
A Per Model of Secure Information Flow in

Sequential Programs

Andrei Sabelfeld and David Sands

Department of Computer Science
Chalmers University of Technology and the University of Göteborg

412 96 Göteborg, Sweden
{andrei,dave}@cs.chalmers.se

Abstract. This paper proposes an extensional semantics-based formal
specification of secure information-flow properties in sequential programs
based on representing degrees of security by partial equivalence relations
(pers). The specification clarifies and unifies a number of specific cor-
rectness arguments in the literature, and connections to other forms of
program analysis. The approach is inspired by (and equivalent to) the use
of partial equivalence relations in specifying binding-time analysis, and
is thus able to specify security properties of higher-order functions and
“partially confidential data”. We extend the approach to handle nonde-
terminism by using powerdomain semantics and show how probabilistic
security properties can be formalised by using probabilistic powerdomain
semantics.

1 Introduction

1.1 Motivation

You have received a program from an untrusted source. Let us call it company
M. M promises to help you to optimise your personal financial investments,
information about which you have stored in a database on your home computer.
The software is free (for a limited time), under the condition that you permit a
log-file containing a summary of your usage of the program to be automatically
emailed back to the developers of the program (who claim they wish to determine
the most commonly used features of their tool). Is such a program safe to use?
The program must be allowed access to your personal investment information,
and is allowed to send information, via the log-file, back to M. But how can you
be sure that M is not obtaining your sensitive private financial information by
cunningly encoding it in the contents of the innocent-looking log-file? This is an
example of the problem of determining that the program has secure information
flow. Information about your sensitive “high-security” data should not be able
to propagate to the “low-security” output (the log-file). Traditional methods of
access control are of limited use here since the program has legitimate access to
the database.

This paper proposes an extensional semantics-based formal specification of
secure information-flow properties in sequential programs based on representing

S.D. Swierstra (Ed.): ESOP/ETAPS’99, LNCS 1576, pp. 40–58, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A Per Model of Secure Information Flow in Sequential Programs 41

degrees of security by partial equivalence relations (pers1). The specification clar-
ifies and unifies a number of specific correctness arguments in the literature, and
connections to other forms of program analysis. The approach is inspired by and,
in the deterministic case, equivalent to the use of partial equivalence relations
in specifying binding-time analysis [HS91], and is thus able to specify security
properties of higher-order functions and “partially confidential data” (e.g. one’s
financial database could be deemed to be partially confidential if the number of
entries is not deemed to be confidential even though the entries themselves are).
We show how the approach can be extended to handle nondeterminism, and
illustrate how the various choices of powerdomain semantics affects the kinds of
security properties that can be expressed, ranging from termination-insensitive
properties (corresponding to the use of the Hoare (partial correctness) powerdo-
main) to probabilistic security properties, obtained when one uses a probabilistic
powerdomain.

1.2 Background

The study of information flow in the context of systems with multiple lev-
els of confidentiality was pioneered by Denning [Den76,DD77] in an extension
of Bell and LaPadula’s early work [BL76]. Denning’s approach is to apply a
static analysis suitable for inclusion into a compiler. The basic idea is that
security levels are represented as a lattice (for example the two point lattice
PublicDomain ≤ TopSecret). The aim of the static analysis is to ensure that in-
formation from inputs, variables or processes of a given security level only flows
to outputs, variables or processes which have been assigned a higher or equal
security level.

1.3 Semantic Foundations of Information Flow Analysis

In order to verify a program analysis or a specific proof a program’s security one
must have a formal specification of what constitutes secure information flow.
The value of a semantics-based specification for secure information flow is that
it contributes significantly to the reliability of and the confidence in such activi-
ties, and can be used in the systematic design of such analyses. Many approaches
to Denning-style analyses (including the original articles) contain a fair degree
of formalism but arguably are lacking a rigorous soundness proof. Volpano et al
[VSI96] claim to give the first satisfactory treatment of soundness of Denning’s
analysis. Such a claim rests on the dissatisfaction with soundness arguments
based on an instrumented operational e.g., [Ørb95] or denotational semantics
e.g., [MS92], or on “axiomatic” approaches which define security in terms of a
program logic [AR80] without any models to relate the logic to the semantics
of the programming language. The problem here is that an “instrumented se-
mantics” or a “security logic” is just a definition, not subject to any further
1 A Partial Equivalence relation is symmetric and transitive but not necessarily re-

flexive

42 Andrei Sabelfeld and David Sands

mathematical justification. McLean points out [McL90] in a related discussion
about the (non language-specific) Bell and LaPadula model:

One problem is that . . . they [the Bell LaPadula security properties]
constitute a possible implementation of security, . . . , rather than an ab-
stract specification of what all secure systems must satisfy. By concerning
themselves with particular controls over files inside the computer, rather
than limiting themselves to the relation between input and output, they
make it harder to reason about the requirements, . . .

This criticism points to more abstract, extensional notions of soundness, based
on, for example, the idea of noninterference introduced in [GM82].

1.4 Semantics-based Models of Information Flow

The problem of secure information flow, or “noninterference” is now quite ma-
ture, and very many specifications exist in the literature – see [McL94] for a
tutorial overview. Many approaches have been phrased in terms of abstract,
and sometimes rather ad hoc models of computation. Only more recently have
attempts been made to rephrase and compare various security conditions in
terms of well-known semantic models, e.g. the use of labelled transition systems
and bisimulation semantics in [FG94]. In this paper we consider the problem
of information-flow properties of sequential systems, and use the framework of
denotational semantics as our formal model of computation. Along the way we
consider some relations to specific static analyses, such as the Security Lambda
Calculus [HR98] and an alternative semantic condition for secure information
flow proposed by Leino and Joshi [LJ98].

1.5 Overview

The rest of the paper is organised as follows. Section 2 shows how the per-
based condition for soundness of binding times analysis is also a model of secure
information flow. We show how this provides insight into the treatment of higher-
order functions and structured data. Section 3 shows how the approach can be
adapted to the setting of a nondeterministic imperative language by appropriate
use of a powerdomain-based semantics. We show how the choice of powerdomain
(upper, lower or convex) affects the nature of the security condition. Section 4
focuses on an alternative semantic specification due to Leino and Joshi. Mod-
ulo some technicalities we show that Leino’s condition – and a family of similar
conditions – are in agreement with, and can be represented using our form of
specification. Section 5 considers the problem of preventing unwanted proba-
bilistic information flows in programs. We show how this can be solved in the
same framework by utilising a probabilistic semantics based on the probabilistic
powerdomain [JP89]. Section 6 concludes.

A Per Model of Secure Information Flow in Sequential Programs 43

2 A Per Model of Information Flow

In this section we introduce the way that partial equivalence relations (pers) can
be used to model dependencies in programs. The basic idea comes from Hunts use
of pers to model and construct abstract interpretations for strictness properties
in higher-order functional programs [Hun90,Hun91], and in particular its use to
model dependencies in binding-time analysis [HS91]. Related ideas already occur
in the denotational formulation of live-variable analysis [Nie90].

2.1 Binding Time Analysis as Dependency Analysis

Given a description of the parameters in a program that will be known at par-
tial evaluation time (called the static arguments), a binding-time analysis (BTA)
must determine which parts of the program are dependent solely on these known
parts (and therefore also known at partial evaluation time). The safety condi-
tion for binding time analysis must ensure that there is no dependency between
the dynamic (i.e., non-static) arguments and the parts of the program that are
deemed to be static. Viewed in this way, binding time analysis is purely an
analysis of dependencies.2

Dependencies in Security In the security field, the property of absence of un-
wanted dependencies is often called noninterference, after [GM82]. Many prob-
lems in security come down to forms of dependency analysis. For example, in the
case of confidentiality, the aim is to show that the outputs of a program which
are deemed to be of low confidentiality do not have any dependence on inputs
of a higher degree of confidentiality. In the case of integrity (trust), one must
ensure that the value of some trusted data does not depend on some untrusted
source.

Some intuitions about information flow Let us consider a program modelled
as a function from some input domain to an output domain. Now consider the
following simple functions mapping inputs to outputs: snd : D×E → E for some
sets (or domains) D and E, and shift and test, functions in N × N → N × N
and N ×N → N, defined by

snd(x, y) = y
shift(x, y) = (x + y, y)
test(x, y) = if x > 0 then y else y + 1

Now suppose that (h, l) is a pair where h is some high security information, and
l is low, “public domain”, information. Without knowing about what the actual
values h and l might be, we know about the result of applying function snd
will be a low value, and, in the case that we have a pair of numbers, the result
2 Unfortunately, from the perspective of a partial evaluator, BTA is not purely a

matter of dependencies; in [HS95] it was shown that the pure dependency models of
[Lau89] and [HS91] are not adequate to ensure the safety of partial evaluation.

44 Andrei Sabelfeld and David Sands

of applying shift will be a pair with a high first component and a low second
component.

Note that the function test does not enjoy the same security property that
snd does, since although it produces a value which is constructed from purely
low-security components, the actual value is dependent on the first component
of the input. This is what is known as an indirect information flow [Den76].

It is rather natural to think of these properties as “security types”:

snd : high × low → low
shift : high × low → high × low
test : high × low → high

But what notion of “type”, and what interpretation of “high” and “low” can
formalise these more intuitive type statements? Interpreting types as sets of val-
ues is not adequate to model “high” and “low”. To track degrees of dependence
between inputs and outputs we need a more dynamic view of a type as a degree
of variation. We must vary (parts of) the input and observe which (parts of) the
output vary. For the application to confidentiality we want to determine if there
is possible information leakage from a high level input to the parts of an output
which are intended to be visible to a low security observer. We can detect this
by observing whether the “low” parts of the output vary in any way as we vary
the high input.

The simple properties of the functions snd and shift described above can be
be captured formally by the following formulae:

∀x, x′, y. snd(x, y) = snd(x′, y) (1)
∀x, x′, y. snd(shift(x, y)) = snd(shift(x′, y)) (2)

Indeed, this kind of formula forms the core of the correctness arguments for the
security analyses proposed by e.g., Volpano and Smith et al [VSI96,SV98], and
also for the extensional correctness proofs in core of the Slam-calculus [HR98].

High and Low as Equivalence Relations We show how we can interpret “security
types” in general as partial equivalence relations. We will interpret high (for
values in D) as the equivalence relation AllD, and low as the relation IdD where
for all x, x′ ∈ D:

x AllD x′ (3)
x IdD x′ ⇐⇒ x = x′. (4)

For a function f : D → E and binary relations P ∈ Rel(D) and Q ∈ Rel(E), we
write f : P _ Q iff

∀x, x′ ∈ D. x P x′ =⇒ (f x) Q (f x′).

For binary relations P , Q we define the relation P × Q by:

(x, y) P × Q (x′, y′) ⇐⇒ x P x′ & y Q y′.

A Per Model of Secure Information Flow in Sequential Programs 45

Now the security property of snd described by (1) can be captured by

snd : AllD × IdE _ IdE ,

and (2) is given by

shift : AllN × IdN _ AllN × IdN

2.2 From Equivalence Relations to Pers

We have seen how the equivalence relations All and Id may be used to describe
security “properties” high and low . It turns out that these are exactly the same as
the interpretations given to the notions “dynamic” and “static” given in [HS91].
This means that the binding-time analysis for a higher-order functional language
can also be read as a security information-flow analysis. This connection between
security and binding time analysis is already folk-law (See e.g. [TK97] for a
comparison of a particular security type system and a particular binding-time
analysis, and [DRH95] which shows how the incorporation of indirect information
flows from Dennings security analysis can improve binding time analyses).

It is worth highlighting a few of the pertinent ideas from [HS91]. Beginning
with the equivalence relations All and Id to describe high and low respectively,
there are two important extensions to the basic idea in order to handle struc-
tured data types and higher-order functions. Both of these ideas are handled
by the analysis of [HS91] which rather straightforwardly extends Launchbury’s
projection-based binding-time analysis [Lau89] to higher types. To some extent
[HS91] anticipates the treatment of partially-secure data types in the SLam cal-
culus [HR98], and the use of logical relations in their proof of noninterference.

For structured data it is useful to have more refined notions of security than
just high and low ; we would like to be able to model various degrees of security.
For example, we may have a list of records containing name-password pairs. As-
suming passwords are considered high , we might like to express the fact that
although the whole list cannot be considered low , it can be considered as a
(low × high)list. Constructing equivalence relations which represent such prop-
erties is straightforward – see [HS91] for examples (which are adapted directly
from Launchbury’s work), and [Hun91] for a more general treatment of finite
lattices of “binding times” for recursive types.

To represent security properties of higher-order functions we use a less re-
stricted class of relations than the equivalence relations. A partial equivalence
relation (per) on a set D is a binary relation on D which is symmetric and
transitive. If P is such a per let |P | denote the domain of P , given by

|P | = {x ∈ D | x P x} .

Note that the domain and range of a per P are both equal to |P | (so for any
x, y ∈ D, if x P y then x P x and y P y), and that the restriction of P to |P |
is an equivalence relation. Clearly, an equivalence relation is just a per which
is reflexive (so |P | = D). Partial equivalence relations over various applicative

46 Andrei Sabelfeld and David Sands

structures have been used to construct models of the polymorphic lambda cal-
culus (see, for example, [AP90]). As far as we are aware, the first use of pers in
static program analysis is that presented in [Hun90].

For a given set D let Per(D) denote the partial equivalence relations over
D. Per (D) is a meet semi-lattice, with meets given by set-intersection, and top
element All.

Given pers P ∈ Per(D) and Q ∈ Per(E), we may construct a new per
(D _ E) ∈ Per(D → E) defined by:

f (P _ Q) g
⇐⇒

∀x, x′ ∈ D. x P x′ =⇒ (f x) Q (g x′).

If P is a per, we will write x : P to mean x ∈ |P |. This notation and the above
definition of P _ Q are consistent with the notation used previously, since now

f : P _ Q ⇐⇒ f (P _ Q) f
⇐⇒ ∀x, x′ ∈ D. x P x′ =⇒ (f x) Q (f x′).

Note that even if P and Q are both total (i.e., equivalence relations), P _ Q
may be partial. A simple example is All _ Id . If f : All _ Id then we know
that given a high input, f returns a low output. A constant function λx.42 has
this property, but clearly not all functions satisfy this.

2.3 Observations on Strictness and Termination Properties

We are interested in the security properties of functions which are the denota-
tions of programs (in a Scott-style denotational semantics), and so there are some
termination issues which should address. The formulation of security properties
given above is sensitive to termination. Consider, for example, the following
function f : N⊥ → N⊥

f = λx.if x > 0 then x else fx

Clearly, if the argument is high then the result must be high. Now consider the
security properties of the function g ◦ f where g the constant function g = λx.2.
We might like to consider that g has type high → low . However, if function
application is considered to be strict (as in ML) then g is not in |AllN⊥ _

IdN⊥ | since ⊥ AllN⊥ 1 but g(⊥) 6= g(1). Hence the function g ◦ f does not have
security type high → low (in our semantic interpretation). This is correct, since
on termination of an application of this function, the low observer will have
learned that the value of the high argument was positive.

The specific security analysis of e.g. the first calculus of Smith and Volpano
[SV98] is termination sensitive – and this is enforced by a rather sweeping mea-
sure: all “while”-loop conditions must be low and all “while”-loop bodies must
be low commands.

On the other hand, the type system of the SLam calculus [HR98] is not
termination sensitive in general. This is due to the fact that it is based on a

A Per Model of Secure Information Flow in Sequential Programs 47

call-by-value semantics, and indeed the composition g ◦ f could be considered
to have a security type corresponding to “high → low”. The correctness proof
for noninterference carefully avoids saying anything about nonterminating exe-
cutions. What is perhaps worth noting here is that had they chosen a non-strict
semantics for application then the same type-system would yield termination
sensitive security properties! So we might say that lazy programs are intrinsically
more secure than strict ones. This phenomenon is closely related to properties of
parametrically polymorphic functions [Rey83]3. From the type of a polymorphic
function one can predict certain properties about its behaviour – the so-called
“free theorems” of the type [Wad89]. However, in a strict language one must add
an additional condition in order that the theorems hold: the functions must be
bottom-reflecting (f(a) = ⊥ =⇒ a = ⊥). The same side condition can be added
to make the e.g. the type system of the Slam-calculus termination-sensitive.

To make this observation precise we introduce one further constructor for
pers. If R ∈ Per(D) then we will also let R denote the corresponding per on D⊥
without explicit injection of elements from D into elements in D⊥. We will write
R⊥ to denote the relation in Per(D⊥) which naturally extends R by ⊥ R ⊥.

Now we can be more precise about the properties of g under a strict (call-
by-value) interpretation: g : (AllN)⊥ _ IdN⊥ , which expresses that g is a
constant function, modulo strictness. More informatively we can say that that
g : (AllN) _ IdN which expresses that g is a non-bottom constant function.

It is straightforward to express per properties in a subtype system of com-
positional rules (although we don’t claim that such a a system would be in any
sense complete). Pleasantly, all the expected subtyping rules are sound when
types are interpreted as pers and the subtyping relation is interpreted as subset
inclusion of relations. For the abstract interpretation presented in [HS91] this
has already been undertaken by e.g. Jensen [Jen92] and Hankin and Le Métayer
[HL94].

3 Nondeterministic Information Flow

In this section we show how the per model of security can be extended to describe
nondeterministic computations. We see nondeterminism as an important feature
as it arises naturally when considering the semantics of a concurrent language
(although the treatment of a concurrent language remains outside the scope of
the present paper.)

In order to focus on the essence of the problem we consider a very simplified
setting – the analysis of commands in some simple imperative language contain-
ing a nondeterministic choice operator. We assume that there is some discrete
(i.e., unordered) domain St of states (which might be viewed as finite maps from
variables to discrete values, or simply just a tuple of values).

3 Not forgetting that the use of Pers in static analysis was inspired, in part, by Abadi
and Plotkin’s Per model of polymorphic types [AP90]

48 Andrei Sabelfeld and David Sands

3.1 Secure Commands in a Deterministic Setting

In the deterministic setting we can take the denotation of a command C, written
JCK, to be a function in [St⊥ → St⊥], where by [D⊥ → E⊥] we mean the set of
strict and continuous maps between domains D⊥ and E⊥. Note that we could
equally well take the set of all (trivially continuous) functions in St → St⊥,
which is isomorphic.

Now suppose that the state is just a simple partition into a high-security half
and a low-security half, so the set of states is the product Sthigh × Stlow . Then
we might define a command C to be secure if no information from the high part
of the state can leak into the low part:

C is secure ⇐⇒ JCK : (All × Id)⊥ _ (All × Id)⊥ (5)

Which is equivalent to saying that JCK : (All × Id) _ (All × Id)⊥ since we only
consider strict functions. Note that this does not imply that JCK terminates, but
what it does imply is that the termination behaviour is not influenced by the
values of the high part of the state. It is easy to see that the sequential com-
position of secure commands is a secure command, since firstly, the denotation
of the sequential composition of commands is just the function-composition of
denotations, and secondly, in general for functions g : D → E and f : E → F ,
and pers P ∈ Per(D), Q ∈ Per(E) and R ∈ Per(F) it is easy to verify the
soundness of the inference rule:

g : P _ Q f : Q _ R

f ◦ g : P _ R

3.2 Powerdomain Semantics for Nondeterminism

A standard approach to giving meaning to a nondeterministic language – for
example Dijkstra’s guarded command language – is to interpret a command as
a mapping which yields a set of results. However, when defining an ordering on
the results in order to obtain a domain, there is a tension between the internal
order of St⊥ and the subset order of the powerset. This is resolved by considering
a suitable powerdomain structure [Plo76,Smy78]. The powerdomains are built
from a domain D by starting with the finitely generated (f.g.) subsets of D⊥
(those non-empty subsets which are either finite, or contain ⊥), and a preorder
on these sets. Quotienting the f.g. sets using the associated equivalence relation
yields the corresponding domain. We give each construction in turn, and give an
idea about the corresponding discrete powerdomain P[St⊥].

– Lower (Hoare) powerdomain Let u �L v iff ∀x ∈ u. ∃y ∈ v. x v y. In this case
the induced discrete powerdomain PL[St⊥] is isomorphic to the powerset of
St ordered by subset inclusion. This means that the domain [St⊥ → PL[St⊥]]
is isomorphic to all subsets of St × St – i.e. the relational semantics.

– Upper (Smyth) powerdomain The upper ordering on f.g. sets u, v, is given
by

u �U v ⇐⇒ ∀y ∈ v. ∃x ∈ u. x v y.

A Per Model of Secure Information Flow in Sequential Programs 49

Here the induced discrete powerdomain PU[St⊥] is isomorphic to the set of
finite non-empty subsets of St together with St⊥ itself, ordered by superset
inclusion.

– Convex (Plotkin) powerdomain Let u �C v iff u �U v and u �L v. This is
also known as the Egli-Milner ordering. The resulting powerdomain PC[St⊥]
is isomorphic to the f.g. subsets of St⊥, ordered by:

A vC B ⇐⇒ either ⊥ 6∈ A & A = B,

or ⊥ ∈ A & A \ {⊥} ⊆ B

A few basic properties and definitions on powerdomains will be needed. For
each powerdomain constructor P[−] define the order-preserving “unit” map
ηD : D⊥ → P[D⊥] which takes each element a ∈ D into (the powerdomain
equivalence class of) the singleton set {a}. For each function f ∈ [D⊥ → P[E⊥]]
there exits a unique extension of f , denoted f∗ where f∗ ∈ [P[D⊥] → P[E⊥]]
which is the unique mapping such that

f = f∗ ◦ η.

In the particular setting of the denotations of commands, it is worth noting
that JC1; C2K would be given by:

JC1; C2K = JC2K
∗ ◦ JC1K.

3.3 Pers on Powerdomains

Give one of the discrete powerdomains, P[St⊥], we will need a “logical” way to
lift a per P ∈ Per(St⊥) to a per in Per(P[St⊥]).

Definition 1 For each R ∈ Per(D⊥) and each choice of power domain P[−],
let P[R] denote the relation on P[D⊥] given by

A P[R] B ⇐⇒ ∀a ∈ A. ∃b ∈ B. a R b
& ∀b ∈ B. ∃a ∈ A. a R b

It is easy to check that P[R] is a per, and in particular that P[IdD⊥] = IdP[D⊥].
Henceforth we shall restrict our attention to the semantics of simple com-

mands, and hence the three discrete powerdomains P[St⊥].

Proposition 1 For any f ∈ [St⊥ → P[St⊥]] and any R, S ∈ Per(St⊥),

f : R _ P[S] ⇐⇒ f∗ : P[R] _ P[S]

From this it easily follows that the following inference rule is sound:

JC1K : P _ P[Q] JC2K : Q _ P[R]
JC1; C2K : P _ P[R]

50 Andrei Sabelfeld and David Sands

3.4 The Security Condition

We will investigate the implications of the security condition under each of the
powerdomain interpretations. Let us suppose that, as before the state is parti-
tioned into a high part and a low part: St = Sthigh×Stlow . With respect to a par-
ticular choice of powerdomain let the security “type” C : high×low → high×low
denote the property

JCK : (All × Id)⊥ _ P[(All × Id)⊥].

In this case we say that C is secure. Now we explore the implications of this
definition on each of the possible choices of powerdomain:

1. In the lower powerdomain, the security condition describes in a weak sense
termination-insensitive information flow. For example, the program

if h = 0 then skip 8 loop else skip

(h is the high part of the state) is considered secure under this interpretation
but the termination behaviours is influenced by h (it can fail to terminate
only when h = 0).

2. In the upper powerdomain nontermination is considered catastrophic. This
interpretation seems completely unsuitable for security unless one only con-
siders programs which are “totally correct” – i.e. which must terminate on
their intended domain. Otherwise, a possible nonterminating computation
path will mask any other insecure behaviours a term might exhibit. This
means that for any program C, the program C 8 loop is secure!

3. The convex powerdomain gives the appropriate generalisation of the deter-
ministic case in the sense that it is termination sensitive, and does not have
the shortcomings of the upper powerdomain interpretation.

4 Relation to an Equational Characterisation

In this section we relate the Per-based security condition to a proposal by Leino
and Joshi [LJ98]. Following their approach, assume for simplicity we have pro-
grams with just two variables: h and l of high and low secrecy respectively.
Assume that the state is simple a pair, where h refers to the first projection and
l is the second projection.

In [LJ98] the security condition for a program C is defined by

HH ; C; HH = C; HH ,

where “=” stands for semantic equality (the style of semantic specification is
left unfixed), and HH is the program that “assigns to h arbitrary values” –
aka “Havoc on H”. We will refer to this equation as the equational security
condition. Intuitively, the equation says that we cannot learn anything about
the initial values of the high variables by variation of the low security variables.

A Per Model of Secure Information Flow in Sequential Programs 51

The postfix occurrences of HH on each side mean that we are only interested
in the final value of l. The prefix HH on the left-hand side means that the two
programs are equal if the final value of l does not depend on the initial value of
h.

In relating the equational security condition to pers we must first decide
upon the denotation of HH . Here we run into some potential problems since it
is necessary in [LJ98] that HH always terminates, but nevertheless exhibits un-
bounded nondeterminism. Although this appears to pose no problems in [LJ98]
(in fact it goes without mention), to handle this we would need to work with
non-ω-continuous semantics, and powerdomains for unbounded nondeterminism.
Instead, we side-step the issue by assuming that the domain of h, Sthigh , is finite.

4.1 Equational Security and Projection Analysis

A first observation is that the the equational security condition is strikingly
similar to the well-known form of static analysis for functional programs known
as projection analysis [WH87]. Given a function f , a projection analysis aims
to find projections (continuous lower closure operators on the domain) α and β
such that

β ◦ f ◦ α = β ◦ f

For (generalised) strictness analysis and dead-variable analysis, one is given β,
and α is to be determined; for binding time analysis [Lau89] it is a forwards
analysis problem: given α one must determine some β.

For strict functions (e.g., the denotations of commands) projection analysis
is not so readily applicable. However, in the convex powerdomain HH is rather
projection-like, since it effectively hides all information about the high variable;
in fact it is an embedding (an upper closure operator) so the connection is rather
close.

4.2 The Equational Security Condition Is Subsumed by the Per
Security Condition

Hunt [Hun90] showed that projection properties of the form β◦f ◦α = β◦f could
be expressed naturally as a per property of the form f : Rα _ Rβ for equivalence
relations derived from α and β by relating elements which get mapped to the
same point by the corresponding projection.

Using the same idea we can show that the per-based security condition sub-
sumes the equation specification in a similar manner.

We will establish the following:
Theorem 1. For any command C

JHH ; C; HH K = JC; HH K iff C : high × low → high × low .

52 Andrei Sabelfeld and David Sands

The idea will be to associate an equivalence relation to the function HH .
More generally, for any command C let ker(C), the kernel of C, denote the
relation on P[St⊥] satisfying

s1 ker(C) s2 ⇐⇒ JCKs1 = JCKs2.

Define the extension of ker (C) by

A ker∗(C) B ⇐⇒ JCK∗A = JCK∗B.

Recall the per interpretation of the type signature of C.

C : high × low → high × low ⇐⇒ JCK : (All × Id)⊥ _ P[(All × Id)⊥].

Observe that (All×Id)⊥ = ker(HH) since for any h, l, h′, l′ it holds JHH K(h, l) =
JHH K(h′, l′) iff l = l′ iff (h, l)(All × Id)⊥(h′, l′).

The proof of the theorem is based on this observation and on the following
two facts:

– P[All × Id]⊥ = ker∗(HH) and
– JHH ; C; HH K = JC; HH K ⇐⇒ JCK : ker(HH) _ ker∗(HH).

Let us first prove the latter fact by proving a more general statement similar
to Proposition 3.1.5 from [Hun91] (the correspondence between projections and
per-analysis). Note that we do not use the specifics of the convex powerdomain
semantics here, so the proof is valid for any of the three choices of powerdomain.

Theorem 2. Let us say that a command B is idempotent iff JB; BK = JBK.
For any commands C and D, and any idempotent command B

JB; C; DK = JC; DK ⇐⇒ JCK : ker(B) _ ker∗(D)

Corollary. Since JHH K is idempotent we can conclude that

JHH ; C; HH K = JC; HH K ⇐⇒ JCK : ker(HH) _ ker∗(HH).

It remains to establish the first fact.
Theorem 3. P[All × Id]⊥ = ker∗(HH)
The proofs are given in the full version of the paper [SS99]. Thus, the equa-

tional and per security conditions in this simple case are equivalent.
In a more recent extension of the paper, [LJ99], Leino and Joshi update

their relational semantics to handle termination-sensitive leakages and intro-
duce abstract variables — a way to support partially confidential data. Abstract
variables h and l are defined as functions of the concrete variables in a program.
For example, for a list of low length and high elements l would be the length of
the list and h would be the list itself. In the general case the choice of h and l
could be independent, so an independence condition must be verified.

Abstract variables are easily represented in our setting. Suppose that some
function g ∈ St → D yields the value (in some domain D) of the abstract low
variable from any given state, then we can represent the security condition on
abstract variables by: JCK : Rg _ PC[(All × Id)⊥] where s1Rgs2 ⇐⇒ g s1 =
g s2.

A Per Model of Secure Information Flow in Sequential Programs 53

5 A Probabilistic Security Condition

There are still some weaknesses in the security condition when interpreted in
the convex powerdomain when it comes to the consideration of nondeterministic
programs. In the usual terminology of information flow, we have considered
possibilistic information flows. The probabilistic nature of an implementation
may allow probabilistic information flows for “secure” programs. Consider the
program

h := h mod 100; (l := h 8 l := rand(99)).

This program is secure in the convex powerdomain interpretation since regardless
of the initial value of h, the final value of l can be any value in the range {0 . . .99}.
But with a reasonably fair implementation of the nondeterministic choice and of
the randomised assignment, it is clear that a few runs of the program, for a fixed
input value of h, could yield a rather clear indiction of its value by observing
only the possible final values of l, e.g., 2, 17, 2, 45, 2, 2, 33, 2, 97, 2, 8, 57, 2, 2, 66, . . .
from which we might reasonably conclude that the value of h was 2.

To counter this problem we consider probabilistic powerdomains [JP89] which
allow the probabilistic nature of choice to be reflected in the semantics of pro-
grams, and hence enable us to capture the fact that varying the value of h causes
a change in the probability distribution of values of l.

In the “possibilistic” setting we had the denotation of a command C to be
a continuous function in [St⊥ → PC[St⊥]]. In the probabilistic case, given an
input to C not only we keep track of possible outputs, but also of probabilities
at which they appear. Thus, we consider a domain E [St⊥] of distributions over
St⊥. The denotation of C is going to be a function in [St⊥ → E [St⊥]].

The general probabilistic powerdomain construction from [JP89] on an in-
ductive partial order E [D] is taken to be the domain of evaluations, which are
certain continuous functions on Ω(D) → [0, 1], where Ω(D) is the lattice of open
subsets of D. We will omit a description of the general probabilistic powerdo-
main of evaluations since for the present paper it is sufficient and more intuitive
to work with discrete domains, and hence a simplified notion of probabilistic
powerdomain in terms of distributions.

If S is a set (e.g., the domain of states for a simple sequential language)
then we define the probabilistic powerdomain of S⊥, written E [S⊥] to be the
domain of distributions on S⊥, where a distribution µ, to be a function from S⊥
to [0, 1] such that

∑
d∈S⊥ µd = 1. The ordering on E [S⊥] is defined pointwise by

µ ≤ ν iff ∀d 6= ⊥. µd ≤ νd. This structure is isomorphic to Jones and Plotkin’s
probabilistic powerdomain of evaluations for this special case.

As a simple instance of the probabilistic powerdomain construction from
[JP89], one can easily see that E [S] is an inductively complete partial order with
directed lubs defined pointwise, and with a least element ω = ηS(⊥), where ηS

is the point-mass distribution defined for an x ∈ S by

ηS(x)d =
{

1, if d = x,
0, otherwise.

54 Andrei Sabelfeld and David Sands

To lift a function f : D1 → E [D2] to type E [D1] → E [D2] we define the extension
of f by

f∗(µ)(y) =
∑

x∈D1

f(x)(y) ∗ µ(x).

The structure (E [D], ηD(x), ∗) is a Kleisli triple, and thus we have a canonical
way of composing the probabilistic semantics of any two given programs. Suppose
f : D1 → E [D2] and g : D2 → E [D3] are such. Then the lifted composition
(g∗ ◦ f)∗ can be computed by one of the Kleisli triple laws as g∗ ◦ f∗.

The next step towards the security condition is to define how pers work on
discrete probabilistic powerdomains. To lift pers to E [D] we need to consider a
definition which takes into consideration the whole of each R-equivalence class in
one go. The intuition is that an equivalence class of a per is a set of points that are
indistinguishable by a low-level observer. For a given evaluation, the probability
of a given observation by a low level user is thus the sum of probabilities over
all elements of the equivalence class.

Define the per relation E [R] on E [D] for µ, ν ∈ E [D] by

µ E [R] ν iff ∀d ∈ |R|.
∑

e∈[d]R

µe =
∑

e∈[d]R

νe,

where [d]R stands for the R−equivalence class which contains d. Naturally,
µ E [Id] ν ⇐⇒ µ = ν and ∀µ, ν ∈ E [D]. µ E [All] ν .

As an example, consider E [(All × Id)⊥]. Two distributions µ and ν in (All ×
Id)⊥ → [0, 1] are equal if the probability of any given low value l in the left-hand
distribution, given by

∑
h µ(h, l), is equal to the probability in the right-hand

distribution, namely
∑

h ν(h, l).
The probabilistic security condition is indeed a strengthening of the possi-

bilistic one – when we consider programs whose possibilistic and probabilistic
semantics are in agreement.

Theorem 4. Suppose we have a possibilistic (convex) semantics J·KC and a
probabilistic semantics J·KE , which satisfy a basic consistency property that for
any command C, if JCKEi o > 0 then o ∈ JCKCi.

Now suppose that R and S are equivalence relations on D. Suppose fur-
ther that C is any command such that possibilistic behaviour agrees with its
probabilistic behaviour, i.e., o ∈ JCKCi =⇒ JCKEi o > 0. Then we have that
JCKE : R _E [S] implies JCKC : R _ PC[S].

In the case that the state is modelled by a pair representing a high variable
and a low variable respectively, it is easy to see that a command C is secure
(JCKE : (All × Id)⊥ _E [(All × Id)⊥]) if and only if

JCKE(ih, il) ⊥ = JCKE(i′h, il) ⊥ and∑
h∈Sthigh

JCKE(ih, il)(h, ol) =
∑

h∈Sthigh
JCKE(i′h, il)(h, ol)

for any il, ih, i′h and ol. Intuitively the equation means that if you vary ih the
distribution of low variables (the sums provide “forgetting” the highs) does not
change.

A Per Model of Secure Information Flow in Sequential Programs 55

Let us introduce probabilistic powerdomain semantics definitions for some
language constructs. Here we omit the E-subscripts to mean the probabilistic
semantics. Given two programs C1, C2 such that JC1K : St⊥ → E [St⊥] and
JC2K : St⊥ → E [St⊥] the composition of two program semantics is defined by:

JC1; C2K i o =
∑

s∈St⊥

(JC1K i s) ∗ (JC2K s o).

The semantics of the uniformly distributed nondeterministic choice C1 8 C1 is
defined by JC18C2K i o = 0.5JC1K i o+0.5JC2K i o. Consult [JP89] for an account
of how to define the semantics of other language constructs.

Example. Recall the program

h := h mod 100; (l := h 8 l := rand(99))

Now we investigate the security condition by varying the value of h from 0 to 1.
Take il = 0, ih = 0, i′h = 1 and ol = 0. The left-hand side is

∑
h∈[0,... ,100]

JCKE(0, 0)(h, 0) = 0.5 ∗ 1 + 0.5 ∗ 0.01 = 0.505,

whereas the right-hand side is
∑

h∈[0,... ,100]

JCKE(1, 0)(h, 0) = 0.5 ∗ 0 + 0.5 ∗ 0.01 = 0.005.

So, the security condition does not hold and the program must be rejected.
Volpano and Smith recently devised a probabilistic security type-system

[VS98] with a soundness proof based on a probabilistic operational semantics.
Although the security condition that they use in their correctness argument
is not directly comparable – due to the fact that they consider parallel deter-
ministic threads and a non-compositional semantics – we can easily turn their
examples into nondeterministic sequential programs with the same probabilis-
tic behaviours. In the extended version of this paper [SS99] we show how their
examples can all be verified using our security condition.

6 Conclusions

We have developed an extensional semantics-based specification of secure infor-
mation flow in sequential programs, by embracing and extending earlier work
on the use of partial equivalence relations to model binding times in [HS91]. We
have shown how this idea can be extended to handle nondeterminism and also
probabilistic information flow.

We recently became aware of work by Abadi, Banerjee, Heintze and Riecke
[ABHR99] which shows that a single calculus (DCC), based on Moggi’s com-
putational lambda calculus, can capture a number of specific static analyses for

56 Andrei Sabelfeld and David Sands

security, binding-time analysis, program slicing and call-tracking. Although their
calculus does not handle nondeterministic language features, it is notable that
the semantic model given to DCC is Per-based, and the logical presentations of
the abstract interpretation for Per-based BTA from [HS91,Jen92,HL94] readily
fit this framework (although this specific analysis is not one of those considered in
[ABHR99]). They also show that what we have called “termination insensitive”
analyses can be modelled by extending the semantic relations to relate bottom
(nontermination) to every other domain point (without insisting on transitiv-
ity). It is encouraging to note that – at least in the deterministic setting – this
appears to create no technical difficulties. We do not, however, see any obvious
way to make the probabilistic security condition insensitive to termination in a
similar manner.

We conclude by considering a few possible extensions and limitations:
Multi-level security There is no problem with handling lattices of security

levels rather than the simple high-low distinction. But one cannot expect to
assign any intrinsic semantic meaning to such lattices of security levels, since
they represent a “social phenomenon” which is external to the programming
language semantics. In the presence of multiple security levels one must simply
formulate conditions for security by considering information flows between levels
in a pairwise fashion (although of course a specific static analysis is able to do
something much more efficient).

Downgrading and Trusting There are operations which are natural to
consider but which cannot be modelled in an obvious way in an extensional
framework. One such operation is the downgrading of information from high to
low without losing information – for example representing the secure encryption
of high level information. This seems impossible since an encryption operation
does not lose information about a value and yet should have type high → low
– but the only functions of type high → low are the constant functions. An
analogous problem arises with Ørbæk and Palsberg’s trust primitive if we try to
use pers to model their integrity analysis [ØP97].

Concurrency Handling nondeterminism can be viewed as the main step-
ping stone to formulating a language-based security condition for concurrent
languages, but this remains a topic for further work.

References

ABHR99. M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of de-
pendency. In POPL ’99, Proceedings of the 26th Annual ACM Symposium
on Principles of Programming Languages (January 1999), 1999.

AP90. M. Abadi and G. Plotkin. A per model of polymorphism and recursive
types. In Logic in Computer Science. IEEE, 1990.

AR80. G. R. Andrews and R. P. Reitman. An axiomatic approach to information
flow in programs. ACM TOPLAS, 2(1):56–75, January 1980.

BL76. D.E. Bell and L.J. LaPadula. Secure Computer Systems: Unified Exposition
and Multics Interpretation. MTR-2997, Rev. 1, The MITRE Corporation,
Bedford, Mass., 1976.

A Per Model of Secure Information Flow in Sequential Programs 57

DD77. Dorothy E. Denning and Peter J. Denning. Certification of programs for
secure information flow. Communications of the ACM, 20(7):504–513, July
1977.

Den76. Dorothy E. Denning. A lattice model of secure information flow. Commu-
nications of the ACM, 19(5):236–243, May 1976.

DRH95. M. Das, T. Reps, and P. Van Hentenryck. Semantic foundations of binding-
time analysis for imperative programs. In Partial Evaluation and Seman-
tics-Based Program Manipulation, pages 100–110, La Jolla, California, June
1995. ACM.

FG94. R. Focardi and R. Gorrieri. A classification of security properties for process
algebra. J. Computer Security, 3(1):5–33, 1994.

GM82. Joseph Goguen and José Meseguer. Security policies and security mod-
els. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, April 1982.

HL94. C. L. Hankin and D. Le Métayer. A type-based framework for program
analysis. In Proceedings of the First Static Analysis Symposium, volume
864 of LNCS. Springer-Verlag, 1994.

HR98. Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with
secrecy and integrity. In Conference Record of POPL’98: The 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 365–377, San Diego, California, January 19–21, 1998.

HS91. S. Hunt and D. Sands. Binding Time Analysis: A New PERspective. In
Proceedings of the ACM Symposium on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM’91), pages 154–164, September 1991.
ACM SIGPLAN Notices 26(9).

HS95. F. Henglein and D. Sands. A semantic model of binding times for safe partial
evaluation. In Manuel Hermenegildo and S.D̃oaitse Swierstra, editors, Proc.
Programming Languages: Implementations, Logics and Programs (PLILP),
Utrecht, The Netherlands, volume 982 of Lecture Notes in Computer Science,
pages 299–320. Springer-Verlag, September 1995.

Hun90. S. Hunt. PERs generalise projections for strictness analysis. In Draft Pro-
ceedings of the Third Glasgow Functional Programming Workshop, Ullapool,
1990.

Hun91. L. S. Hunt. Abstract Interpretation of Functional Languages: From Theory
to Practice. PhD thesis, Department of Computing, Imperial College of
Science, Technology and Medicine, 1991.

Jen92. T. P. Jensen. Abstract Interpretation in Logical Form. PhD thesis, Imperial
College, University of London, November 1992. Available as DIKU Report
93/11 from DIKU, University of Copenhagen.

JP89. C. Jones and G. D. Plotkin. A probabilistic powerdomain of evaluations.
In Proceedings, Fourth Annual Symposium on Logic in Computer Science,
pages 186–195, Asilomar Conference Center, Pacific Grove, California, 5–8
June 1989. IEEE Computer Society Press.

Lau89. J. Launchbury. Projection Factorisations in Partial Evaluation. PhD thesis,
Department of Computing, University of Glasgow, 1989.

LJ98. K. R. M. Leino and Rajeev Joshi. A semantic approach to secure information
flow. In MPC’98, Springer Verlag LNCS, 1998.

LJ99. K. R. M. Leino and Rajeev Joshi. A semantic approach to secure information
flow. Science of Computer Programming, 1999. To appear.

McL90. John McLean. The specification and modeling of computer security. Com-
puter, 23(1):9–16, January 1990.

58 Andrei Sabelfeld and David Sands

McL94. J. McLean. Security models. In J. Marciniak, editor, Encyclopedia of Soft-
ware Engineering. Wiley & Sons, 1994.

MS92. M. Mizuno and D. Schmidt. A security flow control algorithm and its
denotational semantics correctness proof. Formal Aspects of Computing,
4(6A):727–754, 1992.

Nie90. F. Nielson. Two-level semantics and abstract interpretation — fundamental
studies. Theoretical Computer Science, (69):117–242, 90.

ØP97. Peter Ørbæk and Jens Palsberg. Trust in the λ-calculus. Journal of Func-
tional Programming, 7(4), 1997.

Ørb95. Peter Ørbæk. Can you Trust your Data? In M. I. Schwartzbach P. D. Mosses
and M. Nielsen, editors, Proceedings of the TAPSOFT/FASE’95 Conference,
LNCS 915, pages 575–590, Aarhus, Denmark, May 1995. Springer-Verlag.

Plo76. G. D. Plotkin. A powerdomain construction. SIAM Journal on Computing,
5(3):452–487, 1976.

Rey83. John C. Reynolds. Types, abstraction and parametric polymorphism. In
R. E. A. Mason, editor, Proceedings 9th IFIP World Computer Congress,
Information Processing ’83, Paris, France, 19–23 Sept 1983, pages 513–523.
North-Holland, Amsterdam, 1983.

Smy78. Michael B. Smyth. Powerdomains. Journal of Computer and Systems Sci-
ences, 16(1):23–36, February 1978.

SS99. Andrei Sabelfeld and David Sands. A per model of secure in-
formation flow in sequential programs. Technical report, Depart-
ment of Computer Science, Chalmers University of Technology, 1999.
http://www.cs.chalmers.se/~csreport/.

SV98. Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-
threaded imperative language. In Conference Record of POPL ’98: The
25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 355–364, 1998.

TK97. P. Thiemann and H. Klaeren. Binding-time analysis by security analysis.
Universitt Tübingen, November 1997.

VS98. Dennis Volpano and Geoffrey Smith. Probabilistic noninterference in a con-
current language. In 11th IEEE Computer Security Foundations Workshop,
pages 34–43, 1998.

VSI96. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow
analysis. J. Computer Security, 4(3):1–21, 1996.

Wad89. Philip Wadler. Theorems for free. In Functional Programming Languages
and Computer Architecture, pages 347–359. ACM, 1989.

WH87. P. Wadler and R. J. M. Hughes. Projections for strictness analysis. In 1987
Conference on Functional Programming and Computer Architecture, pages
385–407, Portland, Oregon, September 1987.

	Introduction
	Motivation
	Background
	Semantic Foundations of Information Flow Analysis
	Semantics-based Models of Information Flow
	Overview

	A Per Model of Information Flow
	Binding Time Analysis as Dependency Analysis
	From Equivalence Relations to Pers
	Observations on Strictness and Termination Properties

	Nondeterministic Information Flow
	Secure Commands in a Deterministic Setting
	Powerdomain Semantics for Nondeterminism
	Pers on Powerdomains
	The Security Condition

	Relation to an Equational Characterisation
	Equational Security and Projection Analysis
	The Equational Security Condition Is Subsumed by the Per Security Condition

	A Probabilistic Security Condition
	Conclusions

