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Abstract—Secure integration of third-party code is one of
the prime challenges for securing today’s web. Recent empirical
studies give evidence of pervasive reliance on and excessive trust
in third-party JavaScript, with no adequate security mechanism
to limit the trust or the extent of its abuse. Information flow
control is a promising approach for controlling the behavior
of third-party code and enforcing confidentiality and integrity
policies. While much progress has been made on static and
dynamic approaches to information flow control, only recently
their combinations have received attention. Purely static analysis
falls short of addressing dynamic language features such as
dynamic objects and dynamic code evaluation, while purely
dynamic analysis suffers from inability to predict side effects in
non-performed executions. This paper develops a value-sensitive
hybrid mechanism for tracking information flow in a JavaScript-
like language. The mechanism consists of a dynamic monitor
empowered to invoke a static component on the fly. This enables
us to achieve a sound yet permissive enforcement. We establish
formal soundness results with respect to the security policy of
noninterference. In addition, we demonstrate permissiveness by
proving that we subsume the precision of purely static analysis
and by presenting a collection of common programming patterns
that indicate that our mechanism has potential to provide more
permissiveness than dynamic mechanisms in practice.

I. INTRODUCTION

Web applications are frequently built using code from
different sources. The script inclusion mechanism provides
a simple integration platform for loading third-party scripts
(usually written in JavaScript) into users’ browsers. This
approach is powerful because the code operates with full access
to the users’ credentials and with the same privileges as the
page that includes it.
Motivation: Secure code integration. Unfortunately, this
power opens up for abusing the trust, either by direct attacks
from the included scripts or, perhaps more dangerously, by
indirect attacks when a popular service is compromised and its
scripts are replaced by an attacker. Indeed, a recent empirical
study [42] of script inclusion reveals excessive reliance on and
excessive trust in third-party scripts. It confirms that a vast
majority of today’s web pages (including sensitive services
as banks and online shopping [29], [42]) include third-party
scripts. Regretfully, the current security practice falls short of
distinguishing a benign analytics script from a malicious script
that leaks users’ information to an attacker. In typical third-party
code scenarios, such as usage analytics, advertisement, helper
libraries, traditional access control (as supported at Internet
domain level by the SOP [43], CSP [56], CORS [57] policies) is
of limited help. The code must be granted access and execution
rights for proper functionality. Of paramount importance is

what the code does with the data after permission has been
granted.
Need for practical information flow control. To address this,
tracking information flow throughout the program execution
is a promising technique for preventing sensitive information
from being divulged to unauthorized parties.
Static vs. dynamic information flow control. Much progress
has been made on information flow control for more and
more expressive languages. The approaches range from purely
static [8], [16], [31], [40], [46], [50], [55] to purely dynamic
[3], [17], [21], [24], [27], [29], [47], [51], [54] and increasingly
popular hybrid [35], [37], [44], [49], [53].

Unfortunately, static analysis falls short of addressing the
highly dynamic features of JavaScript [29], [52]. The obvious
roadblocks include dynamic code evaluation and the possibility
to dynamically modify the structure of objects together with
aliasing.

An arguably better fit for information-flow control en-
forcement for JavaScript is dynamic information-flow analyses.
A dynamic information-flow analysis works essentially as a
dynamic type system: at runtime each value is tagged with
a security label that represents the security classification of
that value. The security labels are then updated during each
computation to model the information flow, e.g., the label of
the result of an addition is the join of the labels of the addends.

The key benefit for dynamic analysis over static analyses
is the availability of runtime values. However, sound purely
dynamic information-flow analyses come with an inherent
demand that places fundamental limitations on pure dynamic
enforcement: for the analysis to be sound, it is important that
the security labels themselves are not dependent on secrets [4],
[44].

Motivated by the above considerations, this paper presents
a sound hybrid monitor based on a dynamic information flow
analysis that makes use of a static component at key points
during the execution in order to alleviate the limitations of
pure dynamic enforcement. A key challenge is to design a
combination that benefits from the respective advantages rather
than suffering from the respective disadvantages. We now briefly
discuss the considerations for such a design.
Explicit vs. implicit flows. There are two basic categories of
information flow: explicit and implicit flow. Explicit flows come
from explicit actions, like storing information in a variable, or
sending information over the network. Implicit flows, on the
other hand, are caused by the control flow, like the following
example:

Example 1var l = false; if (h) {l = true;}



Although there is no explicit flow from h to l, the program
has the effect of leaking information about h into l.
Permissiveness of monitors. A common way to enforce
independence of labels is collectively known as no-sensitive-
upgrade (NSU) [4], [58]. NSU achieves independence by
preventing labels from changing under secret control (or secret
context), i.e., when computation finds itself in a control-flow
region whose reachability depends on secrets. When label
upgrade under secret control is attempted, NSU blocks the
execution. Thus, a purely dynamic monitor will cause the
execution of Example 1 to stop in case h is true and secret.
Notice that this stopping might be premature, since the l,
while carrying information from h, might never end up being
observable by the attacker.

As a consequence, many efforts have been directed to
address this limitation to practical dynamic information flow
control, driven by the desire to permit code to make changes
in labels in secret contexts while the program as a whole
remains secure. The goal is to extend permissiveness (low
number of false positives) while maintaining soundness (no
false negatives) of dynamic enforcements. This can be achieved
by identifying potential write targets and upgrading them
before entering elevated contexts. Annotations like privatization
operations [5] or upgrade annotations [29] have been proposed
to allow programmers to pass dynamic monitors additional
information. In the above example, such an annotation could
take the form of an upgrade instruction that upgrades the
variable l before entering the secret conditional. The downside
with such annotations is that they have to be added to the
program by some means (manually, or via testing [12]) and
that the expressive power of the annotations is limited by the
annotation language.
Our solution: Hybrid information flow enforcement. This
paper sets out for a sweet spot between static and dynamic
analysis: a sound modular hybrid monitor based on a dynamic
information flow analysis that makes use of a static component
just before the execution of elevated contexts in order to
identify potential write targets and upgrade their labels. There
are three key ideas underlying the hybrid monitor. First, the
static component is value sensitive in that it makes use of
public values in the environment for the approximation of
write targets. This is fundamental for the treatment of the
heap and closures. Second, the static component is only used
to improve the permissiveness of the overall analysis, while
soundness is provided by the base-line dynamic monitor. This
entails that the static component is able to ignore potential
write targets when they cannot be precisely established. Third,
the monitor is modular in the sense that it decouples the
dynamic and static parts with a clear semantic interface between
the two. This allows for future development in order to
improve permissiveness and performance, while simplifying the
soundness argument. Our monitor generalizes previous work
on sound hybrid enforcement for simple imperative languages
with variables [35], [37], [44], [49] and contributes to bridging
the gap to hybrid security analyses for JavaScript that come
without soundness guarantees (e.g. [53]).
Contributions. The main contribution of this paper is a hybrid
monitor that emphasizes permissiveness without sacrificing
soundness. The hybrid monitor is able to deal with a set of
language constructions selected to capture several challenges
of JavaScript: 1) dynamic records, existence of properties and

structure, 2) dynamic scope chain and with, 3) eval, 4)
closures and return. This set constitutes a core of JavaScript,
leading us to a path from theory to practice that mirrors the paths
taken previously by the related efforts: from theory of dynamic
information flow control for JavaScript [29] to practice [27],
and from theory of secure multi-execution [17] to practice for
JavaScript [24].

Further, we demonstrate the advance of permissiveness with
respect to the state of the art in three ways. First, we show that
the permissiveness of our hybrid mechanisms subsumes a static
flow-sensitive analysis in the style of a classical analysis by
Hunt and Sands [31], generalized to treat the heap. Second, we
demonstrate that we gain permissiveness over purely dynamic
analysis [29] on a collection of programming patterns that we
have observed in empirical JavaScript studies with programs
found on actual web pages. Third, we show that our hybrid
approach enjoys the same benefit over static approaches as the
approach taken in testing-based program analysis [12] without
the extra complication of specialized upgrade instructions and
reliance on program path coverage by the testing.

secure programs

Fig. 1: Relative permissive-
ness

The relation between the
approaches is illustrated in
Figure 1, where the gray area
represents the programs found
in the wild. From a practical
standpoint, performing well on
this set of programs is im-
portant and, as shown in the
figure, our experience indicate
that our approach improves
over purely dynamic monitors

on this set. Experimentally verifying the exact extent of the
gray area requires scaling the approach to full JavaScript. This
work is a step in that direction.

Further, the inclusion of the set labeled static into the set
labeled hybrid depicts that the hybrid mechanism subsumes
the static, i.e., that all programs accepted by the static analysis
are also accepted by our hybrid approach. However, no formal
subsumption exists between the purely dynamic analysis and
the other approaches, elaborated in Section VI.

Finally, we have implemented our monitor in Haskell and
used the implementation to evaluate the approach. The source
code is available at [1] together with an online interpreter.
The interpreter provides all examples of this paper for easy
execution, but we encourage the reader to experiment. The
online interpreter is explained in the full version of this paper,
also available at [1].

II. CHALLENGES
JavaScript is a highly dynamic language with a number of

features that pose challenges for both dynamic and hybrid
enforcements. The goal of these enforcements is to avoid
premature stopping, while allowing these features and maintain
soundness.
Dynamic objects. JavaScript features dynamic objects in the
sense that properties can be added and deleted at runtime. This
possibility leads to the situation that the presence and absence
of properties can be used to encode secrets. One way of dealing
with this is by associating security labels with the existence
of properties and the structure of objects [29]. The latter is
used to record the security label associated with the absence
of properties.



Consider Example 2, where a property is added under secret
control. After execution, the presence of x in o implies that h
is true and its absence that h is false. Since the structure
is initially public, this means that the structure security label
would have to be changed under secret control, which cannot be
allowed. Thus, for unhindered execution, the structure security
label must be upgraded before executing the secret conditional.

Example 2var o = {}; if (h) {o["x"] = true;}

Compare with Example 3, where the existing property x is
updated in a secret conditional. This implies that the security
label of the value of x would be changed under secret control,
which requires that it is upgraded before the secret conditional.

Example 3var o = {x : false};
if (h) {o["x"] = true;}

Dynamic scope chain. Another challenge with JavaScript is
the dynamic scope chain: variables can be dynamically declared
(via, e.g., eval) and dynamic objects can be injected into the
scope chain using with. Variable lookup is performed by
traversing the scope chain, searching each environment record
until a binding of the variable is found.

In Example 4 assigning to x updates the variable, whereas
assigning to y writes to a property of o. This implies that the
security labels of the value of x and of the value of property
y would be changed under secret control, which requires that
they are upgraded before the secret conditional.

Example 4var x; var o = {y : false};
with (o) {if (h) {x = true; y = true;}}

In addition, this illustrates that the structure of the envi-
ronment records on the scope chain affects the reads and the
writes. Consider Example 5, where the presence of field in o is
secret. Since o is injected into the scope chain, this information
is encoded by the variable update: assigning to x will write to
the topmost variable x, encoding the fact that no property x
was present in o. Similarly, assigning to y will not write to the
topmost variable y but rather the property y of o, encoding
that o has property y. This requires that the security labels on
variables x and (perhaps somewhat surprising) y are upgraded
before performing the actual assignments.

Example 5var x; var y; var o = { };
if (h) {o["y"] = true;};
with (o) {x = true; y = true;}

Return. For most control flow constructs the secret context
follows the syntactic structure of the program, i.e., the extent of
the secret context initiated by a secret conditional is the body
of the conditional. However, the possibility to return from
within secret contexts breaks this property. Consider Example 6
where the value of h controls if the assignment x=1 is executed
or not. One way of viewing this is that a return in a secret
context has the effect of extending the secret context to the end
of the function. In the example, this implies that the security
label of the value of x would be changed under secret control,
which requires that it is upgraded before the secret conditional.

Example 6var x;
(function() {
if (h) {return true;} x = 1; return false;

})();

Closures. Since JavaScript does not contain any constructs for
information hiding like protected or private properties it is
common to use function closures to mimic this behavior.

For instance, consider Example 7, which implements a one-
place memory. This is achieved by letting the state (the variable
data) be declared in a function, and returning an object that
provides functions to interact with the state. In this case there
are two functions set and get that sets and gets the value
respectively. In reality, this pattern would be used for more
interesting data structures, e.g. stacks or hash tables, but for
illustration a one place memory suffices.

Now, imagine the situation in the example. The data
structure is allocated at the start of the program, outside any
secret contexts. This means that the label of data will be
public. Thereafter, the program interacts with the data structure
by calling set from within the secret context. This requires
the security label of the value of data to be upgraded before
the secret conditional.

Example 7var mem = function() {
var data = null;
return {set : function(d) {data = d;},

get : function() {return data;} };
};
var x = mem(); if (h) {x["set"](true);}

The example is abstracted from code found in Google Analytics
[23]; in our experience this kind of situation is frequently
occurring in production code.
Dynamic code execution. JavaScript provides several ways
of performing dynamic code execution with eval being the
most prominent. Given a string, eval parses it as a program
and executes the result. The runtime aspect of eval poses no
significant challenge for dynamic or hybrid analysis. However,
eval allows for runtime declaration of variables, which causes
information flow challenges similar to with as discussed
above.

Consider the assignment to l in Example 8. If h is true
the local scope of f will contain l and the update is local.
On the other hand, if h is false the outer variable l will be
updated. This implies that the security label of the value of the
outer l must be upgraded before the assignment.

Example 8var l = true;
(function() {
if (h) {eval("var l;");} l = false;

})();

III. LANGUAGE
In this paper we target a carefully selected set of language

constructs that illustrate the core hybrid information-flow
principles needed to analyze full JavaScript. The language we
propose is a small imperative language with eval, dynamic
records, first class functions and a variable scope chain that
terminates in a global record and allows for the injection of user
defined records into the scope chain using with. In addition,
like JavaScript, we employ non-syntactic scoping, variable and
function hoisting and the principle that writing to previously
undeclared variables defines them in the outermost scope, i.e.,
the global record.

The dynamic records represent the objects of JavaScript and
capture the key challenge from an information flow perspective:
that properties can be added and deleted from records (objects)
at runtime.



e ::= x | l | e⊕ e | e[e] | x:= e | e[e]:= e
| function (x) s | e(e) | {x : e}

s ::= var x | s;s | if e s s | while e s | return e
| with e s | eval e | e

Fig. 2: Syntax

For clarity of exposition we make a number of sim-
plifications. On the more mundane side, we collapse the
primitive values of JavaScript to a single category of abstract
literals, represent all operators by one binary operator, omit
the distinguished undefined value, among others. More
fundamentally, we do not model prototype based inheritance,
exceptions, accessor properties (getters and setters), property
attributes, or implicit coercions. Additionally, modeling the
standard JavaScript API, while necessary for a full scale
implementation, is out of scope of this paper. See Section IV-D
for a more detailed discussion on scaling to the full language.

The syntax of the language (Figure 2) is built up by two
main syntactic categories: the expressions e, and the statements
s. The expressions consist of variables, primitive literals,
binary operators, property projection, variable and projection
update, function expressions, function call and object literals.
The statements consist of variable declaration, sequencing,
conditional branching and iteration, a return statement that
stops the execution of a function returning the given value, the
with statement that takes a record and a statement and injects
it into the scope chain before executing the statement, and the
eval statement that takes a string, parses it and executes the
result. Finally, expressions are lifted into the statements.

The semantics for this subset of JavaScript is standard.
We refer the reader to [29] for a more detailed operational
explanation and purely dynamic information-flow semantics.

IV. ENFORCEMENT
As illustrated before, purely dynamic enforcement of

information-flow often fails to handle common programming
patterns found in web applications. The problem is that a
purely dynamic analysis is limited to make security decisions
based on a single trace while enforcing a property on sets
of traces. A static analysis does not have this problem, since
all possible paths are considered. On the other hand, a static
analysis typically has limited information about runtime values
making them ill-suited for dynamic languages like JavaScript.

We bridge these limitations by combining the dynamic and
static approaches to create a hybrid monitor that inherits the
benefits of both. More precisely, we extend a dynamic monitor
with a static component that is applied whenever there is an
elevation of the security context, e.g., at secret conditionals.
The static component analyzes the extent of the secret context,
e.g., the body of the conditional, and upgrades potential write
targets that otherwise might cause the dynamic analysis to block
the execution. After the static component is done, execution
proceeds normally under the dynamic monitor. The fact that
execution continues monitored, and hence is subject to the
NSU restriction, is important. This way the soundness of the
hybrid monitor is ensured by the soundness of the dynamic
monitor which gives us freedom in the design of the static
component. In particular it allows us to ignore cases where we
cannot compute the write locations precisely instead of being
overly pessimistic.

The rest of this section is laid out as follows. First,
Section IV-A introduces the values and the execution envi-

v ::= l | p | null | 〈x, s, γ〉 o ::= 〈φ, ς〉
γ ::= 〈γ, pσ〉 | null h = p 7→ o φ = f ⇀ vσ

E ::= 〈h, γ, η〉 C ::= E | 〈E, vσ〉

Fig. 3: Values

ronment of the language: primitive values, records, scopes,
scope chains, environments and configurations. Thereafter,
Section IV-B presents the hybrid monitor by discussing key
constructions from the perspective of the limitations of pure
dynamic information flow enforcement and how the static
component is used to increase permissiveness. This section is
written in relation to an intuitive understanding of how the static
component upgrades potential write targets. Finally, details on
how the static component computes potential write targets are
presented in Section IV-C.

A. Execution environment
Let x and f range over identifiers. The values of the

language (Figure 3) are the literals l, the pointers p, the distin-
guished null pointer as well as closures 〈x, s, γ〉 representing
function closures. In the following we identify meta variables
with the sets that they range over, e.g., v denotes both the set
of values as well as the meta variable that ranges over the set
of values.

Let σ range over the set of security labels in general and
let ς denote the structure security label, η denote the return
context label (the highest security context in which return is
allowed to execute) and pc denote the program counter label
in particular. Without loss of generality the security labels
are drawn from a two level security lattice defined by L v
H , where L and H denotes public and secret information
respectively. The extension to an arbitrary lattice is possible,
but demands that all definitions be parametrized over a security
level corresponding to the attackers view which clutters the
exposition. The security of the general lattice is formulated as
the preservation of noninterference for any order preserving
mapping of the general lattice onto the two level lattice. Hence,
the notion is by definition attacker agnostic; regardless of where
the attacker is in the lattice he cannot learn anything above
him.

All values occur labeled with security labels. To reduce
clutter, we frequently omit writing out the labels explicitly
whenever they do not take active part in the computation. This
is indicated by a dot over the corresponding meta variable, e.g.,
v̇ denotes a labeled value and ṗ denotes a labeled pointer. For
such values the notation v̇σ denotes joining σ with the hidden
label, i.e, v̇σ2 = vσ1tσ2 if v̇ = vσ1 .

A record 〈φ, ς〉 is a dynamically modifiable map from
property names to labeled values paired with the structure label
of the record, ς . The property map, φ, is a labeled partial map,
written f ⇀ v̇, where each association, f σ7−→ v, in the map is
labeled with an existence security label, σ.

The variable environment is built by a scope chain where
each scope 〈γ, pσ〉 contains a labeled pointer to a record
containing the actual bindings as well as the inner scope. The
scope chain is terminated with the global scope, 〈null, pLg 〉,
where pg is the distinct pointer to the global record. This allows
us to model key features of the JavaScript variable binding like
the global object and with.

The heap is simply a map from pointers to records and
the environments are triples 〈h, γ, η〉 consisting of a heap,



a scope chain and the return label. The return label is part
of the environment, since it, unlike the pc, does not follow
the syntactic structure of the program, see Example 6 and
Section IV-B for more information.

Finally, configurations C are either environments, or pairs
of environments and values. The latter indicates that a return
statement was executed and that execution should return to the
caller.

B. Hybrid monitor
The hybrid monitor semantics is of the form 〈E, s〉 pc−→

C, read as the statement s executes in environment E under
the program counter, pc, to a configuration C. The pc is the
standard way to prevent implicit flows. For control structures
like conditional branches the pc is raised to the security label of
the guard and remains so for the extent of the control structure.
Together with the return label of the environment the pc forms
the security context that is part of the governing of side effects.
In particular, implicit flows are then prevented by forbidding
all side effects with targets that are below the security context.

In the setting of runtime monitoring forbidding side effects
translates to stopping the execution, typically achieved by not
providing rules for execution for such situations. Thus instead
of causing an explicit error, the semantics fails to progress.

Figure 4 contains a selection of the semantic rules of the
monitor. We refer the reader to the full version of this paper
[1] for the remaining rules. The hybrid monitor is based on
a standard purely dynamic monitor extended with a static
component used in language constructions that can cause
(extensions to) elevated write contexts (the security context
together with labels of values deciding the target of the write,
see below). The static component approximates the potential
write targets and updates their security labels before execution
continues in the dynamic (part of the hybrid) monitor. This way
the static component decouples the update from secret control
and prevents the execution from being stopped for security
reasons.

The hybrid rules that trigger the static component are: con-
ditional branches, sequences (triggered by return), variable
assignments (internally, due to scope chain traversal), function
call and eval. Of those, the conditional branch provides the
most direct illustration of write context elevation and how
the static component is applied. Consider rule IF-H, where
the label of the guard, σ, is not below the security context,
pc t η2. This means that the executed branch, sb, will be
executed in an elevated security context. For this reason, the
rule applies the corresponding static component, i.e., the static
semantics for statements (denoted ⇒), on both branches in
order to upgrade potential write targets before the execution of
the selected branch. The remaining rules that cause elevated
security contexts work analogously, but the context elevation
is more intricate and manifested by interaction of several
rules potentially spanning the hybrid monitor and the static
component.

Elevated security contexts are not the only source of elevated
write contexts. As illustrated by Example 4 and Example 5 the
dynamic scope chain gives rise to elevated write contexts for
variable update. To handle this, rule VASSIGN applies the static
component in the form of static versions of find, findL·M, and
record update, ·J· ←− ·K, to upgrade the potential write target
before the actual update is performed.

Below we first discuss how the notion of write context
is used in restricting side effects in the language. Thereafter,
we explain conditional branches, non-syntactic control flow,
variable assignment, function call and eval in greater detail.
The static component is described in detail in Section IV-C.
The write context. All side effects of the language are
formulated in terms of record update via VASSIGN and
PASSIGN. There are two rules for record update: RECUP-
1 that updates an existing property and RECUP-2 that add a
new property. The rules are parameterized over the security
context, ctx, of the update, i.e., the join of the pc and the return
label.

f
σ17−→ wσw ∈ φ1 φ2 = φ1[f

σ1uσ27−−−−→ vσ2 ]

〈φ1, ς〉 = h[p] σ2 = ctx t σp t σf σ2 v σw RECUP-1
h[(pσp)[fσf ]

ctx7−−→ v] = h[p 7→ 〈φ2, ς〉]

σ v ς φ2 = φ1[f
σtσf7−−−→ vσtσf ]

〈φ1, ς〉 = h[p] f 6∈ dom(φ1) σ = ctx t σp RECUP-2
h[(pσp)[fσf ]

ctx7−−→ v] = h[p 7→ 〈φ2, ς t σf 〉]

When writing to a record not only the value of the property
is written, but also the structure of the record is affected, i.e.,
which properties are defined. For this reason there are two
different write contexts at play in the rules. First, the write
context of the record is the security context together with the
security label of the pointer σp. Second, the write context of the
property is the security context together with the security label
of the pointer σp and of the property name σf . The intuition is
that the pointer identifies the record, whereas the pointer and
the property name identifies the property. In case the property
was already present (RECUP-1) the structure of the record does
not change and no demand is placed on the structure label.
The new value, however, is raised to the write context of the
property, which places the demand that the write context is
below the label of the previous value. The existence label of the
property is set to the greatest lower bound of the write context
and the previous existence label. This allows the existence to
be lowered when properties are written to in public context.

In case a new property is added (RECUP-2) the structure
of the record changes, which places the demand that the write
context of the record is below the structure label. As in the
previous rule the value is raised to the write context of the
property as is the existence label.

This prevents implicit flows, but stops the execution in the
case the demands are not met as illustrated by the examples in
the introduction.

if

st

s2
pc

sf

Conditional branches. When a
conditional branch (IF) is executed
the label of the guard is used to
elevate the pc for the body of the
conditional. The pc is included in
the security context of record up-
date in the rules for variable and
property assignment (VASSIGN and
PASSIGN). The extent of the effect
of the pc on the security context is illustrated by the box labeled
pc in the figure to the right.

In case a conditional branch causes an elevated context
(IF-H) the static component is applied to find and upgrade the



〈E1, e〉
pc−→ 〈〈h2, γ2, η2〉, v̇〉

ṗs, σ = findLh2, γ2, xM h3 = h2J(ṗs)[xL]
pctη2←−−−− σK

ṗ = find(h3, γ2, x) h4 = h3[(ṗ)[xL]
pctη27−−−−→ v̇]

VASSIGN
〈E1, x:= e〉

pc−→ 〈〈h4, γ2, η2〉, v̇〉

〈E1, e1〉
pc−→ 〈E2, ṗ〉

〈E2, e2〉
pc−→ 〈E3, ḟ〉

〈E3, e3〉
pc−→ 〈〈h4, γ4, η4〉, v̇〉

h5 = h4[(ṗ)[ḟ ]
pctη47−−−−→ v̇]

PASSIGN
〈E1, e1[e2]:= e3〉

pc−→ 〈〈h5, γ4, η4〉, v̇〉

〈E1, e〉
pc−→ 〈〈h2, γ2, η2〉, bσ〉 σ v pc t η2
〈〈h2, γ2, η2〉, sb〉

pctσ−−−→ C
IF-L

〈E1,if e strue sfalse〉
pc−→ C

〈E1, e〉
pc−→ 〈〈h2, γ2, η2〉, bσ〉 σ 6v pc t η2 〈E3 t E4, sb〉

pctσ−−−→ C

〈〈h2, γ2, η2〉, strue〉
pctσ
===⇒ E3 〈〈h2, γ2, η2〉, sfalse〉

pctσ
===⇒ E4 IF-H

〈E1,if e strue sfalse〉
pc−→ C

〈E1, e〉
pc−→ 〈E2, 〈x, s, γ〉σ1〉 〈E2, e〉

pc−→ 〈〈h3, γ3, η3〉, v〉

h4 = h3[p1 7→ 〈{x
L7−→ vσ2}, σ2〉] p1 fresh in h3

h5 = h4[p2 7→ 〈{vars(s)
L7−→ nullσ2}, σ2〉] p2 fresh in h4

γ4 = 〈γ3, pL1 〉 γ5 = 〈γ4, pL2 〉 σ2 = pc t η3 t σ1

〈〈h5, γ5, pc t η3〉, s〉
pctσ1−−−−→ 〈〈h6, γ6, η6〉, v̇〉 CALL

〈E1, e(e)〉
pc−→ 〈〈h6, γ3, η3〉, v̇〉

〈E1, e〉
pc−→ 〈〈h2, 〈γ2, pσ1〉, η2〉, strσ2〉

s = parse(str) x = vars(s) h3 = h2[p 7→ o]

o = declare(x, pc t η2 t σ1 t σ2, h2[p])

〈〈h3, 〈γ2, pσ1〉, η2〉, s〉
pctσ2−−−−→ C

EVAL
〈E1,eval e〉

pc−→ C

〈E1, e〉
pc−→ 〈〈h2, γ2, η2〉, ṗ〉

〈〈h2, 〈γ2, ṗ〉, η2〉, s〉
pc−→ 〈h3, γ3, η3〉 WITH

〈E1,with e s〉
pc−→ 〈h3, γ2, η2〉

pc v η 〈〈h, γ, η〉, e〉 pc−→ 〈E, v̇〉
RETURN

〈〈h, γ, η〉,return e〉 pc−→ 〈E, v̇η〉

〈〈h1, γ1, η1〉, s1〉
pc−→ 〈h2, γ2, η2〉

〈〈h2, γ2, η2〉, s2〉
pc−→ C η2 v η1 t pc SEQ-CONT

〈〈h1, γ1, η1〉, s1;s2〉
pc−→ C

〈〈h1, γ1, η1〉, s1〉
pc−→ 〈h2, γ2, η2〉 〈〈h2, γ2, η2〉, s2〉

pc
=⇒ E3

〈E3, s2〉
pc−→ C η2 6v η1 t pc SEQ-CONT-H

〈〈h1, γ1, η1〉, s1;s2〉
pc−→ C

〈〈h1, γ1, η1〉, s1〉
pc−→ 〈〈h2, γ2, η2〉, v̇〉 η2 v η1 t pc

SEQ-HALT
〈〈h1, γ1, η1〉, s1;s2〉

pc−→ 〈〈h2, γ2, η2〉, v̇〉

〈〈h1, γ1, η1〉, s1〉
pc−→ 〈〈h2, γ2, η2〉, v̇〉 η2 6v η1 t pc

〈〈h2, γ2, η2〉, s2〉
pc
=⇒ E3 SEQ-HALT-H

〈〈h1, γ1, η1〉, s1;s2〉
pc−→ 〈E3, v̇〉

Fig. 4: Selected hybrid monitor rules

labels of potential write targets in both branches before actually
executing the body in the join of the static results. Otherwise,
(IF-L) execution proceeds without using the static component.

The join of the environments E1tE2 is defined structurally
over the two environments point-wise joining the security labels.
This is possible, since the static component only changes labels
and never values. Thus, E3 and E4 in IF-H are guaranteed to
have the same values and structure. For space reasons the full
definition can be found in the full version of this paper [1].
Also note that the static component does not change the scope
chain, only the records that the scope chain refers to.

✐�

s✶ r✁✂✄r☎

s✷
return

label

pc

Return. While the pc follows
the syntactic structure of the
program, returning from a se-
cret context has the effect of
extending the secret context to
the end of the function as illus-
trated in the figure to the right.

In line with the base-line dy-
namic monitor [26], [27], [29]
we employ a return label η to
handle the non-syntactic control flow arising from return. This
approach scales to other sources of non-syntactic control flow,
see Section IV-D.

The return label is part of the execution environment and

follows the call stack of the program: each function call has its
own return label as defined in the rule for function call (CALL).
In the same way as the pc, the return label is included in the
write context by the rules for variable and property assignment
(VASSIGN and PASSIGN).

In the semantics for return (RETURN) it is demanded
that the return label is not below the pc. This prevents implicit
flows via side effects in the part of the function under indirect
control of the return, but stops the execution in case the
demand is not met, see Example 6.

To increase permissiveness the static component will
increase the return label if any return statements are found
while analyzing a secret context. In turn, this leads to an
elevated context for all following statements (SEQ-CONT-H),
and, similar to conditional branches, the static component is
applied. In the case the return is executed, control will be
passed to the end of the function body and the statements
syntactically after the return will not be executed. However, it
is important that the static analysis is applied regardless (SEQ-
HALT-H). Otherwise, the application of the static component
would depend on secrets and, hence, also any upgraded security
labels. In the case the return context is not raised, the static
component is not applied (SEQ-CONT and SEQ-HALT).

To illustrate the interplay between the return label, statement
sequence, and assignments consider Example 6 under the



has(h[p], x) = trueσ2

FIND-1
find(h, 〈γ, pσ1〉, x) = pσ1tσ2

has(h[p], x) = falseσ2

FIND-2
find(h, 〈null, pσ1〉, x) = pσ1tσ2

has(h[pt], x) = falseσ2

find(h, γ, x) = pσ3c FIND-3
find(h, 〈γ, pσ1t 〉, x) = pσ1tσ2tσ3c

has(h[p], x) = trueL

SFIND-1
findLh, 〈γ, pL〉, xM = p, L

has(h[p], x) = falseσ

SFIND-2
findLh, 〈null, pL〉, xM = p, σ

has(h[pt], x) = bσ2 findLh, γ, xM = pc, σ3

SFIND-3
findLh, 〈γ, pσ1t 〉, xM = pc, σ1 t σ2 t σ3

Fig. 5: Find and static find

assumption that h is true. The secret conditional causes an
elevated security context and the static component is applied to
the body (IF-H) to compute the upgraded environment in which
the selected branch will be run. Due to the return under secret
control (S-RETURN) the return label of this environment is H .
This guarantees the success of the execution of the conditional
(RETURN), but also means that in the sequence if (h)
{ return true; }; x = 1; return false; the re-
turn context is elevated after the conditional. This causes the
static component to be applied to the rest of the function
(SEQ-HALT-H), and even if x = 1; is not executed the static
component will upgrade the outer variable x (S-VASSIGN).
Variable assignment. The scope chain is a sequence of
dynamic records, called binding records, whose properties
represent the defined variables. There are two constructions that
introduce new scopes in the scope chain. First, function call
(CALL) introduces two new scopes; one for the parameters, and
one for the local variables of the function. Second, the with
statement (WITH) injects a user defined record as a binding
record in the scope chain. In both cases, the new scope is
linked with the rest of the scope chain.

When executing an assignment (VASSIGN), the scope chain
is searched to find the target of the write. Variable lookup is
done by find(·) (Figure 5) and is performed by starting at the
top of the scope chain looking for the first binding record that
binds the variable. A labeled pointer to the binding record is
returned. The label of the pointer can be interpreted as whether
existence of the variable in the corresponding binding record
is secret, and is accumulated while traversing the chain (the
absence of the variable in previous records can be inferred
from knowing the presence in later records).

The result of has(·) is labeled with the existence security
label of the property in case the property exists and the
structure security label otherwise, i.e., has(〈φ, ς〉, x) evaluates
to trueσ, when x

σ7−→ v ∈ φ and to falseς otherwise.

〈{x→nullL;
   y→nullL;
   o→  L;},L〉

〈{y→trueH},H〉

global :

o: L

L

L

L

H

Hence, the presence of bind-
ing records with secret struc-
ture in the scope chain will
potentially cause variable as-
signment to stop. This will
happen when the target is a
public variable shadowed by a

structurally secret record as illustrated in the figure to the left,
depicting the scope chain before the execution of x=true in
the body of the with in the following example.

var x; var y; var o = { }; if (h) {o["y"] = true;};
with (o) {x = true; y = true;}

For this reason variable assignment uses static find, findL·M
(Figure 5), to find the first public write target, x in ps, and its
accumulated scope context, σ.

Thereafter, static update, hJ(ṗ)[ẋ]
σ←− ctxK (Section IV-C),

is used to upgrade the potential write target to the scope

context. This prevents the actual update from stopping due
to the scope context. Thus, static find and update play the
same role for variable update as the static component does for
standard execution.

Returning to the figure above, writing to y will upgrade
the label of the variable y even though the update is captured
by the record injected by the with. Similarly, the label of x
is upgraded before the write, which prevents the monitor from
stopping. The upgrade of y illustrates that the label update is
independent of secrets, while the upgrade of x illustrates the
increased permissiveness in that the execution is not stopped.
Function call. Function call (CALL) computes a function
closure and calls the body in a new environment binding the
given parameters to their formal names. Following JavaScript,
variable declarations in the body of a function call are
hoisted into the new environment separate from the parameter
environment.

For function calls the label of the closure is part of the pc of
the execution. The need for this is illustrated by the following
example that copies the value of h to x by selecting different
functions.

var x; var f;
if (h) { f = function() { x = true; }; }
else { f = function() { x = false; }; }
f();

Thus, calling a secret function may cause an elevated write
context. Unfortunately, applying the static component in such
cases is not sound, since it makes the result of the static
component directly depend on secrets. It is worth noting that it
is for this reason all newly declared parameters and variables
are labeled in accordance with the write context. Otherwise,
writing to local variables in the body of a secret function would
cause a security exception.

It is, however, sound to trace function calls inside elevated
contexts. Consider Example 7, where the set function is
called from within a elevated context. When reaching the
secret conditional the static component is applied (IF-H) before
executing the chosen branch. In this case, thanks to the ability
to make use of runtime values, the static component (S-CALL-
L) is able to identify the called function, analyze the body and
update the write target, data (S-VASSIGN).
Eval. eval (EVAL) computes a string, parses it and executes
the result in the environment of the caller. Similar to function
calls, variable declarations in the program represented by the
string given to eval are hoisted. For eval this is done using
declare(·) (Figure 6) that declares any undeclared variables
given that write context is below the structure security level of
the topmost binding record. In case no variables are declared
no demand is placed on the structure label.

The label of the string providing the program to be evaluated
is part of the pc of the execution. The above example is readily
adapted to the setting of eval as follows.



declare(x, ctx, 〈φ, ς〉) = let X = x \ dom(φ) in{
〈φ ∪ {X ς7−→ nullς}, ς〉 when ctx v ς
〈φ, ς〉 when X = ∅

Fig. 6: declare

var x; var s;
if (h) { s = "x = true;"; } else { s = "x = false;"; }
eval(s);

Evaluating a secret string is subject to the same limitations
as calling a secret function. In the same way it is sound to
analyze eval inside elevated contexts. Consider Example 8,
where eval is called from within a elevated context. When
reaching the secret conditional the static component is applied
(IF-H) before executing the chosen branch. In this case, the
static component is able to compute the string passed to
eval and analyze the parsed result (S-EVAL-L), which causes
the structure of the local variable environment to become
secret. Now, regardless of whether the branch is taken or not
the assignment l = false causes the outer variable l to be
upgraded (V-ASSIGN) as discussed above.
C. Static component

The static component is applied before all elevated write
contexts in order to find potential write targets and update their
security labels to prevent the execution from being stopped
for security reasons. The static component consists of static
versions of the statement and expression semantic as well as
static versions of other semantic parts that cause or influence
side effects (e.g., find and record update).

Since the hybrid analysis is based on a sound dynamic
analysis is suffices that the static component does not violate
the invariants of the dynamic analysis: 1) it must not make the
labeling less secret, and 2) the labeling must remain independent
of secrets. In particular, the static component does not need to
be complete in the sense that all potential write targets are found.
Missing a write target may affect the permissiveness of the
hybrid monitor but does not jeopardize the soundness, since it is
guaranteed by the base-line dynamic monitor. This is important
because it allows the static component to ignore potential write
targets (e.g., when the target cannot be precisely established)
instead of being overly conservative. As an example, consider
the presence of operations that are hard to compute statically,
e.g., operations on strings with the result potentially fed into
eval.

Further, the static component is value sensitive in the
sense that it makes use of runtime values. This is of decisive
importance for being able to handle dynamic constructs like
records, first class functions and the scope chain. For instance,
Example 7 would not be possible to handle without value
sensitivity, since the static component must have knowledge of
the called closure.

The static statement component is of the form 〈E1, s〉
pc
=⇒

E2, read as: analysis of statement s before execution under the
program counter pc, in environment E1 results in a relabeling of
E1 denoted as E2. The static statement component is similar to
the dynamic monitor with three key differences: 1) side effects
are limited to labels only and the new labels are at least as
secret as the old labels, 2) all execution paths are analyzed and
secret values are not used 3) the static component must be able

to handle unknown values. The first difference corresponds
to the demand that labels are not lowered by the analysis. In
addition it makes it possible to execute the static analysis on
the actual environment without changing the semantics of the
program. The second difference corresponds to the demand
that label changes are independent of secrets. Finally, the third
difference comes from the need to statically compute values of
expressions in order to resolve dynamic write targets. In many
cases, this is possible; in general it is not.
Values. The values of the language are extended with a
distinguished unlabeled unknown value, •, that is added to
the set of values v, the set of literals l and the set of pointers
p. All operations are lifted accordingly. The lifting is simple:
unknown values are treated as secrets and if the presence of
an unknown value prevents the computation the result is •.
Consider, e.g., the lifting of find(·) to the extended values by
the addition of a rule to handle unknown values is the scope
chain as follows:

find(h, γ, x) = ṗ
FIND-4

find(h, 〈γ, •〉, x) = pH

For brevity, we omit explicitly lifting in the following. The
full set of rules is found in the full version of this paper [1].

The unknown values are unlabeled reflecting that their labels
are also unknown. However, matching pσ with • is possible
and will make p = • and σ = H .
Static record update. The core of the static component is
performed by static record update. Concisely, static record
update, hJ(ṗ)[ḟ ]

pc←− ctxK, updates the label of the property f
in the record pointed by p in heap h to ctx; if the property
does not exist in the record the structure label of the record is
updated instead. With the exception of the rule for return (S-
RETURN) all label updates performed by the static component
are done by static record update.

The productive rules for static record update are S-RECUP-
L, S-RECUP-H and S-RECUP-S.

〈φ1, ς〉 = h[p] f
σ7−→ vσo ∈ φ1

pc v σo φ2 = φ1[f
σ7−→ vσotctx]

S-RECUP-L
hJ(pL)[fL]

pc←− ctxK = h[p 7→ 〈φ2, ς〉]

〈φ1, ς〉 = h[p] pc v ς ∀x σ7−→ vσo ∈ φ1 . pc v σo
φ2 = {x σ7−→ vσotctx

∣∣x σ7−→ vσo ∈ φ1}
S-RECUP-H

hJ(pL)[fH ]
pc←− ctxK = h[p 7→ 〈φ2, ς t ctx〉]

〈φ, ς〉 = h[p] f 6∈ dom(φ) pc v ς
S-RECUP-S

hJ(pL)[fL]
pc←− ctxK = h[p 7→ 〈φ, ς t ctx〉]

Rule S-RECUP-L updates an existing property to the given
context under the condition that the pointer and the property
names are known and public. If this was not the case the
resulting label would be depending on more secret information.
Unlike the dynamic monitor the static inspection does not stop
if this is not the case; rather no updates are performed. Rule S-
RECUP-H allows for updates over secret or unknown property
names. Instead of not performing the update, the labels of all
the properties of the entire record are updated as well as the
structure label of the record. Finally, S-RECUP-S updates the
structure of a record; since we are not performing side effects
the property should not be added, but the structure should



〈E1, e1〉
pc
=⇒ 〈E2, ṗ〉 〈E2, e2〉

pc
=⇒ 〈E3, ḟ〉

〈E3, e3〉
pc
=⇒ 〈〈h4, γ4, η4〉, v̇〉 h5 = h4J(ṗ)[ḟ ]

L←− pc t η4K
S-PASSIGN

〈E1, e1[e2]:= e3〉
pc
=⇒ 〈〈h5, γ4, η4〉, v̇〉

〈E1, e〉
pc
=⇒ 〈〈h2, γ2, η2〉, v̇〉

ṗ, σ = findLh2, γ2, xM h3 = h2J(ṗ)[xL]
L←− pc t η2K

S-VASSIGN
〈E1, x:= e〉

pc
=⇒ 〈〈h3, γ2, η2〉, v̇〉

〈E1, e〉
pc
=⇒ 〈E2, 〈x, s, γ〉L〉 〈E2, e〉

pc
=⇒ 〈〈h3, γ3, η3〉, v〉

h4 = h3[p1 7→ 〈{x
L7−→ v}, L〉] p1 fresh in h3

h5 = h4[p2 7→ 〈{vars(s)
L7−→ nullL}, L〉] p2 fresh in h4

γ4 = 〈γ3, pL1 〉 γ5 = 〈γ4, pL2 〉

〈〈h5, γ5, η3〉, s〉
pc
=⇒ 〈h6, γ6, η6〉 S-CALL-L

〈E1, e(e)〉
pc
=⇒ 〈〈h6, γ3, η3〉, •〉

〈E1, e〉
pc
=⇒ 〈〈h2, 〈γ2, pL1 〉, η2〉, strL〉

s = parse(str) x = vars(s) 〈φ, ς〉 = h2[p1]

o = declareLx, pc, 〈φ, ς〉M h3 = h2[p1 7→ o]

h4 = h3[p2 7→ 〈{x \ dom(φ)
ς7−→ nullς}, ς〉] p2 fresh in h3

γ3 = 〈〈γ2, pL1 〉, pL2 〉 〈〈h4, γ3, η2〉, s〉
pc
=⇒ 〈h5, γ4, η3〉 S-EVAL-L

〈E1,eval e〉
pc
=⇒ 〈h5, 〈γ2, p1〉, η3〉

〈E1, e〉
pc
=⇒ 〈E2, v

H〉 〈E2, e〉
pc
=⇒ 〈E3, v〉

S-CALL-H
〈E1, e(e)〉

pc
=⇒ 〈E3, •〉

〈E1, e〉
pc
=⇒ 〈〈h2, 〈γ2, pσ1 〉, η2〉, strσ2 〉 σ1 t σ2 = H

S-EVAL-H
〈E1,eval e〉

pc
=⇒ E2

〈E1, e〉
pc
=⇒ 〈〈h2, γ2, η2〉, v̇〉

S-RETURN
〈E1,return e〉

pc
=⇒ 〈h2, γ2, η2 t pc〉

〈E1, e〉
pc
=⇒ 〈〈h2, γ2, η2〉, ṗ〉

〈〈h2, 〈γ2, p〉, η2〉, s〉
pc
=⇒ 〈h3, γ3, η3〉 S-WITH

〈E1,with e s〉
pc
=⇒ 〈h3, γ2, η3〉

〈E1, e〉
pc
=⇒ 〈E2, ḃ〉

〈E2, strue〉
pc
=⇒ E3 〈E2, sfalse〉

pc
=⇒ E4 S-IF

〈E1,if e strue sfalse〉
pc
=⇒ E3 t E4

Fig. 7: Selected static component rules

be raised to allow the property to be added by the dynamic
monitor.

With this we are ready to investigate a selection of the most
interesting static analysis rules (Figure 7). The remaining rules
can be found in the full version of this paper [1].
Assignment. Static variable update and static property update
are similar in that the potential write target is identified and
upgraded using static record update.

For variable assignment (S-VASSIGN), the write target is
identified using static find, findL·M. The reason static find is
used rather than standard find, find(·), is that the latter would
not be meaningful. In case the scope context is public findL·M
and find(·) result in the same write target, and in case the scope
context is secret we cannot safely use the result of find(·) to
update. In particular, the label of the pointer returned by find
would be secret which would prevent static record update from
making any modifications. Rather, by using findL·M we update
the first potential write target that can safely be updated.

As for the actual upgrade, static record update is used to
upgrade the write target to the write context. Note that the
scope context is not taken into account in the upgrade — it is
the responsibility of the hybrid assignment rule (VASSIGN) in
case the assignment is actually run. See Section IV-B.

In the case of property update (S-PASSIGN) the write target
is recursively computed and static record update is used to
update the write target to the write context.
Conditional branches. The static inspection of statements
follows the rules of the dynamic monitor with the difference
that all potential paths are explored. For instance, the rule for
conditional branches (S-IF) analyses both the then branch and
the else branch regardless of the value of the guard.
With. The rule for with (S-WITH) injects the result of the
expression whether it is known or not. This might inject
unknown values into the scope chain, which is handled by
findL·M.
Function call. Function call corresponds to the dynamic
monitor if the closure to be called can be computed and is
public. In such case, new temporary scope records are allocated
for the call and the body of the function is analyzed. In the
case the closure is unknown or secret no attempt at analyzing

the body of is made. For recursive functions and iteration we
employ standard techniques [41] for fixpoint computation.

The possibility to ignore cases, where we cannot establish
which function was called, stems from that we rely on the
static component only for permissiveness and not for soundness.
Omitting the analysis of a function call will prevent the static
component from identifying and upgrading the potential write
targets of the call, which can cause the hybrid monitor to stop
in case such a write is actually performed.

Eval. Static eval (S-EVAL-L) differs somewhat from the
dynamic counterpart. If the string can be computed and is
public, the parsed string can be analyzed. First, static hoisting
is performed. Similar to records (S-RECUP-S) we cannot
actually add variables to the context, since this may change
the semantics of the program. Instead, the static declaration,
declareL·M, upgrades the structure label of the topmost binding
record in order to allow the execution of eval to hoist.

declareLx, pc, 〈φ, ς〉M =

{
〈φ, ς t pc〉 when x \ dom(φ) 6= ∅
〈φ, ς〉 otherwise

Second, an additional local binding record is created to hold
the variables that would be hoisted into the environment of the
caller during execution. The reason for this is to make sure
that variables are properly captured during the static evaluation
of the evaluated program. Consider the following program.

var x;
(function() {
if (h) { eval("var x; x = 1"); }

})();

Unless the local environment was introduced, the static
component would infer that the outer variable x was written,
when actually captured by the variable defined by the evaluated
program.

Return. The static rule for return (S-RETURN) increases the
return label to the pc, which guarantees that returns statements
will not cause a security errors. For an explanation on the
interplay between the rules related to the return label see
Section IV-B.



D. From the core to full JavaScript
JavaScript as defined by the ECMA-262 (v.5) [19] is

beyond the scope of this paper. Instead we envision the current
work to provide the theoretical basis for a scaling to full
JavaScript mirroring the path taken by related efforts: from
theory of dynamic information flow control for JavaScript [29]
to practice [27]. We believe the effort to be roughly comparable
with one exception: the standard API. Properly handling the
standard API would require a hybrid model, which we leave
as future work. The fact that the static component is only
used to increase the precision of the hybrid analysis and not
its soundness allows for important flexibility when scaling the
analysis to the full language. With respect to the API this entails
that it is possible to develop a working prototype for the entire
language without modeling the API at the cost of precision. This
would be no different than cases where it cannot be established
which function is called. Other language constructions that
benefit from this flexibility are, e.g., exceptions and implicit
coercions.
Object creation and the prototype hierarchy. JavaScript
uses prototype based inheritance. The prototype hierarchy is
constructed on object creation by copying the contents of the
constructor’s prototype property to the internal prototype
property of the newly created object. Since the prototype itself
might have a prototype, the prototype hierarchy forms a chain of
objects similar to the scope chain. When a property is accessed
on an object a prototype chain lookup is performed: if the
property is not present in the object itself, the lookup continues
recursively through the prototype hierarchy until found or the
hierarchy ends.

When combined with with the scope chain offers exactly
the same challenges as the prototype hierarchy: the traversal of
a chain of dynamic records searching for a certain property. In
addition to modeling the prototype hierarchy full support for
object creation requires modeling the new operation, which is
analogous to function call.
Non-syntactic transfer of control. There are three construc-
tions in JavaScript that allow for non-syntactic transfer of
control: 1) exceptions, 2) break and continue, in particular
together with labeled statement and, 3) the return statement.

The return statement transfers control to the end of a
function, and break and continue statements interrupt the
standard control flow of loops and switch statements.

Similarly, exceptions provide a way of non-syntactic transfer
of control from the source of the exception to an exception
handler in case one exists. Exceptions are different from the
two other constructions in that they 1) allow for transfer across
function calls, and 2) can be cause by primitive operations of
the language as well as its API.

The handling of non-syntactic transfer of control is similar
across the different constructions. In the current paper we
introduce and explain the return label as the label of the
maximum pc in which return is allowed. In case the return
label is below the control context when reaching a return
statement execution is stopped with an error. In the same
way each labeled statement is associated with a security
label that controls that is the maximum pc in which break
and continue to the label are allowed, and similarly for
exceptions an exception label is used. Like the return label, the
statement security labels and the exception label form the write
context together with the pc, see [27] for more information.

From a hybrid perspective the handling of the different
labels is analogous; in case an instruction that causes non-
syntactic transfer of control is found by the static component
the corresponding label is raised. Following [27] it is reasonable
to not raise the label for internal exceptions. This is a design
choice that avoids the potentially drastic increase of secret
control contexts at the cost of not allowing internal exceptions
under high control. It made possible by the fact that the static
component is only used to increase the permissiveness of the
analysis.

It might be worth pointing out that Hedin and Sabelfeld [29]
exemplify non-syntactic transfer of control using exceptions,
while assuming that functions have a unique exit point. This
assumption allows them to simplify the rule for return. In
their subsequent work [27] a return label similar to the one
presented in this paper is used. To keep the language small we
have opted to use the return label to represent the handling of
non-syntactic transfer of control.

While this approach scales the other constructions of
JavaScript that cause non-syntactic control flow its practical
permissiveness on wild JavaScript must be evaluated. Both
Just et al. [33] and Bichhawat et al. [10] argue for the need
for control-flow analysis to handle non-syntactic (unstructured
in their terminology) control flow. In a sense, in combination
with the static component, the label approach can be seen as
a limited local control-flow analysis empowered by runtime
values and constitutes a natural first step given the base-line
dynamic monitor. However, if needed, thanks to the modularity
of the hybrid monitor, it is possible to further strengthen the
handling of non-syntactic control flow to more advanced and
precise control-flow analyses at the expense of performance.

Accessor properties and property attributes. JavaScript
allows the programmer to associate functions to properties
that are called when the property is read or when a value is
assigned to the property. From an information flow perspective
accessor properties offer challenges that are similar to those
offered by function valued properties, with the difference that
the associated functions are called on reading and writing
[27]. Similarly, JavaScript associates a number of property
attributes to properties. These attributes control different aspects
of the property, e.g, if the property can be deleted, or if it
is enumerable. Modeling property attributes is direct; each
property is extended with security labeled attributes in addition
to the value or the accessor functions. Tracking information
flow into attributes does not differ from tracking information
flow for standard values from both a purely dynamic and a
hybrid perspective.

Implicit coercions. Implicit coercions may give rise to complex
information flow [27]. From a purely dynamic perspective
implicit coercions are relatively easy to handle, whereas from
a hybrid perspective tracing implicit coercions in the static
component may introduce a lot of potential flows that will
never occur during execution. Like for internal exceptions, it
may be reasonable not to track flows due to implicit coercions
in the static component. This will not jeopardize soundness,
which is guaranteed by the baseline dynamic monitor. It might,
however, cause the hybrid analysis to stop with a security error
in case the implicit coercion was actually used and resulted in
the upgrade of a security label under secret control.



E. Practical considerations
When deploying runtime analyses in practice the execution

overhead brought by the analysis is important. While the current
paper is aimed at developing a hybrid analysis that enables
runtime information flow analysis of real programs, making
the analysis practically useful is an important part of the long
term goal.

Once the hybrid approach has been deemed viable from a
permissiveness perspective it remains to make it practically use-
ful. This entails extending an existing implementation, ideally
one of the state-of-the-art implementations, that can serve as a
baseline for comparison, and optimize the hybrid monitor by,
for instance, utilizing static pre-computation of potential write
locations. Without a baseline implementation, the comparison
is one where an experimental unoptimized implementation is
contrasted to a highly optimized commercial implementation.
Such comparison risks significantly overestimating the actual
overhead of hybrid information flow enforcement.

V. SOUNDNESS
This section establishes that our enforcement mechanism

guarantees the baseline security condition of termination-
insensitive noninterference [22], [46], [55]. The intuition behind
noninterference is simple: all attacker observables must be
independent of any secret information given to the program.
This is typically phrased in terms of pairs of executions of
the program. If, for any two executions where the public
information is kept the same but where the secret information
is allowed to be different, the attacker observables remain the
same then they are independent of the secret information.

In the web setting, examples of attacker observables could
be sending or retrieving information over the network. In
general, attacker observables provide a partial view of the
execution environment and, hence, security notions for attacker
observables are subsumed by security notions for the execution
environment.

Noninterference can be phrased as the preservation of a
family of low-equivalence relations ∼β under execution, where
low-equivalence captures the notion of keeping the public
information the same while allowing the secret to vary. The
family is indexed by a bijection on the low-reachable domain
of the heaps, which guarantees that the public heap structure
is isomorphic. Intuitively, two environments E1 and E2 are
low-equivalent if all the public information contained within
them are equal. With this we can formulate the toplevel security
condition for programs, s.

Theorem 1. Soundness of the hybrid monitor

E1∼β1
E′

1 ∧ 〈E1, s〉
pc−→ E2 ∧ 〈E′

1, s〉
pc−→ E′

2 ⇒
∃β2 . β1 ⊆ β2 ∧ E2∼β2

E′
2

Proof: The proof proceeds by mutual induction on execu-
tion derivations and relies on confinement of statements and
expressions as well as noninterference of the static component.
We refer the reader to the full version of this paper [1] for
details.

VI. PERMISSIVENESS
The fundamental goal of the hybrid monitor presented in

this paper is to increase the permissiveness of purely dynamic
monitors.

There are two potential sources of inaccuracies in the
hybrid monitor: 1) underapproximation, i.e., when the static

Example 1 2 3 4 5 6 7 8
Dynamic 7 7 7 7 7 7 7 7
JSFlow 3 7 7 7 7 7 7 7
Type System 3 7 3 3 7 7 7 7
V-hybrid 3 3 3 3 3 3 3 3

Fig. 8: Relative permissiveness

component fails to identify a write target under secret control,
and 2) overapproximation, i.e., when the static analysis wrongly
identifies a write target. As was established in Section IV
neither jeopardize the soundness of the hybrid monitor, since it
is guaranteed by the sound base line dynamic monitor. However,
both may cause the hybrid monitor to halt secure programs
with a security error.

To highlight advantages of the hybrid approach, we discuss
how it handles common programming patters. Additionally, it
has been previously shown that purely dynamic enforcement
is incomparable to purely static enforcement [44]. For this
reason it is interesting to compare our hybrid enforcement
with both purely dynamic enforcement as well as purely static
enforcement. Finally, we compare our approach to upgrade
instructions.

A. Comparison on common patterns
We illustrate the permissiveness of the hybrid analysis by

comparing the different approaches in the light of the examples
presented in the introduction. The examples originate from our
experimentation with running real code and, as such, represent
programs that we deem plausible to be found in the wild.

Let 〈E, s〉  C denote the dynamic monitor obtained
by removing all uses of the static component in the hybrid
monitor 〈E, s〉 −→ C. Figure 8 contains an overview over how
the different approaches compare on the examples. The rows
represent the different approaches where V-hybrid (short for
value-sensitive hybrid) is the hybrid monitor presented in this
paper, Dynamic is the pure dynamic monitor presented above,
JSFlow is the JavaScript dynamic monitor [27], and Type System
is the flow-sensitive type system. In the figure, 3 denotes that
the example is accepted, and 7 denotes that the example is
rejected.

All the eight examples are accepted by our hybrid approach
and rejected by the purely dynamic monitor. It is interesting
to note that the simplistic hybrid variable approach of JSFlow
allows for Example 1 but none of the other examples.

With respect to the flow-sensitive type system presented
below only Example 1 can be handled in a flow-sensitive way.
In addition Example 3 and Example 4 can be typed in a flow-
insensitive way by making the initial record type sufficiently
secret. Flow-sensitive typing of those examples is not possible,
though, due to limitations of flow-sensitivity in the presence
of aliases. For this reason, Example 2, and Example 5 cannot
be handled by the type system; the initial record cannot be
given any other type than the empty record type. Additionally,
Example 6 and Example 7 both contain functions.

B. Versus pure dynamic monitors
First, we define relative permissiveness for monitors. The

set of productive environments for a monitor, M , and program,
s, PM (s) is defined as the environments for which the monitor
does not stop (with a security error or otherwise), i.e., PM (s) =
{E | ∃C . (〈E, s〉, C) ∈M}. Thus P , and P→ are families of
productive sets (productive families) indexed by programs for
the pure dynamic monitor, and the hybrid monitor, respectively.



We say that a monitor M1 is more permissive than a monitor
M2 if the productive family of M2 is a subfamily of the
productive family of M1.

Theorem 2. The pure dynamic monitor,  , is not more
permissive than the hybrid monitor, →, P 6⊆ P→.

Proof: Any of the examples in Section I are counterexam-
ples to the converse statement.

While we have obtained the desired result, in line with our
goal with the hybrid monitor, to increase the permissiveness
for practical examples, due to the fundamental tension [44]
between static and dynamic enforcement, the hybrid monitor
does not subsume permissiveness of the pure dynamic monitor.

Theorem 3. The hybrid monitor, →, is not more permissive
than the pure dynamic monitor,  , P→ 6⊆ P .

Proof: The following program provides a counter example
to the converse statement.

Example 9var o; var p; var q;
p = { f : true }; q = { }; o = p;
if (h) { o = q; };
o["f"] = false;

In an environment where h = false the pure dynamic
monitor will successfully execute the above program, whereas
the hybrid analysis will not, since o will contain a secret
pointer after the static execution of the conditional branch,
which causes the last assignment to fail with a security error.

On the possibility of subsuming (sound) purely dynamic
analyses. With the above definition of relative permissiveness
a hybrid monitor cannot subsume a purely dynamic monitor.
Consider for instance the following program containing dead
code:

l = true; if (h != h) { l = h; }; out(l);

A purely dynamic analysis does not have to stop the above
program, while a hybrid analysis will in case it analyzes the
body of the conditional. Even if the hybrid analysis tries to
detect dead code, in general, it is not possible, which thwarts
subsumption.

Even in the absence of dead code, subsumption is not
possible given that the security notion is termination-insensitive
noninterference. Consider the following insecure program:

l = false; if (h) { l = true; }; out(l);

Despite leaking the entire secret to the attacker, a purely
dynamic analysis will allow the program to execute in en-
vironments where h is false, whereas a hybrid analysis
will detect the leak and (rightfully) stop in all environments.
Hence, for insecure programs the dynamic monitor is potentially
more permissive than the hybrid with respect to termination-
insensitive noninterference, since it may allow the insecure
programs to run in more environments.

C. Versus static analysis
We follow the approach of [44] and compare our enforce-

ment to a typical static flow-sensitive analysis. The power of
the language in our paper demands both precise must-alias
and value information for static enforcement as does handling
with and first class functions in the presence of flow-sensitivity.
Such information is not present in a standard flow-sensitive
type system. Thus, for this comparison the type system restricts

the use of the language: 1) records are flow-insensitive, and
projection and update are only allowed on statically decidable
property names 2) functions are not supported, since they, due
to dynamic scopes, need to be typed in the environment of the
caller, which requires the type system to know which function
is called 3) eval is not supported. These restrictions severely
limits the use of the language; little of the original dynamism
remains. In itself, the need to restrict the language is a strong
argument for the hybrid approach.
Type language. To create a static type system for the language
a type language is needed. Let σ range over security labels, let
ω denote record types: maps from properties to primitive types
In addition, let ν be variable record types defined in the same
way as record types but with the difference that we know that
variable records will be unaliased. Hence, variable record types
are flow sensitive, whereas record types in general are not.
Finally, Γ denotes the type of the scope chain: a sequence of
record and variable record types that representing the records
of the chain.

τ ::= σ
∣∣ω ω ::= {x : τ} ν ::= {x : τ}

Γ ::= ω · Γ
∣∣ ν · Γ ∣∣⊥

In order to relate the type system to the hybrid monitor we
need to tie the types to the values of the language. As is standard
this is done via a well-formedness relation δ, ξ ` E : Γ defined
structurally demanding that the runtime labels correspond to
the static types. Note that the typing relation for pointers is
split into a typing of pointers to general records, δ, and the
typing of pointers to variable records, ξ. For space reasons the
definition of the relation, the type rules and the proofs can be
found in the full version of this paper [1].
Type system. The flow-sensitive type system for the restricted
language has judgments of the form pc,Γ1 ` sV Γ2 read the
statement s is type correct in program counter pc, and scope
chain type Γ1 resulting in and environment with scope chain
type Γ2.

We prove two theorems that relate the hybrid monitor to the
static flow-sensitive type system: permissiveness and accuracy.

The permissiveness theorem (Theorem 4) states that the
hybrid monitor will not stop on well-typed programs when
run in well-formed environments. For this, we must extend
the monitor semantics to return a distinguished security error
denoted O when execution is stopped due to a security violation.

Theorem 4. Permissiveness

pc,Γ1 ` sV Γ2 ∧ δ, ξ ` E1 : Γ1 ∧
〈E1, s〉

pc−→ E2 ⇒ E2 6= O
Proof: By mutual induction on the execution derivation.

The accuracy theorem (Theorem 5) establishes that the
type of the result of the execution monitored by our hybrid
mechanism is not more secret than the type system. In other
words, the security labeling produced is at least as accurate as
the static type system.

Theorem 5. Accuracy

pc,Γ1 ` sV Γ2 ∧ δ1, ξ1 ` E1 : Γ1 ∧
〈E1, s〉

pc−→ E2 ⇒ ∃δ2, ξ2 . δ2, ξ2 ` E2 : Γ2

Proof: By mutual induction on the execution derivation.



Together with Figure 8 those results show that the hybrid
monitor is strictly more permissive than the static type system.

D. Versus upgrade instructions
Birgisson, Hedin, and Sabelfeld [12] investigate how to

use testing to automatically inject upgrade instructions into a
program in order to alleviate the restrictions imposed by the
NSU. They show how the approach can give better accuracy
than static typing, especially when richer security lattices than
the two level lattice is used. The idea is based on the fact
that public labels are allowed to depend on public information.
Consider, for instance,

var x = false; if (l) { if (h) { x = true; } }

Our hybrid monitor enjoys the same increase compared to
static typing: in case l is true the label of x is H, but if l
is false the label of x remains L.

An important realization made in [12] is that the semantics
of upgrades needs to be relatively sophisticated. For instance,
the notion of delayed upgrades is introduced in order to not
upgrade values to early. Consider the following example (taken
from [12])

o = {}; o["f"] = 1; x = o["f"]; if (h) { o["f"] = 42; }

The issue is that in general it is not possible to insert an upgrade
instruction just before the conditional, since there might be no
way at that point to syntactically refer to the same property (in
the above program it is, but in general it might not be). Thus,
the upgrade must be inserted at a previous write access (it
must exist, see [12]). However, upgrading at o[0] = 1 is not
satisfactory, since it would make x secret. Thus, the solution
of [12] is to introduce an upgrade instruction that delays the
upgrade to a certain statement. For the constructions of the
language of this paper even more advanced upgrade instruction
must be added —for instance, there is no way to syntactically
refer to variables in a closure, needed for Example 7.

The hybrid approach avoids this breed of problems alto-
gether. Since the monitor has full access to the execution state
it can perform any updates just before entering the context and
the f property of o is upgraded before entering the conditional.

E. Versus permissive upgrades
Another way of improving the performance of dynamic

information-flow monitors it permissive upgrades [5]. The
approach allows the labels to change under secret control, but
to disallow any future branching on the resulting value. This
allows secret conditionals to be run, but severely limits the use
of the resulting value — most operations involve some kind of
branching on the value — and any derived values.

Our approach does not suffer from these restrictions. We
are able to upgrade labels of potential write targets without
putting restrictions on the resulting values.

F. Extension to declassification
While the hybrid approach of this paper increases the

precision of dynamic information-flow enforcement there is
a category of programs that contain information flow, but
that we intuitively would like to classify as secure. The most
common example of such programs is a password checker: if
the password matches, the user is granted access and if not an
error message is displayed.

if (password == guess) { result = true; }
else { result = false; }

While clearly leaking information about the password to
the public login display, under certain circumstances we can
classify the program as secure. One possible way to define
these circumstances, known as semantic security, is to state
that the program is secure if a polynomial time attacker has
negligible probability of success (with respect to the length
of the password) of acquiring the password. The password
checker program can be shown [2] to be semantically secure
for (large) passwords drawn uniformly at random. Such analysis
is beyond the scope of traditional information-flow enforcement
and beyond the approach of this paper.

Nevertheless, it is still illustrative to compare our hybrid
monitor to a pure dynamic monitor on the above program. While
a pure dynamic monitor would stop execution with a security
error when trying to update the public variable result our
monitor would correctly identify the flow and upgrade result
to secret.

VII. RELATED WORK
A large, extensively surveyed [11], [28], [36], [46], body of

work studies information-flow control. We focus on discussing
sound hybrid information flow control and information flow
control for JavaScript.

As mentioned earlier, formalization of hybrid mecha-
nisms [35], [37], [44], [49] have been demonstrated to enforce
noninterference, however for simple languages without dynamic
structures as the heap.

Inlined information-flow security monitors can be viewed
as hybrid monitors: these monitors are results of static program
transformation that inlines dynamic security checks inside of
the code of a given program. The inlined code manipulates
shadow variables to keep track of the security labels of
the program’s variables. Inlining information-flow security
monitors have been explored for simple languages [9], [14],
[39] without the heap. This approach has been pushed in
the direction of JavaScript [48] targeting a large language
subset including the scope chain, the heap and prototypical
inheritance as well as closures. In addition, the result is proved
to satisfy termination insensitive noninterference given the
proposed semantics. However, there are fundamental limits in
the scalability of the shadow-variable approach. The execution
of a vast majority of the JavaScript operations (with the prime
example being the + operation) is dependent on the types of
their parameters. This might lead to coercions of the parameters
that, in turn, may invoke such operations as toString and
valueOf. In order to take any side effects of these methods
into account, any operation that may cause coercions must
be wrapped. The end result of this is that the inlined code
ends up emulating the interpreter, leaving no advantages to
the shadow-variable approach. An alternative approach is to
implement the monitor itself in JavaScript [27] and perform
inlining by inlining the monitor in its entirety with target code
wrapped in evaluation calls to the monitor [38].

As discussed earlier, Hedin and Sabelfeld [29] propose
a dynamic monitor for a core of JavaScript, as the base for
JSFlow [26], [27] to track information flow in full JavaScript.
The permissiveness of the mechanism relies on upgrade
instructions, whose generation can be facilitated by testing [12].

Chandra and Franz [13] present a hybrid analysis for Java
bytecode. The bulk of the analysis is static, with inlined
dynamic checks against a security policy that might evolve
during runtime.



Vogt et al. [53] modify the source code of the Firefox
browser to include a hybrid information-flow tracker in order
to prevent cross-site scripting attacks. The analysis is based on
tainting combined with flow-sensitive intra-procedural dataflow
analysis. Suggestions on improving the dynamic component of
the analysis have been discussed [45].

Mozilla’s ongoing project FlowSafe [20] aims at giving
Firefox runtime information-flow tracking, with dynamic
information-flow reference monitoring [4] at its core.

Chugh et al. [15] present a hybrid approach to handling
dynamic execution. Their work is staged where a dynamic
residual is statically computed in the first stage, and checked
at runtime in the second stage. The approach is motivated by
placing heavyweight static analysis for the known code on the
server, and the rest of the code is checked dynamically as it
becomes known.

Extending the browser always carries the risk of security
flaws in the extension. To this end, Dhawan and Ganapathy [18]
develop Sabre, a system for tracking the flow of JavaScript
objects as they are passed through the browser subsystems.
The goal is to prevent malicious extensions from breaking
confidentiality. Bandhakavi, et al. [7] propose a static analysis
tool, VEX, for analyzing Firefox extensions for security
vulnerabilities.

Jang et al. [32] focus on privacy attacks: cookie stealing,
location hijacking, history sniffing, and behavior tracking.
Similar to Chugh et al. [15], the analysis is based on code
rewriting that inlines checks for data produced from sensitive
sources not to flow into public sinks. They detect a number of
attacks present in popular web sites, both in custom code and
in third-party libraries.

Guarnieri et al. [25] present Actarus, a static taint analysis
for JavaScript. An empirical study with around 10,000 pages
from popular web sites exposes vulnerabilities related to
injection, cross-site scripting, and unvalidated redirects and
forwards. Taint analysis focuses on explicit flows, leaving
implicit flows out of scope.

Stefan et al. [51] present a library for dynamic information-
flow control in Haskell using a notion of floating labels,
related to the concept of program counter, to restrain the side
effects of computations. Although they do not allow labels of
references (cf. variables) to change, their primitives allow for
the manipulation of labels that causes related problems. Their
solution to this is to demand the programmer to annotate the
program, which is comparable to the use of upgrades.

Hritcu et al. [30] introduce the notion of brackets (related to
the toLabel construction of [51]) to control the pc. Brackets
put restrictions on the control flow leaving the bracket, which
makes them comparable to our notion of return label (and
exception label [27]).

Just et al. [33] develop a hybrid analysis for a subset
of JavaScript. A combination of dynamic tracking and intra-
procedural static analysis allows capturing both explicit and
implicit flows. However, the static analysis in this work does
not treat implicit flows due to exceptions.

Bichhawat et al. [10] present an information flow analysis
for JavaScript bytecode. This work shares the overall motivation
with ours: to use on-the-fly static analysis to improve the
permissiveness of the analysis. The setting is however rather
different: the analysis is implemented as instrumented runtime

system for the WebKit JavaScript engine. The implementation
includes a treatment of the permissive-upgrade check.

De Groef et al. [24] present FlowFox, a Firefox extension
based on secure multi-execution [17]. Multi-execution runs the
original program at different security levels and synchronizes
communication among them. Austin and Flanagan [6] show
how secure multi-execution can be optimized by executing a
single program on faceted values rather than executing the
program multiple times.

The empirical studies above [24], [25], [32], [53] provide
clear evidence that privacy and security attacks in JavaScript
code are a real threat. The goal of our work is to bridge the gap
between the formal and practical approaches to information
flow tracking, striving for permissiveness, while maintaining
soundness.

With the rationale to balance precision and performance,
Kerschbaumer et al. [34] probabilistically switch between
two JavaScript interpreters: a fast taint-based interpreter and
a slower information-flow interpreter. The information-flow
interpreter utilizes a control-flow stack in a fashion similar
to Vogt et al. [53]. The evaluation includes experiments with
Alexa Top pages, demonstrating how the balance precision and
performance can be traded in practice.

VIII. CONCLUSIONS
Leveraging an innovative synergy of static and dynamic

analysis, we have developed a value-sensitive hybrid monitor
for a core of JavaScript. We achieve the best of both worlds by
a dynamic monitor empowered to invoke a static component
on the fly. This enables us to achieve a sound yet permissive
enforcement. We have established formal soundness results
with respect to the security policy of noninterference. We
have demonstrated permissiveness by proving that we subsume
the precision of purely static analysis and by presenting a
collection of common programming patterns that indicate that
our mechanism provides more permissiveness than dynamic
mechanisms in practice.

Future work is centered on the implementation of the
extension to the full the ECMA-262 (v.5) standard [19].
Empirical evaluation is one of the important future goals, with
a number of design choices to explore for better performance.
Our path from theory to practice mirrors the paths taken by the
related efforts previously: from theory of dynamic information
flow control for JavaScript [29] to practice [27], and from theory
of secure multi-execution [17] to practice for JavaScript [24].
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