 5.1. If p is well-typed, then p is ID-secure.

5.1 Buffering Output
Ideally, a reactive system should stay reactive. Thus, one would
usually expect an event handler to always terminate, yielding finite
output, and allowing the reactive system to process the next input
symbol. For instance, in JavaScript, timeOut events are handled
with a lower priority than other events to prevent procedurally-
created events from starving other events. Also, when a JavaScript
program enters an infinite loop, the browser asks the user whether
he wants to terminate the reaction prematurely. One could argue
that any diverging program is either the product of a programming
error or a programmer with malicious intent, making the program
diverge in the hope that doing so makes the program pass a static
enforcement check and still leak.

We present an encoding of programs which makes a program
buffer its output until it is ready to process a new input. Buffering
output mitigates the bandwidth of leaks due to intermediate out-
put. One downside is that this encoding will mute handlers that
diverge while producing output. However, our justification for con-
sidering buffering useful is that programs with diverging handlers
do not belong to the paradigm of reactive systems. The program
transformation buff(p), given in Figure 22, replaces each output
command out ch(v) with an “enqueue” command enq , queuing
idx(ch) and v in q. Here, idx is a bijection from the n channels oc-
curring in p and {1..n}. Control for flushing the queue, co, is then
added at the end of each root handler. deq yields the next element in
a queue and drop drops the next element in the queue. ci initializes
the queue q to the empty queue if q has the initial variable value 0.

The effect of this buffering is the same as that of running the
original program in a wrapper which buffers outputs, like the one
given in Figure 14. This leads to the following observation.

Theorem 5.2. If p is ID-secure, then buff(p) is IB-secure.

We summarize the quantitative implication in this theorem.

Theorem 5.3. If ` p, then buff(p) is log2(n+ 1)-bit secure where
n is the number of observables in the input to buff(p).

So, applying a JavaScript implementation of buff(·) on the
script from Figure 1 yields an IB-secure program, thus limiting the
bandwidth of the progress channel from arbitrary to log2(n+ 1).

buff(·) is homomorphic for recursively defined objects, and leaves
atomic objects unchanged, with these exceptions:

buff(ch(z){c}) =

ch(z){ci; buff(c); co}

if H(ch) = >,
ch(z){ci; buff(c)}

otherwise.
buff(out ch(e)) = q := enq idx(ch) enq e q

Here,

ci = if q = 0 {q := emptyq} {skip}
co = while q 6= emptyq {

chout := deq q;
val := deq drop q;
q := drop drop q;
if chout = 1 {out ch1(val)} {skip};
...
if chout = n {out chn(val)} {skip}}

Figure 22: Buffering Encoding

6. Related work
Security of event-driven systems has been investigated in the con-
text of process calculi [17, 20, 21, 25, 39, 44, 45] and event-based
abstractions [31, 32, 46]. Connections with security models for
more concrete programming languages have been made [18, 33].
However, relatively little has been done on exploring the flow of
information through language constructs in reactive languages.

Sabelfeld and Mantel [46] investigate the impact of different
types of channels (secret, encrypted, public) and different types of
communication (synchronous and asynchronous) on information-
flow security. The encrypted channel is similar to our existential
channel, where only the presence (not the content) of messages is
visible to attackers. The origins of existence and content levels are
in security labels for datatypes. For example, Jif [36, 37] allows
arrays, where the length of the array is public but the individual
elements are secret.

O’Neil et al. [38] investigate the security of interactive pro-
grams. They focus on protecting secret user strategies from leaking
to the adversary. Clark and Hunt [9] note that it makes no difference
in a deterministic setting whether the input/output is represented by
strategies or streams. As discussed in Section 1, ONeil et al. [38], as
well as Askarov and Sabelfeld [3], consider termination-sensitive
noninterference. The price of termination-sensitivity is restrictive-
ness: loops with secret guards will likely break security and will
hence be rejected by the respective enforcements.

Almeida Matos et al. [34] propose a type system for noninter-
ference and nondisclosure properties. They focus on suspension
features and leaks associated with them. Communication is mod-
eled by streams in security formalizations by Askarov et al. [1]
for a language with cryptographic primitives and by Askarov and
Sabelfeld [3] for a language with dynamic code evaluation and de-
classification primitives.

Askarov et al. [2] clarify the impact of leaking information via
(non)termination of programs in the presence of intermediate out-
put. Restrictions on language constructs that might result in ab-
normal termination or divergence, originating in classical security
analysis [13, 54] and supported in modern information-flow tools
Jif [37], FlowCaml [50], and the SPARK Examiner [6, 8], are not
strong enough to prevent brute-force attacks as Program 4.

As mentioned in Section 2, Bohannon et al. propose secu-
rity definitions for reactive systems that correspond to four in-
distinguishability relations on streams. They emphasize (progress-
sensitive) CP-security and (progress-insensitive) ID-security and

choose to focus on the latter. Distinct feature of our approach com-
pared to that of Bohannon et al. is (i) simple framework (finite in-
ductive streams rather than infinite streams and coinductive defini-
tions), (ii) new handler creation, (iii) strong security guarantees (the
security definition of Bohannon et al. is similar in spirit to PINI [2]
which allows leaking secrets entirely via the intermediate output,
whereas we allow only one bit to be leaked at most per consumed
public input), (iv) distinguishing the security level of message exis-
tence and content, (v) output buffering to guarantee strong security,
and (vi) a more permissive flow-sensitive enforcement.

Askarov et al. [2] demonstrate that progress-insensitive nonin-
terference allows leaking secrets in non-polynomial time in the size
of the secret. In contrast, our security condition provides a tight
quantitative guarantee: the number of leaked bits is bounded by
log2(n + 1), where n is the number of public inputs. Quantitative
information-flow security is a mature area by itself. Smith [51] pro-
vides an excellent summary of the state of the art. We adopt Smith’s
min-entropy based definition of quantitative security in our paper.
To the best of our knowledge, quantitative security of reactive pro-
grams has not been explored previously.

Devriese and Piessens [14] suggest splitting the execution of a
program onto threads operating at different security levels. Only the
thread at a given level is allowed to consume input from a channel
labeled with level. A similar mechanism is in place for output.

Tracking information flow in web applications is becoming
increasingly important, e.g., recent highlights are a server-side
mechanism by Huang et al. [23] and a client-side mechanism for
JavaScript by Vogt et al. [52], although, like a number of related ap-
proaches, they do not discuss soundness. Mozilla’s ongoing project
FlowSafe [15] aims at extending Firefox with runtime information-
flow tracking, where dynamic information-flow monitoring [4, 5]
lies at its core. Recently, Magazinius et al. [30] have proposed how
to support decentralized policies with possible mutual distrust for
dynamically tracking information flow in mashups.

7. Conclusion
We have proposed a framework for information-flow security of re-
active programs. The framework tightly regulates the bandwidth of
leaks due to intermediate output: at most log(n+1) bits are allowed
to be released, where n is the number of public inputs to the pro-
gram. This provides much-desired middle ground between the Dra-
conian progress-sensitive and the brute-force attackable progress-
insensitive security. The framework includes a flexible treatment of
channels: it is possible to reveal the existence of messages and at
the same time protect their content. We address features of reactive
programs that are important in a dynamic environment (such as in
a web browser): new handler creation and hierarchical event han-
dling. Although our security requirement is strong, it is realizable:
we have presented a combination of flow-sensitive static analysis
and output buffering to guarantee security. The model scales up to
handle exceptions due to the insensitivity to abnormal termination
can be treated in the same way as nontermination. Thus, uncaught
exceptions due to, say, partial operators, in high context correspond
to looping in high context which is allowed by both our enforce-
ment and security condition.

Future work includes explorations of further features of re-
active languages, which will allow us to treat channels as first-
class values. Another important direction of current and future
work is integration of our approach with the larger research pro-
gram [3, 30, 41, 43] and experiments with case studies. Of partic-
ular focus is supporting policies for intentional information release
or declassification [3] (including decentralized policies such as in
web mashups [30]), timeout events [41], and interaction with the
DOM tree [43]. We are experimenting with an enforcement mech-
anism for JavaScript that is based on an inlining transformation.

In a malicious-code scenario, it is important to cover all pos-
sible channels of leaking information. This paper gives particular
attention to the leaks via intermediate output because they can be
magnified into brute-force attacks, as illustrated in the example in
Section 1. Other information channels such as via timing [41] and
resource exhaustion [2] are important directions of future work.

We are investigating dynamic enforcement by runtime monitor-
ing along the lines of recent series of work on dynamic information-
flow tracking [3–5, 26, 42, 48, 49]. Dynamic enforcement provides
immediate advantages for handling dynamic language constructs
and extending our approach to dynamic channel hierarchies.

We anticipate it is straightforward to generalize our security
framework to state-transition systems and parametrize on when
buffering is done. We expect a generalization of Theorem 5.3
to guarantee that high-bandwidth leaks via progress of single
events are mitigated into low-bandwidth leaks via progress of event
chunks. However, as the focus of the present paper is on reactive
systems, such a framework is subject to future investigation.

Finally, we are exploring the possibility of giving the program-
mer control over flushing the output buffer. When several public
inputs can be processed until the output buffer is flushed, we have
the potential of providing stronger guarantees on the number of
leaked bits. The potential of this alternative depends on common
usage patterns in existing applications, which we plan to roadmap.

Acknowledgments Thanks are due to Cédric Fournet for the
suggestion of buffering output and to Daniel Hedin, Sebastian Hunt
and anonymous reviewers for useful discussions. This work was
funded by the European Community under the WebSand project
and the Swedish research agencies SSF and VR.

References
[1] A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-masked

flows. Theoretical Computer Science, 402:82–101, August 2008.

[2] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-
insensitive noninterference leaks more than just a bit. In Proc. Euro-
pean Symp. on Research in Computer Security, volume 5283 of LNCS,
pages 333–348. Springer-Verlag, October 2008.

[3] A. Askarov and A. Sabelfeld. Tight enforcement of information-
release policies for dynamic languages. In Proc. IEEE Computer
Security Foundations Symposium, July 2009.

[4] T. H. Austin and C. Flanagan. Efficient purely-dynamic information
flow analysis. In Proc. ACM Workshop on Programming Languages
and Analysis for Security (PLAS), June 2009.

[5] T. H. Austin and C. Flanagan. Permissive dynamic information flow
analysis. In Proc. ACM Workshop on Programming Languages and
Analysis for Security (PLAS), June 2010.

[6] J. Barnes and JG Barnes. High Integrity Software: The SPARK Ap-
proach to Safety and Security. Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA, 2003.

[7] Aaron Bohannon, Benjamin C. Pierce, Vilhelm Sjöberg, Stephanie
Weirich, and Steve Zdancewic. Reactive noninterference. In ACM
Conference on Computer and Communications Security, pages 79–90,
November 2009.

[8] R. Chapman and A. Hilton. Enforcing security and safety models
with an information flow analysis tool. ACM SIGAda Ada Letters,
24(4):39–46, 2004.

[9] D. Clark and S. Hunt. Noninterference for deterministic interactive
programs. In Workshop on Formal Aspects in Security and Trust
(FAST’08), October 2008.

[10] E. S. Cohen. Information transmission in sequential programs. In
R. A. DeMillo, D. P. Dobkin, A. K. Jones, and R. J. Lipton, editors,
Foundations of Secure Computation, pages 297–335. Academic Press,
1978.

[11] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxima-

tion of fixpoints. In Proc. ACM Symp. on Principles of Programming
Languages, pages 238–252, January 1977.

[12] D. Crockford. Making javascript safe for advertising. adsafe.org,
2009.

[13] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Comm. of the ACM, 20(7):504–513, July 1977.

[14] D. Devriese and F. Piessens. Non-interference through secure multi-
execution. In Proc. IEEE Symp. on Security and Privacy, May 2010.

[15] B. Eich. Flowsafe: Information flow security for the browser.
https://wiki.mozilla.org/FlowSafe, October 2009.

[16] Facebook. FBJS. http://wiki.developers.facebook.com/
index.php/FBJS, 2009.

[17] R. Focardi and R. Gorrieri. A classification of security properties for
process algebras. J. Computer Security, 3(1):5–33, 1995.

[18] R. Focardi, S. Rossi, and A. Sabelfeld. Bridging language-based and
process calculi security. In Proc. Foundations of Software Science
and Computation Structure, volume 3441 of LNCS, pages 299–315.
Springer-Verlag, April 2005.

[19] J. A. Goguen and J. Meseguer. Security policies and security models.
In Proc. IEEE Symp. on Security and Privacy, pages 11–20, April
1982.

[20] K. Honda, V. Vasconcelos, and N. Yoshida. Secure information flow as
typed process behaviour. In Proc. European Symp. on Programming,
volume 1782 of LNCS, pages 180–199. Springer-Verlag, 2000.

[21] K. Honda and N. Yoshida. A uniform type structure for secure
information flow. In Proc. ACM Symp. on Principles of Programming
Languages, pages 81–92, January 2002.

[22] Arnaud Le Hors and Philippe Le Hegaret. Document Object Model
Level 3 Core Specification. Technical report, The World Wide Web
Consortium, 2004.

[23] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo.
Securing web application code by static analysis and runtime protec-
tion. In Proc. International Conference on World Wide Web, pages
40–52, May 2004.

[24] S. Hunt and D. Sands. On flow-sensitive security types. In Proc. ACM
Symp. on Principles of Programming Languages, pages 79–90, 2006.

[25] N. Kobayashi. Type-based information flow analysis for the pi-
calculus. Technical Report TR03-0007, Tokyo Institute of Technol-
ogy, October 2003.

[26] G. Le Guernic, Anindya Banerjee, Thomas Jensen, and David
Schmidt. Automata-based confidentiality monitoring. In Proc. Asian
Computing Science Conference (ASIAN’06), volume 4435 of LNCS.
Springer-Verlag, 2006.

[27] G. Lowe. Quantifying information flow. In Proc. IEEE Computer
Security Foundations Workshop, pages 18–31, June 2002.

[28] S. Maffeis, J.C. Mitchell, and A. Taly. Isolating javascript with filters,
rewriting, and wrappers. In Proc. of ESORICS’09. LNCS, 2009.

[29] S. Maffeis and A. Taly. Language-based isolation of untrusted
Javascript. In Proc. of CSF’09, IEEE, 2009. See also: Dep. of Com-
puting, Imperial College London, Technical Report DTR09-3, 2009.

[30] J. Magazinius, A. Askarov, and A. Sabelfeld. A lattice-based approach
to mashup security. In Proc. ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS), April 2010.

[31] H. Mantel. Possibilistic definitions of security – An assembly kit –.
In Proc. IEEE Computer Security Foundations Workshop, pages 185–
199, July 2000.

[32] H. Mantel. Information flow control and applications—Bridging a
gap. In Proc. Formal Methods Europe, volume 2021 of LNCS, pages
153–172. Springer-Verlag, March 2001.

[33] H. Mantel and A. Sabelfeld. A unifying approach to the security
of distributed and multi-threaded programs. J. Computer Security,
11(4):615–676, September 2003.

[34] A. Almeida Matos, G. Boudol, and I. Castellani. Typing non-
interference for reactive programs. Journal of Logic and Algebraic
Programming, 72:124–156, 2007.

[35] M. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe
active content in sanitized javascript, 2008.

[36] A. C. Myers. JFlow: Practical mostly-static information flow control.
In Proc. ACM Symp. on Principles of Programming Languages, pages
228–241, January 1999.

[37] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif:
Java information flow. Software release. Located at http://www.cs.
cornell.edu/jif, July 2001.

[38] K. O’Neill, M. Clarkson, and S. Chong. Information-flow security for
interactive programs. In Proc. IEEE Computer Security Foundations
Workshop, pages 190–201, July 2006.

[39] F. Pottier. A simple view of type-secure information flow in the pi-
calculus. In Proc. IEEE Computer Security Foundations Workshop,
pages 320–330, June 2002.

[40] W. Rafnsson and A. Sabelfeld. Limiting information leakage in event-
based communication: Extended version. Technical report, Chalmers
University of Technology, 2011. Located at
http://www.cse.chalmers.se/~rafnsson/2011plas.

[41] A. Russo and A. Sabelfeld. Securing timeout instructions in web ap-
plications. In Proc. IEEE Computer Security Foundations Symposium,
July 2009.

[42] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security
analysis. In Proc. IEEE Computer Security Foundations Symposium,
July 2010.

[43] A. Russo, A. Sabelfeld, and A. Chudnov. Tracking information flow
in dynamic tree structures. In Proc. European Symp. on Research in
Computer Security, LNCS. Springer-Verlag, September 2009.

[44] P. Ryan. Mathematical models of computer security—tutorial lectures.
In R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis
and Design, volume 2171 of LNCS, pages 1–62. Springer-Verlag,
2001.

[45] P. Ryan and S. Schneider. Process algebra and non-interference. In
Proc. IEEE Computer Security Foundations Workshop, pages 214–
227, June 1999.

[46] A. Sabelfeld and H. Mantel. Static confidentiality enforcement for
distributed programs. In Proc. Symp. on Static Analysis, volume 2477
of LNCS, pages 376–394. Springer-Verlag, September 2002.

[47] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE J. Selected Areas in Communications, 21(1):5–19,
January 2003.

[48] A. Sabelfeld and A. Russo. From dynamic to static and back: Riding
the roller coaster of information-flow control research. In Proc. Andrei
Ershov International Conference on Perspectives of System Informat-
ics, LNCS. Springer-Verlag, June 2009.

[49] P. Shroff, S. Smith, and M. Thober. Dynamic dependency monitoring
to secure information flow. In Proc. IEEE Computer Security Founda-
tions Symposium, pages 203–217, July 2007.

[50] V. Simonet. The Flow Caml system. Software release. Located
at http://cristal.inria.fr/~simonet/soft/flowcaml, July
2003.

[51] G. Smith. On the foundations of quantitative information flow. In
Proc. Foundations of Software Science and Computation Structure,
volume 5504 of LNCS, pages 288–302, March 2009.

[52] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vi-
gna. Cross-site scripting prevention with dynamic data tainting and
static analysis. In Proc. Network and Distributed System Security Sym-
posium, February 2007.

[53] D. Volpano and G. Smith. Eliminating covert flows with minimum
typings. Proc. IEEE Computer Security Foundations Workshop, pages
156–168, June 1997.

[54] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure
flow analysis. J. Computer Security, 4(3):167–187, 1996.

