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Abstract. Decentralization is a major challenge for secure computing. In a de-
centralized setting, principals are free to distrust each other. The key challenge is
to provide support for expressing and enforcing expressive decentralized policies.
This paper focuses on declassification policies, i.e., policies for intended infor-
mation release. We propose a decentralized language-independent framework for
expressing what information can be released. The framework enables combina-
tion of data owned by different principals without compromising their respective
security policies. A key feature is that information release is permitted only when
the owners of the data agree on releasing it. We instantiate the framework for a
simple imperative language to show how the decentralized declassification poli-
cies can be enforced by a runtime monitor and discuss a prototype that secures
programs by inlining the monitor in the code.

1 Introduction
Decentralization is a major challenge for secure computing. In a decentralized setting,
principals are free to distrust each other. The key challenge is to provide support for ex-
pressing and enforcing expressive decentralized policies. Decentralization is of major
concern for language-based information-flow security [42]. Information-flow security
ensures that the flow of data through program constructs is secure. Information-flow
based techniques are helpful for establishing end-to-end security. For example, a com-
mon security goal is noninterference [16, 21, 48, 42] that demands that public output
does not depend on secret input. There has been much progress on tracking information
flow in languages of increasing complexity [42], and, consequently, information-flow
security tools for languages such as Java, ML, and Ada have emerged [36, 47, 38].

A particularly important problem in the context of information-flow security is de-
classification [46] policies, i.e., policies for intended information release. These poli-
cies are intended to allow some information release as long as the information release
mechanisms are not abused to reveal information that is not intended for release. Re-
vealing the result of a password check is an example of intended information release,
while revealing the actual password is unintended release. Similarly, the average grade
for an exam is an example of intended information release, while revealing the individ-
ual grades of all students is unintended release. Abusing the underlying declassification
mechanism for unintended release constitutes information laundering.

Decentralization makes declassification particularly intriguing. When is a piece of
data allowed to be released? The answer might be simple when the piece of data orig-
inates from a single principal and needs to be passed to another one. However, when
the piece of data originates from several sources, data release needs to satisfy security
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requirements of all parties involved. Despite a large body of work on declassification
(discussed in Section 5), providing a clean semantic treatment for decentralized declas-
sification has been so far out of reach. Concretely, the unresolved challenge we address
is prevention of information laundering in decentralized security policies.

Consider a scenario of a web mashup. A web mashup is a web service that integrates
a number of independent services into a single web service. A common example is a
mashup that combines information on available apartments and a map service (such
as Google Maps) in an interactive service that displays apartments for sale on a map.
Components of a mashup typically originate from different Internet domains.

A crucial challenge when building secure mashups [17] is hitting the sweet spot
between separation and integration. The components need to communicate with each
other but without stealing sensitive information. For example, a mashup that displays
trucks with dangerous goods on a map might reveal the corner points of a required map
to the map service but it must not reveal sensitive information about displayed objects
such as the type of dangerous goods [26].

Collaboration in the presence of mutual distrust requires solid policy and enforce-
ment support. Pushing the mashup scenario further, consider two web services (say,
Gmail and Facebook) that are willing to swap sensitive information under the condition
that both provide their share. For example, this might be a client-side mashup that allows
cross-importing Gmail’s and Facebook’s address books. We want the policy framework
to support the swap but prevent stealing Gmail’s address book by Facebook.

A prominent line of work on declassification in a decentralized setting is the decen-
tralized label model (DLM) [32]. This model underlies the security labels tracked by
the Java-based information-flow tracker Jif [36]. DLM labels explicitly records own-
ers. Owners are allowed to introduce arbitrary declassification on the part of labels they
own. However, no soundness arguments for Jif’s treatment of the labels are provided.

While inspired by DLM, our goal is precise semantic specification of decentralized
security and its sound enforcement. Our focus is on exactly what can be released, which
prevents information laundering. Unlike the DLM enforcement as performed by Jif, we
do distinguish between programs that reveal the result of matching against a password
from programs that reveal the password itself.

Combining the decentralization in the fashion of DLM and the laundering pre-
vention in the fashion of delimited release [43], this paper proposes a decentralized
language-independent framework for expressing what information can be released. The
framework enables release of combination of data owned by different principals with-
out compromising their respective security policies. A key feature is that information
release is permitted only when the owners of the data agree on releasing it.

To illustrate that the framework is realizable at language level, we instantiate the
framework for a simple imperative language to show how the decentralized declassi-
fication policies can be enforced by a runtime monitor. We resolve the challenge of
respecting decentralized policies while at the same time preventing laundering. Further,
the monitor allows on-the-fly addition of new declassification polices by different prin-
ciples. The monitor provides a safe approximation for the security policy. As it is often
the case with automatic enforcement of nontrivial policies, the monitor is incomplete in
the sense that some secure runs are blocked.



Further, we have implemented a prototype for a small subset of JavaScript that
secures programs by inlining the information-flow monitor in the code. The inlining
transformation transforms an arbitrary, possibly insecure, program into one that per-
forms inlined information-flow checks, so that the result of the transformation is secure
by construction.

2 Decentralized delimited release
Principals and security levels Our model is built upon a notion of decentralized prin-
cipals which we denote via p, q. We assume that principals are mutually distrusting and
that there are no “actsfor” or “speaks-for” relations [33, 23] between them.

We consider a lattice of security levels L and denote by v the ordering between
elements of the lattice. A simple security lattice consists of two elements L andH , such
that L v H i.e., L is no more restrictive than H . The structure of the security lattice
does not have to be connected to principals in general, though they may be related as
illustrated in Section 2.2.

We assume that different parts of global state (or memory) are labeled with different
security levels: the higher the security level, the more sensitive the information which
is labeled with that level. We also associate every security level in our model with an
adversary that may observe memory states at that level: the higher the security level, the
more powerful the adversary associated with that level. For two-level security lattice, an
adversary corresponding to level L can observe only low (or public) parts of the state,
while adversary corresponding to level H can observe all parts of the state.

Policies as equivalence relations Our model uses partial equivalence relations (PERs)
over memories for use in confidentiality policies [1, 45]. The PER representation allows
for fine granularity in individual policies. We believe that intentional models of security
such as DLM [33] or tag-based models [19, 22, 49, 12] can be easily interpreted using
PERs. Section 2.2 is an example of one such translation for a simple subset of DLM.

Intuitively, two memories m and m′ are indistinguishable according to an equiva-
lence relation I if m I m′. Two particular relations that we use are Id and All intro-
duced by the following definition:

Definition 1 (Id and All relations) Assuming thatM ranges over all possible memo-
ries, define Id , {(m,m) |m ∈M} and All , {(m,m′) |m,m′ ∈M}

Assume an extension of memory mappings from variables to expressions, so that m(e)
corresponds to the value of expression e in memory m. We also introduce an indistin-
guishability induced by a particular set of expressions.

Definition 2 (Indistinguishability induced by E) Given a set of expressions E , define
indistinguishability induced by E as Ind(E) , {(m,m′) | ∀e ∈ E . m(e) = m′(e)}.

In set-theoretical terminology, operator Ind(E) is the kernel of the function that maps
memories to values according to a given expression. When E consists of a single ex-
pression e we often write Ind(e) instead of Ind({e}).



Restriction We define an operator of restriction induced by a set of variables. The
operator is handy in the following examples and in the translation in Section 2.1.

Definition 3 (Restriction induced by variables X) Given a set of variablesX , define
restriction induced byX to be a relation S(X) , Ind({y | y 6∈ X}) i.e., indistinguisha-
bility relation for all variables y that are different from the ones in X .

It can be easily shown that for disjoint sets of variables X and Y it holds that S(X ∪
Y ) = S(X) ∪ S(Y ). We often omit the set notation and write S(x, y) for S({x, y}).

Example: Consider memory with three variables x, y and z, and relation S(z). Ac-
cording to Def. 3, S(z) = Ind({x, y}) = {m,m′ | m(x) = m′(x) ∧m(y) = m′(y)}.
Here S(z) relates memories that must agree on all variables but z. In particular, given
memories m1 in which x 7→ 1, y 7→ 1, z 7→ 1, m2 in which x 7→ 1, y 7→ 1, z 7→ 0, and
m3 in which x 7→ 1, y 7→ 2, z 7→ 1 we have that m1 S(z) m2 but not m1 S(z) m3.

Confidentiality policies Confidentiality policy is a mapping from security levels in
L to corresponding indistinguishability relations. Consider an example security lattice
consisting of three security levels L,M,H , such that L v M v H . Assume also that
our memory contains two variables x and y, and consider a confidentiality policy I such
that I(L) = All , I(M) = S(x), and I(H) = Id

According to this policy, an attacker at level L can observe no part of the state,
which is specified by I(L) = All . An attacker at level M can not observe the value of
x but may observe the value of y. This is specified by using a restriction induced by x
for I(M). Finally, I(H) establishes that an attacker at levelH can observe all variables.

Say that a confidentiality policy I is well-formed when I(>) = Id , where > is
the most restrictive element in L. Moreover, for any two labels ` v `′ it must hold
that I(`) ⊇ I(`′). Our example policy above is well-formed. Indeed, I(H) = Id and
I(L) = All ⊇ I(M) = S(x) = Ind(y) ⊇ I(H) = Id . It is also easy to show that
a policy obtained from point-wise union and intersection of well-formed policies is
well-formed. The rest of the paper assumes that all policies are well-formed.

2.1 Decentralized policies

In a decentralized setting every principal provides its confidentiality policy. We denote
a confidentiality policy of principal p as Ip. In particular, Ip(`) is a relation specifying
what memories must be indistinguishable at levels ` and below according to principal p.
Given two principals p and q with policies Ip and Iq , the combination of these policies is
policy I ′ s.t. for all `we have I ′(`) = Ip(`)∪Iq(`). Note that I ′ combines restrictions of
both p and q and is as restrictive as both Ip and Iq . The following definition generalizes
combination of trusted policies.

Definition 4 (Combination of confidentiality policies) Given a number of principals
p1 . . . pn with policies Ipi , 1 ≤ i ≤ n, the combination of these policies is a policy I ′

such that for all ` it holds that I ′(`) =
⋃
i Ipi(`).

Example: Consider a lattice with three levels L, M , and H as before and a memory
with two variables x and y. Consider two principals p and q with the policies Ip(L) =
All , Ip(M) = Ind(x), Ip(H) = Id , Iq(L) = All , Iq(M) = Ind(y), Iq(H) = Id .
According to these policies p and q have different views on what can be observable



at level M . Combining these two policies, we obtain a policy I ′, such that I ′(L) =
All , I ′(M) = All , and I ′(H) = Id . Combining restrictions of both p and q means
I ′(M) allows an attacker at level M to observe neither x nor y.

Declassification Declassification corresponds to relaxing individual policies Ip. We
assume that every principal provides a set of escape hatches [43] that correspond to
that principal’s view on what data can be declassified.

Definition 5 (Escape hatches) An escape hatch is a pair (e, `) where e is a declassifi-
cation expression, and ` is a level to which e may be declassified.

Given a set of escape hatches Ep for principal p and an initial indistinguishability policy
of this principal Ip we can obtain a less restrictive indistinguishability policy as follows.

Definition 6 Given a confidentiality policy I and a set of escape hatches E , let declas-
sification operator D return a policy that relaxes I with E . We define D pointwise for
every level ` so that D(I, E)(`) , I(`) ∩ Ind(E`) where E` = {e | (e, `′) ∈ E ∧ `′ v `}
is the selection of escape hatches from E that are observable at `.

Example: Consider Ip as in Section 2.1 and escape hatch (y, L). Let us assume
I ′ = D(Ip, {(y, L)}). We have I ′(L) = Ind(x), I ′(M) = Id , and I ′(H) = Id .

` Ip(`) Iq(`) D(Ip, Ep)(`) D(Iq, Eq)(`)
H Id Id Id Id
L S(x) All S(x) ∩ Ind(x) Ind(x+ y)

Fig. 1: Declassification and composite policies

Example: declassification and com-
posite policies. Consider again memory
with two variables x and y, a simple two-
level security lattice with security levelsL
and H such that L v H , and two princi-
pals p and q. Assume that p’s policy spec-
ifies that a low attacker cannot observe x, and that q specifies that low observer cannot
observe any parts of the memory. The corresponding security policies can be given by
the second and third columns of Figure 1, where S(x) = Ind(y). The combination of
policies of both p and q at level L is Ind(y)∪All = All . That is, principals agree on no
information being observable to an adversary at the level L.

Assume principal p declassifies the value of x to L, and principal q declassifies the
value of x + y to L, i.e., Ep = {(x, L)} and Eq = {(x + y, L)}. The corresponding
policies are given by the last two columns of Figure 1. The result of combining policies
at level L is captured by the relation (Ind(y)∩ Ind(x))∪ Ind(x+ y) which is equivalent
to Ind(x+ y). That is, both principals allow x+ y to be observed at level L.

Security Our security condition is based on decentralized confidentiality policies. For
generality, this section uses an abstract notion of a system with memory, denoted by
S(·). A transition of system S(m) with memory m to a final state with memory m′ is
written as S(m) ⇓ m′. Section 3 instantiates this abstraction with standard program
configurations. We call our security condition decentralized delimited release (DDR).

Definition 7 (Batch-style DDR) Assume principals p1, . . . , pn with confidentiality poli-
cies I1 . . . In and declassification policies given by escape hatch sets E1 . . . En. Say that
a system with memory S(·) satisfies decentralized delimited release when for every level
` and for all memories m1,m2 for which m1

⋃
1≤i≤nD(Ii, Ei)(`) m2 it holds that

whenever S(m1) ⇓ m′1 and S(m2) ⇓ m′2 it must be that m′1
⋃
i Ii(`) m

′
2.



DDR borrows its intuition from the original definition of delimited release [43], and
generalizes it to the case of several principles. In fact, in case of a single principal this
definition matches the original definition in [43].

The key element of this definition is that it prevents laundering attacks. To see an
example of a laundering attack, consider the following examples. Assume a memory
with three variables x, y, z and individual policies of two principals p and q, as shown
in the second and third columns of Figure 2. Here S(x, y) is restriction induced by x
and y, and S(x, y) = Ind(z), i.e., this relation allows only variable z to be observable.

Assume escape hatch sets where p declassifies x+ y to L, i.e., Ep = {(x+ y, L)},
and q declassifies both x and y individually to L, i.e., Eq = {(x, L), (y, L)}. Taking
the escape hatches into account we obtain the relations shown by the last two columns
of Figure 2. According to these policies the program z := x + y is secure. On the
other hand the program x := y; z := x + y is insecure. To see this consider two
memories m1 and m2 where in m1 we have x 7→ 1, y 7→ 1, z 7→ 0 and in m2 we have
x 7→ 0, y 7→ 2, z 7→ 0. We have that m1 D(Ip, Ep)(L) ∪ D(Iq, Eq)(L) m2, but not
m′1 Ip(L) ∪ Iq(L) m′2.

DLM0 We adopt the Decentralized Label Model (DLM) [32] as our model of express-
ing security policies sans actsfor relation, that we dub DLM0 . We nevertheless, retain
top and bottom principals ⊥ and > that allow us to express the most and the least re-
strictive security policies. In DLM a security level of a variable records policy owners,
reviewed below. On the intuitive level policy owner is a principal who cares about the
sensitivity of the data. This is more than simply a principal who can read data — not
every principal who reads data is necessarily interested in preserving its confidentiality.

DLM policies are the basic building blocks for expressing security restrictions by
principals. A (confidentiality) policy is written o→ r1, . . . , rn, where o is the owner of
the policy, and r1, . . . , rn is the set of readers. Here principal o restricts the flow of data
to the principals in the readers set. For example, in the policy Alice → Bob,Carol Al-
ice constraints the set of readers to only Bob, Carol, and herself (the owner is implicitly
a reader). Similarly, a policy Carol → Carol restricts all but Carol from reading data.

Security labels, denoted by `, are either DLM policies or are composed from other
labels in one of the two ways: (i) conjunction of two labels, written `1 t `2, is a label
that enforces restrictions of both `1 and `2. (ii) disjunction of two labels, written `1u`2,
is a label that enforces restrictions of either `1 or `2. An example of a conjunction label
is {Alice → Bob,Carol} t {Carol → Carol}. Carol is the only reader; because of
the Carol’s policy, this label restricts either Alice or Bob from reading data. Disjunction
label {Alice → Alice} u {Bob → Bob} allows both Alice and Bob to read data.

Labels can be ordered by the “no more restrictive than” [34, 14] relation: `1 v `2
when `1 restricts data no more than `2 does. We use {⊥ → ⊥} to denote the least
restrictive label (also denoted simply ⊥), i.e., for all ` it holds that {⊥ → ⊥} v `. For

` Ip(`) Iq(`) D(Ip, Ep)(`) D(Iq, Eq)(`)
H Id Id Id Id
L S(x, y) S(x, y) S(x, y) ∩ Ind(x+ y) S(x, y) ∩ Ind(x) ∩ Ind(y)

Fig. 2: Policies for example laundering attack



example, {Alice → Alice,Bob} v {Alice → Alice}, because in the right label, Alice
imposes stricter restrictions by allowing only her to be the reader. However (assuming
there is no actsfor relationship between Alice and Bob), {Alice → Bob} 6v {Bob →
Alice}. Here Alice’s constraints are not satisfied. Her label on the left restricts the flow
to Bob, but there are no Alice’s policies on the right.

2.2 From DLM0 to families of indistinguishability relations

This section shows how DLM0 labels can be translated to confidentiality policies. The
translation is parametrized by the principals. We define two operators in this translation
— the top level translation operator T̃p and a helper operator Tp. The top level transla-
tion operator T̃p, that returns a confidentiality policy for principal p, takes the variable
environment Γ as a single argument. It is defined so that when Γ = ∅ then in the
resulting confidentiality policy T̃p(Γ ), the corresponding indistinguishability relation
for all labels ` is Id . This indeed matches the DLM intuition that no restrictions imply
the most permissive confidentiality policy. To translate restrictions that are captured by
DLM labels, we define a helper operator Tp(Ip, `, x).

Definition 8 (Translation of a single label Tp) Given a principal pwith an initial pol-
icy Ip, label `, and variable x, define Tp(Ip, `, x) inductively based on the structure of `.

case ` is an empty label Return Ip.
case ` is `′ t {q → r} such that q 6= p and q 6= > Return Tp(Ip, `

′, x).
case ` is `′ t {q → r} such that q = p or q = > Define policy I ′p, where for all `′′ let

I ′p(`
′′) =

{
Ip(`

′′) ∪ S(x) if {q → r} 6v `′′

Ip(`
′′) otherwise

and return Tp(I
′
p, `
′, x).

case ` is `′ u {q → r} such that q = p or q = > Define policy I ′p where for all `′′ let

I ′p(`
′′) =

{
Ip(`

′′) ∪ S(x) if {q → r} 6v `′′ ∧ `′ 6v `′′

Ip(`
′′) otherwise

and return Tp(I
′
p, `
′, x).

With the definition of Tp at hand we define the top-level translation operator T̃p.

Definition 9 (Translation of DLM0 policies) Assume that Γ maps variables to DLM0

labels. Define an operator T̃p that translates restrictions recorded in Γ to confidential-
ity policies as follows. We let T̃p(∅) = Ĩd , when Γ = ∅, and otherwise T̃p(x 7→
`;Γ ′) = Tp(T̃p(Γ

′), `, x). Here Ĩd is a policy s.t. for all levels ` it holds Ĩd(`) = Id .

Example: Consider memory consisting of four variables x, y, z and w. Assume two
principals p and q, and variable environment Γ , s.t. Γ (x) = {p → p}, Γ (y) = {q →
q}, Γ (z) = {p → p, q} t {q → p, q}, and Γ (w) = {p → p} u {q → q}. Translation
of labels in Γ is represented by the second and third columns in the table below.

` T̃p(Γ )(`) T̃q(Γ )(`) D(T̃p(Γ ), Ep)(`) D(T̃q(Γ ), Eq)(`)
{> → >} Id Id Id Id
{p→ p} Id S(y) Id S(y) ∩ Ind(x+ y)
{q → q} S(x) Id S(x) ∩ Ind(x+ y) Id
{p→ p, q} t {q → p, q} S(x) S(y) S(x) ∩ Ind(x+ y) S(y) ∩ Ind(x+ y)
{p→ p} u {q → q} S(x) S(y) S(x) S(y)
{⊥ → ⊥} S(x) S(y) S(x) S(y)



Here S(x) = Ind(y) ∩ Ind(z) ∩ Ind(w) and S(y) = Ind(x) ∩ Ind(z) ∩ Ind(w). Con-
sider escape hatches provided by each principals such that Ep = Eq = {(x + y, {p →
p, q} t {q → p, q})}. Taking escape hatches into account the policies obtained from
declassification operator are illustrated in fourth and fifth columns of the table above.

3 Enforcement
This section illustrates the realizability of our framework for a simple imperative lan-
guage. We formalize the language along with a runtime enforcement mechanism that
ensures security.

Language and semantics The syntax of the language is displayed in Figure 3. Expres-
sions e operate on values n and variables x and might involve composition with operator
op. Commands c are standard imperative commands. The only nonstandard primitive in
the language is a declassification primitive declassify(p, e, `) that declares an escape
hatch (e, `) of principal p.

e ::= n | x | e op e
c ::= skip | x := e | c; c | declassify(p, e, `) | if e then c1 else c2 | while e do c

Fig. 3: Syntax

〈declassify(p, e, `),m〉d(p,e,`)−→ 〈stop,m〉
m(e) = v

〈x := e,m〉a(x,e,m)−→ 〈stop,m[x 7→ v]〉
m(e) = n n 6= 0 =⇒ i = 1 n = 0 =⇒ i = 2

〈if e then c1 else c2,m〉
b(e)−→〈ci; end ,m〉

〈end ,m〉 f−→〈stop,m〉

Fig. 4: Monitored semantics: selected rules

〈st , i, E , Γ 〉 b(e)−→〈lev(e) : st , i, E , Γ 〉 〈hd : st , i, E , Γ 〉 f−→〈st , i, E , Γ 〉

〈st , i, E , Γ 〉d(p,e,`)−→ 〈st , i, E [p 7→ Ep ∪ {(e, `, lev(st))}], Γ 〉

lev(st) v Γ (x) ` , substEH(lev(e), x, e, E , Γ ) lev(e) 6v ` =⇒ m(e) = i(e)

〈st , i, E , Γ 〉a(x,e,m)−→ 〈st , i, E , Γ [x 7→ lev(st) t `]〉

substEH({o→ r̃}, x, e, E , Γ) , {o→ r̃} u {` | (e, `, pc) ∈ Eo ∧ pc v Γ (x)}
substEH(`1 t `2, x, e, E , Γ ) , substEH(`1, x, e, E , Γ ) t substEH(`2, x, e, E , Γ )
substEH(`1 u `2, x, e, E , Γ ) , substEH(`1, x, e, E , Γ ) u substEH(`2, x, e, E , Γ )

Fig. 5: Monitor semantics: selected rules

Figure 4 contains the semantic rules for evaluating commands. A memory is a map-
ping from variables to values, where values range over some fixed set of values (say,
without loss of generality, the set of integers). We assume an extension of memories
to expressions that is computed using a semantic interpretation of constants as values
and operators as total functions on values. This allows us writing m(e) for the value of
expression e in memory m. A configuration has the form 〈c,m〉 where c is a command

in the language and m is a memory. A transition has the form 〈c,m〉 β−→〈c′,m′〉 rep-
resenting a computation step from configuration 〈c,m〉 to 〈c′,m′〉. Events β are there



to communicate relevant information about program execution to an execution monitor
(this style of presenting monitors follows recent work on information-flow monitor-
ing, e.g., [44, 5]). When events are unimportant, we may omit explicitly writing them
out as in 〈c,m〉−→〈c′,m′〉. The meaning of the particular events is spelled out in the
description of the monitor below.

Monitor Our enforcement mechanism is a runtime monitor. Listening to a given pro-
gram event, the monitor either grants execution (possibly updating its internal state)
or blocks it. Following the idea sketched in [26], we obtain security by requiring two
conditions on declassification (in addition to standard tracking “regular” flows orthog-
onal to declassification). The first condition is to check that all declassifications are
allowed. The second condition ensures that the value of an escape hatch expression
has not changed since the start of the program. The former is in charge of the who
dimension of declassification, preventing release to unauthorized principals, whereas
the latter controls the what dimension, preventing information laundering. Section 5
discuses these and other dimensions of declassification [46] in further detail.

Figure 5 presents selected monitor rules. Monitor configurations have the form
〈st , i, E , Γ 〉, where st is a stack of security levels, i stores the initial program mem-
ory, E is an indexed collection of sets of escape hatches, and Γ is the current security
environment. Escape hatches are also extended to the form (e, `, pc), where pc records
the level of the monitor stack when that escape hatch has been added. The monitor fea-
tures a form of flow-sensitivity: security level of a variable Γ (x) can be updated, but
only when the decision to update does not give away secret information [6].

Assume an overloaded function lev(·) that returns the least upper bound on the
security level of components in the argument. For expressions, the components are the
subexpressions and for lists the components are the list elements. When monitor stack
is empty lev(·) is the least restrictive label ⊥ → ⊥.

The event b(e) is generated by conditionals and loops when branching on an ex-
pression e. This is interesting information for the monitor because it introduces risks
for implicit information flow [18] through control-flow structure of the program. For
example, program if h then l := 1 else l := 0 leaks whether the initial value of
(secret) variable h is (non)zero into the final value of (public) variable l. The essence
of an implicit flow is a public side effect in a secret computation context. To record the
computation context, we keep track of the security levels of the variables branched on.
Thus, the monitor always accepts branching on an expression, pushing the level of the
expression on the stack. The event f is generated by conditionals and loops on reach-
ing a joint point of branching. The monitor always accepts this event, popping the top
security level from the stack. The event d(p, e, `) is generated upon declassification of
expression e to level ` by principal p. In response, the monitor includes the newly de-
clared escape hatch in its environment and records the current level of the stack lev(st).

The event a(x, e,m) is generated by assignment of an expression e to a variable x in
memory m. First, the monitor blocks implicit flows by requiring that the level of the x
is at least as restrictive as the least upper bound of the security levels on the stack. Next,
the monitor checks if this assignment can be treated as a declassification. The operator
substEH performs a label substitution and returns the least restrictive label that can be
obtained by using declassifications in E . Note that all information used by substEH



check is bounded by Γ (x) — we only look up escape hatches that syntactically agree
on expression e and that were updated in the contexts with pc v Γ (x). If expression
can be declassified to a level that is more permissive than lev(e), the monitor checks
that the escape-hatch expression must be the same in the initial and current memories.
This prevents information laundering as in declassify(p, h, p → ⊥);h := h′; l := h
where h is declared to be declassified whereas h′ is actually leaked. Finally, the monitor
updates the level of Γ (x), featuring flow-sensitivity mentioned earlier in this Section.

The monitor accepts program l := x+y, if bothA’s andB’s escape hatches contain
x+ y, and rejects it if either A or B do not explicitly list x+ y in their escape hatches.

While, as we will show, the enforcement is sound, it is obviously incomplete. In the
setting of the example above, the program is rejected when A’s escape-hatch set is {x}
and B’s is {y}. A and B are willing to release all of their data, and so the program is
rightfully accepted secure by the security definition. However, the monitor rejects the
program because expression x+ y is not found in the escape-hatch sets.

Soundness The monitor guarantees secure execution in the presence of mutual dis-
trust. We instantiate the notion of system with memories of Definition 7 with mon-
itored program configurations (〈c,m〉, 〈st , i, E , Γ 〉). Assume all declassification poli-
cies are expressed in E and c contains no further declassify statements. This is con-
sistent with our implementation (cf. Section 4) in which escape hatches are collected
at parse time. We write (〈c,m〉, 〈st , i, E , Γ 〉) ⇓ m′, Γ ′ when (〈c,m〉, 〈st , i, E , Γ 〉)
−→∗(〈stop,m′〉, 〈st ′, i, E , Γ ′〉), where−→∗ is a transitive closure of−→. Assume prin-
cipals p1, . . . , pn with individual declassification policies Epi . Formally, we have:

Theorem 1 (Soundness) Assume principals p1, . . . , pn with initial DLM0 policies ex-
pressed in the environment Γ and declassification policies expressed by the collection
of sets of escape hatches E , indexed by pi. Consider program c free of declassify
statements. Then for all levels ` and memories m1,m2 s.t. m1

⋃
pD(T̃p(Γ ), Ep)(`)

m2 if (〈c,m1〉, 〈ε,m1, E , Γ 〉) ⇓ m′1, Γ ′1, and (〈c,m2〉, 〈ε,m2, E , Γ 〉) ⇓ m′2, Γ ′2, then⋃
p T̃p(Γ

′
1)(`) =

⋃
p T̃p(Γ

′
2)(`) and m′1

⋃
p T̃p(Γ

′
1)(`) m

′
2.

The proof of Theorem 1 is available in the accompanying technical report [27].
Example: We revisit the example with aggregate computation from Section 2.1.

Consider variable environment consisting of three variables x, y and z. Assume two
principals p and q s.t. Γ (x) = {p → p}, Γ (y) = {q → q}, and Γ (z) = {p → p, q} t
{q → p, q}. and escape hatch sets for every principal s.t. Ep = Eq = {(x + y, {p →
p, q} t {q → p, q},⊥ → ⊥)}. Then basic declassification of the form z := x+ y is
accepted, while laundering as in the program x := y; z := x+ y is rejected.

4 Experiments
Next, we present the experiments conducted on enforcement of the monitor in practice.
The inlining transformation converts a program in a language from Section 3 into a pro-
gram in JavaScript with inlined security checks. In this experiment we have successfully
implemented two scenarios in a restricted subset of JavaScript.

Experiment setup To implement runtime source transformation we need functionality
for parsing and rewriting of JavaScript code, written in JavaScript. We use ANTLR [2]



to generate such a parser/rewriter from a JavaScript grammar. The generated parser
is 7650 LOC of JavaScript, not counting additional 165 LOC for the user-defined
JavaScript and 6139 LOC in the runtime library. For performance, the code can be fur-
ther reduced using JavaScript compression tools. All sources are available on demand.

The monitor must be inlined before the code is parsed by the browser, or else the
code is executed unmonitored. The Opera browser [37] allows the user to include priv-
ileged JavaScript called “User JavaScript”. User JavaScript can access functions and
events not accessible to ordinary JavaScript, including the event “BeforeScript”, that
enables rewriting the script source before the source reaches the browser’s parser. This
allows us to inline the monitor whenever a new script is loaded.

This approach introduces two sources of runtime overhead. The first is the pars-
ing and rewriting, performed once per code segment. The second is the execution of the
inlined monitor. Previous work [29] shows the total overhead of 2–10 times the untrans-
formed runtime, depending on the code structure of, the browser, and the system used.

One alternative to implementing the monitor is using aspect-oriented techniques
along the lines of, e.g., [28]. However, such an implementation would demand low-
level access to program operations. For example, performing an assignment or reaching
a joint point must be observable events in order to serve as pointcuts.

Transformation The generated parser parses and, in the process, rewrites the code,
transforming it on the fly. If the parser cannot parse the input it throws an error and the
code is not evaluated by the browser. The monitored code is hence limited by the parser.

The source language is a subset of JavaScript, as described in Section 3. The target
language is full JavaScript. This means there are no restrictions on the monitor itself,
only on the code being monitored. We identify different stages in the transformation
that are closely related to the stages of the browser as it requests content. While other
JavaScript-specific features, such as prototyping and objects, would make an interesting
complement, more research on how such features affect information-flow analysis is
required before extending the language and incorporating them in the framework.

Transformation in stages Based on information available at a given moment, only
certain actions can be taken. Thus, we distinguish between parse-time and run-time.

Parse-time As scripts are encountered we enumerate their origins and for each origin
load the associated escape hatches and initial levels for variables. The scripts are parsed
on the fly. During parsing, when a security critical part of the source is encountered, we
rewrite the source inlining the monitor according to a set of rules. Because JavaScript
lacks a declassification primitive, unlike the monitor in Section 3, escape hatches are
defined at parse-time. Note that while it is clear at parse-time which variables are used
in an expression, their run-time values are unknown. This is crucial for declassification
as it relies on which variables are used in expressions to determine which information
to declassify. This transformation is detailed below.

var x; // User variable
var _x_; // Level of x
var __x; // Initial value of x
var _pc; // Special variable

Listing 1.1: Naming convention

Run-time At run-time, as the program is evaluated,
all variables have their actual values, but when fol-
lowing an execution path we lose information about
the control-flow structure of the program. Thus, the
inlining transformation needs to encode necessary



control-flow structure information for the monitor. As the transformed script is exe-
cuted, the monitor validates the inlined checks.

Shadow variables To track information flow in the program we use shadow variables.
Two kinds of shadow variables are used: one for the level of the variable, and one
for its initial value. The shadow variables that hold the initial values are set when the
corresponding variable is declared, while the shadow variable that hold the level are
updated whenever the corresponding variables are initially assigned. The set of shadow
variables corresponds to Γ in the formal monitor. Also, a small set of monitor specific
variables is described below.

To prevent the code being monitored from interfering with state of the monitor, the
shadow variables must be isolated. One could create a separate namespace for shadow
variables, with minimal impact on the source program. The drawback is mimicking
the scoping and variable lookup mechanisms of JavaScript, to prevent clashes between
equally named variables from different scopes. Implementing this can be non-trivial.

Antoher possibility is to reserve an infrequently used character, such as “ ”, for
shadow variables, thereby excluding it from the set of allowed characters for identifiers
in the source language. This would prevent valid code, according to the parser, from
referring to variables using this character. The benefit in this case is that we can piggy-
back on JavaScripts built in scoping mechanism. The drawback is that we moderately
restrict the set of valid programs. As a design choice, we chose this option. The chosen
naming convention can be seen below in Figure 1.1.

Special variables A few special variables exist to store the state of the monitor at
run-time. For tracking implicit informations flows, the level of the cusrrent execution
context is stored in the special variable _pc. The _pc works like a stack and is up-
dated whenever a new execution context is entered. The variable _E stores all escape
hatches and their associated levels. Finally the variable _init stores all initial levels of
variables as defined by the owner of each variable.

Transformation rules We focus on the interesting cases of the transformation: assign-
ment, declassification, and branching.

// Implicit flow check
while(!_pc.leq(_x_));
if (’y+z’ in _E) {

// Laundering check
while((__y+__z)!=(y+z));
_x_=_pc.join(_E[’y+z’]);

} else {
_x_=_pc.join(_y_,_z_)

}
x=y+z;

Listing 1.2: Assignment rule

Assignment and declassification Following the se-
mantics in Figure 4, the transformed code updates both
the value of variable being assigned and the level of the
corresponding shadow variable. Which level it updates
to depend on whether the assignment expression is in
the set of escape hatch expressions or not. In the case
of declassification, the level is determined from the es-
cape hatch, otherwise the new level is determined from
the variables used in the expression. When determining
the level, the current level of the execution context (the _pc) is also considered.

Insecure upgrade refers to assignment of a lower level variable in a higher level con-
text, implying an information leak [40]. Insecure upgrade is prevented by checking that
the _pc is less than or equal to the level of the variable [6]. If it is not, the program gets
stuck. Information laundering through declassification is prevented by checking that the



current value is the same as the initial value of the expression. If this check fails, the
program gets stuck. Listing 1.2 gives an example of an assignment after transformation.

Branches To prevent implicit information flows, the monitor tracks the level of the
context in each branch. When a branch is encountered, the current level of the _pc

is stored. The _pc is updated with the join of its current level and the level of the
expression that is branched upon. Each of the two alternative code paths are transformed
and after the two branches join again, the level of the _pc before the branch is restored.
In the implementation, management of the _pc is done through helper methods, e.g.
_pc.branch(_x_); if(x){...}; _pc.joinPoint();.

while(!_pc.leq(_d_));
if (’orderOf(f)/p’ in _E) {

while((orderOf(__f)/__p)!=
(orderOf(f)/p));

_d_=_pc.join(_E[’orderOf(f)/p’]);
} else

_d_=_pc.join(_f_,_p_);
d=orderOf(f)/(10*p);

Listing 1.3: Scenario 1 transformed

while(!_pc.leq(_a_));
if (’a.concat(b)’ in _E) {

while((__a.concat(__b))!=
(a.concat(b)));

_a_=_pc.join(_E[’a.concat(b)’]);
} else

_a_=_pc.join(_a_,_b_);
a = a.concat(b);

Listing 1.4: Scenario 2 transformed

Scenarios We have applied the transforma-
tion to two simple yet illustrative scenarios.
We believe that the approach of using inline
transformation and escape hatches for track-
ing information flow scales to more complex
scenarios: no matter how complex the lan-
guage is, the secure use of escape hatches is
restricted to simple patterns (with no modifi-
cation of data involved in them).

Social E-commercing In this scenario we
have an e-commerce site (A) and a social
networking site (B) who have an agreement
that the users of the social networking site
get a discount (d) on the products of the e-
commerce site if they recommend the store
to their friends. The size of the discount is determined by the price (p) and the num-
ber of friends (f ) that the user recommends the site to. To protect the privacy of the
user, the social networking site does not want to release the exact number of friends
so the discount is calculated by the following formula: d = e(f, p) = orderOf (f)

10∗p . For
declassification the A specifies the escape hatch E(A) = {(e(f, p),⊥)}. An example
of the transformed code for this scenario is available in Listing 1.3. In this scenario
A could maliciously try to find the exact number of friend recommendations, e.g. us-
ing either var x=f; or while(x<f)x++;. Regardless, since both explicit and implicit
information-flows are tracked this information is labeled as belonging to B.

Contact Swap Consider a mashup where the user can synchronize his contact lists on
several social networking sites. In this scenario we have a truly distributed and collab-
orative release of information. The sites need to collaborate on which contacts to share
and whom to share them with. That is, the user might be unwilling to share the contacts
marked as business associates across networks, but still want to share contacts marked
as friends. A sample of the transformed scenario code is available in Listing 1.4. Here
both A and B would need to declassify the expression a.concat(b) to the other. As
can be seen in this sample, the rewritten code prevents potential attacks. Malicious code
could try to launder some other information by assigning it to either a or b, as such b=

secret; a=a.concat(b);. However, the transformation of this code gets stuck in
the initial value check since the value of b no longer matches its initial value.



5 Related work
There is a large body of work on declassification, much of which is discussed in Sabelfeld
and Sands’ recent overview [46]. The overview presents dimensions and principles of
declassification. The identified dimensions correspond to what data is released, where
and when in the program and by whom. The what and where dimensions and their com-
binations have been studied particularly intensively [30, 4, 8, 9, 5].

Our approach integrates the what and who dimensions. It is the who dimension
that has received relatively little attention so far. The precursor to work on the who
dimension in the language-based setting is the decentralized label model (DLM) [32].
DLM allows principals expressing ownership information as well as explicit read/write
access lists in security labels. Chen and Chong [11] generalizes DLM to describe a
range of owned policies from information flow and access control to software licensing.

Work on robustness [35, 3], addressed the who dimension by preventing attacker-
controlled data from affecting what is released. Lux and Mantel [24] investigate a
bisimulation-based condition that helps expressing who (or, more precisely, what in-
put channels) may affect declassification.

Our approach builds on the composite release [26] policy that combines the what
and who dimensions. The escape hatches express the what and the ownership of the
principals of the escape-hatch policies expresses the who. However, for composite re-
lease to be allowed, the principals have to syntactically agree on escape hatches. This
paper removes this limitation and generalizes the principal model to handle DLM. The
experimental part is another added value with respect to the previous work [26].

Broberg and Sands [10] describe paralocks, a knowledge-based framework for ex-
pressing declassification and role-based access-control policies. Broberg and Sands
show how to encode DLM’s actsFor relation using paralocks. However, paralocks do
not address the what dimension of declassification.

Our enforcement draws on the ideas sketched by us earlier [26], where we present
considerations for practical enforcement of composite release. The formalization of the
enforcement fits well into the modular framework [44, 5] for dynamic information-
flow monitoring where the underlying program and monitor communicate through the
interface of events. The what part of declassification is enforced similarly to [5], by
ensuring that the values of escape-hatch expressions have not been modified. The paper
extends the formalization of the enforcement with the who part.

Recent efforts approach inlining for information flow. Chudnov and Naumann [15]
inline a flow-sensitive hybrid monitor by Russo and Sabelfeld [40]. The monitor does
not offer support for declassification. As in this work, Magazinius et al. [29] concentrate
on inlining purely dynamic monitors under the no-sensitive-upgrade discipline. The
distinct feature is inlining on the fly, which allows a smooth treatment of dynamic code
evaluation. While the inlining rules [29] offer no support for declassification, it is still a
useful starting point for our experiments in Section 4.

In the web setting, work on language-based sadboxing such as object capabilities
(e.g., [31, 25]) is less related because separation does not allow information flow and
intended release. The most closely related project is the Mozilla project FlowSafe [20]
that aims at extending Firefox with runtime information-flow tracking, where dynamic
information-flow monitoring [6, 7] lies at its core.



6 Conclusion
We have presented a framework for specitying and enforcing decentralized information-
flow policies. The policies express possibilities of collaboration in the environment of
mutual distrust. By default, no information flow is allowed across different principals.
Whenever principals are willing to collaborate, the policy framework ensures that a
piece of data is revealed only if all owners of the data have provided sufficient authoriza-
tion for the release. While the policy framework is independent, we have demonstrated
that is realizable with language support. We have showed how to enforce security by
runtime monitoring for a simple imperative language.

A major direction of future work is integrating support for decentralized security
policies into the line of work on information-flow controls in a web setting, where
we have already investigated the treatment of dynamic code evaluation [5], timeout
events [39], and interaction with the DOM tree [41].

Another intriguing avenue for integration is with Chong’s required release [13] pol-
icy. This policy ensures that if a principal promises to release a piece of data, then this
piece of data must be released. Such a policy is an excellent fit for thwarting attempts
of cheating. For example, suppose three principals have agreed on releasing the average
of their three pieces of data to each other. However, a cheating principal might attempt
to withdraw its escape hatch or declassify to a level that is not sufficient for the other
principals to be able to access the result. These attempts can be prevented by required
release, where principals must release data according to the declared policies.
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