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Abstract. This paper gives an overview of the KeY approach and high-
lights the main features of the KeY system. KeY is an approach (and a
system) for the deductive verification of object-oriented software. It aims
for integrating design, implementation, formal specification and formal
verification as seamlessly as possible. The intention is to provide a plat-
form that allows close collaboration of conventional and formal software
development methods.

1 Introduction

The KeY Approach and System. This paper gives an overview of the KeY
approach and highlights the main features of the KeY system.

KeY is an approach (and a system) for the deductive verification of object-
oriented (OO) software. It aims for integrating design, implementation, formal
specification and formal verification as seamlessly as possible. The intention is
to provide a platform that allows close collaboration of conventional and formal
software development methods.

Recently, version 1.0 of the KeY system has been released in connection
with the KeY book [3]. The KeY system is written in Java and runs on all
usual architectures. It is available under GPL and can be downloaded from
www.key-project.org.

Towards an Integration of Formal Methods in Software Engineering.

KeY is primarily not a stand-alone tool, but a plugin to (currently two) well-
known CASE tools: Borland Together and the Eclipse IDE. Users can develop a
whole software project, comprised of specifications as well as implementations,
entirely within either of the mentioned CASE tools. The KeY plugin then offers
the extended functionality to generate proof obligations from selected parts of



specifications and verify them with the KeY prover. The KeY verification com-
ponent, being the core of the KeY system, can also be used as a stand-alone
prover.

KeY supports the OMG standard Object Constraint Language (OCL) [26]
for specification as well as the Java Modeling Language (JML) [19], which is
increasingly used in industrial contexts [5]. Translation of specifications from
OCL and JML into logic, as well as the synthesis of a variety of proof obligations,
is completely automatic. The same is true, to a large extent, for proof search. In
addition, KeY features a syntax-directed editor for OCL that can render OCL
expressions in several natural languages while they are being edited. It is even
possible to translate OCL expressions automatically into fragments of English
and German. This means that KeY provides a common tool and conceptual base
for developers and formal methods specialists. The architecture and interfaces
of KeY are depicted in Fig. 1.
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Fig. 1. Architecture and interfaces of the KeY system.

2 Full Coverage of a Real World Language

To ensure acceptance among practitioners it is essential to support an indus-
trially relevant programming language as the verification target. We chose Java
Card source code [7] because of its importance for security- and safety-critical



applications. We refrained from using a home-spun sublanguage of Java, because
it is unrealistic to assume that applications are written in it.

The KeY prover and its calculus [3, Chapt. 3] support the full Java Card 2.2.1
language. This includes all object-oriented features, Java Card’s transaction
mechanism, the (finite) Java integer types, abrupt termination (local jumps and
exceptions) and even a formal specification (both in OCL [18] and JML4) of the
essential parts of the Java Card API. In addition, some Java features that are
not part of Java Card are supported as well: multi-dimensional arrays, Java class
initialisation semantics, char and String types. In short, if you have a sequen-
tial Java program without dynamic class loading and floating point types, then
it is (in principle) possible to verify it with KeY.

3 Beyond Hoare Logic

KeY is a deductive verification system, meaning that its core is a theorem prover,
which proves formulae of a suitable logic. Different deductive verification ap-
proaches vary in the choice of the used logic. The KeY approach uses Dynamic
Logic (DL) [14], which (like Hoare Logic [16]) is transparent with respect to the
programs that are subject to verification. Programs are neither abstracted away
into a less expressive formalism such as finite-state machines nor are they embed-
ded into a general purpose higher-order logic. Instead, the logic and the calculus
“work” directly on the source code. This transparency is extremely helpful for
proving problems that require a certain amount of human interaction.

DL is a particular kind of modal logic. Different parts of a formula are evalu-
ated in different worlds (states), which vary in the interpretation of functions and
predicates. DL differs, however, from standard modal logic in that the modalities
are “indexed” with pieces of program code, describing how to reach one world
(state) from the other. Syntactically, DL extends full first-order logic with two
additional (mix-fix) operators: 〈 . 〉 . (diamond) and [ . ] . (box). In both cases, the
first argument is a program, whereas the second argument is another DL formula.
A formula 〈p〉ϕ is true in a state s if execution of p terminates normally when
started in s and results in a state where ϕ is true. As for the other operator, a
formula [p]ϕ is true in a state s if execution of p, when started in s, does either
not terminate normally or results in a state where ϕ is true.5

DL is closed under all its connectives. For instance, in a DL formula 〈p〉ϕ, the
post-condition ϕ may by any DL formula again, like in 〈p〉〈q〉ψ. Also, arbitrary
connectives can enclose box or diamond as in the following formula which states
equivalence of p and q w.r.t. the “output”, the program variable x.

∀ val . ( 〈p〉 x = val ↔ 〈q〉 x = val ) (1)

4 See http://www.cs.ru.nl/~woj/software/software.html.
5 These descriptions have to be generalised when non-deterministic programs are con-

sidered, which is not the case here.



A frequent pattern of DL formulae is ϕ→ 〈p〉ψ, stating that the program p,
when started from a state where ϕ is true, terminates with ψ being true after-
wards. The formula ϕ → [p]ψ, on the other hand, does not claim termination,
and has exactly the same meaning as the Hoare triple {ψ} p {φ}.

Unlike most other variants of DL, KeY DL comprises programs from a real
language, namely Java Card. Concretely, p is a sequence of (zero, one, or more)
Java Card statements. Accordingly, the logic is called Java Card DL. The fol-
lowing is an example of a Java Card DL formula:

o1.f < o2.f → 〈int t=o1.f; o1.f=o2.f; o2.f=t;〉 o2.f < o1.f (2)

It says that, when started in any state where the integer field f of o1 has a smaller
value than o2.f, the statement sequence “int t=o1.f; o1.f=o2.f; o2.f=t;”
terminates, and afterwards o2.f is smaller than o1.f.

The main advantage of DL over Hoare logic is increased expressiveness: one
can express not merely program correctness, but also security properties [8, 20],
correctness of program transformations, or the validity of assignable clauses.
Also, a pre- or post-condition can contain programs themselves, for instance to
express that a linked structure is acyclic. A full account of Java Card DL is
found in the KeY book [3, Chapt. 3].

KeY interfaces with OCL as well as JML specifications, by translating them
(and the specified Java code) into proof obligations in Java Card DL. Following
Fig. 1 from the right to the left, we have essentially four scenarios, varying in
the origin of the DL proof obligations (POs):

(i) Hand-crafted POs, to be loaded from .key files.
(ii) Automatically generated POs

(a) from JML-augmented Java source files, using
– the JML browser of the KeY stand-alone system.
– Eclipse with the KeY plug-in.

(b) from OCL-augmented UML diagrams and Java source files, using Bor-
land Together with KeY extensions.

4 Symbolic Execution

The actual verification process in KeY can be viewed as symbolic execution of
source code. Unbounded loops and recursion are handled by induction over data
structures occurring in the verification target. Alternatively, partial correctness
of loops can also be shown by a rule that uses invariants. Symbolic execution
plus induction as a verification paradigm was originally suggested for informal
usage by Burstall [6]. The idea to use dynamic logic as a basis for mechanising
symbolic execution was first realized in the Karlsruhe Interactive Verifier (KIV)
tool [15]. Symbolic execution is extremely suitable for interactive verification,
because proof progress corresponds to program execution, which makes it easy
to interpret intermediate stages in a proof and failed proof attempts.



Most program logics (e.g., Hoare Logic, wp-calculus) have in common that
the state change effected by a program translates, at some point, into substi-
tutions applied to formulae. In the KeY approach to symbolic execution, the
application of substitutions is delayed as much as possible; instead of using sub-
stitutions, the state change effect of a program is made syntactically explicit
and accumulated in a construct called updates. The role of updates is to record
the effects of (a certain path in) the execution of a program. Only when sym-
bolic execution has completed are updates turned into substitutions. We omitted
updates so far in the discussion of DL and introduce them by example now.

For instance, when proving formula (2), the prover will after some steps
construct the following sequent as an intermediate goal (slightly adjusted for
presentation):6

o1.f < o2.f ⊢ {t:=o1.f}〈o1.f=o2.f; o2.f=t;〉 o2.f < o1.f (3)

The expression “t:=o1.f” is an update, which in this case represents the effect
of the symbolically executed initialisation statement. Executing the next Java
statement leads to nested (consecutive) updates “{t:=o1.f}{o1.f:=o2.f}”,
which are merged into one parallel update:

o1.f < o2.f ⊢ {t:=o1.f || o1.f:=o2.f}〈o2.f=t;〉 o2.f < o1.f (4)

Soon after, we have

o1.f < o2.f ⊢ {t:=o1.f || o1.f:=o2.f}{o2.f:=t}〈〉 o2.f < o1.f (5)

This time, the update merging step results in:

o1.f < o2.f ⊢ {o1.f:=o2.f || o2.f:=o1.f}〈〉 o2.f < o1.f (6)

Two things have happened. First, in a parallelisation step, t:=o1.f has been
applied to o2.f:=t. Second, t:=o1.f has been simplified away. This is justified,
because t does not appear in the post-condition. Finally, the empty modality
〈〉 is removed. Only thereafter, the parallel update “meets” the post-condition,
and is applied as a substitution, leading to a trivially true sequent.

The second component of symbolic execution, next to updates, is program
transformation. Java (Card) is a complex language, and the calculus for Java
Card DL performs program transformations to resolve all the complex constructs
of the language, breaking them down to simple effects that can be moved into
updates. For instance, in the case of try-catch blocks, symbolic execution pro-
ceeds on the “active” statement inside the try block, until normal or abrupt
termination of that block triggers different transformations.

6 KeY uses a sequent style calculus, see below. For now, it is sufficient to read the
sequent arrow ⊢ as an implication.



Loops can be dealt with by using invariants in the traditional Hoare style.
Alternatively, the calculus allows to combine unwinding with induction, which
we come to in the following section.

5 KeY is Not Merely a VCG

The KeY system is not merely a verification condition generator (VCG), but a
theorem prover for program logic that combines a variety of automated reason-
ing techniques. The KeY prover differs from most other deductive verification
systems in that symbolic execution of programs, first-order reasoning, arithmetic
simplification, external decision procedures, and symbolic state simplification are
interleaved. This interleaving takes place on the level of proof strategies, but also
on the level of individual rules.

To illustrate the latter point, we discuss a few rules of our sequent calculus.
Sequents have the form φ1, . . . , φn ⊢ φ′1, . . . , φ

′

m
, with two (possibly empty) lists

of formulae connected by the sequent arrow ⊢. The meaning of a sequent is that
at least one of the φ′1, . . . , φ

′

m
follows from the conjunction of the φ1, . . . , φn. An

example of a rule in the sequent calculus for Java Card DL is the induction rule
over natural numbers:

Γ ⊢ φ(0), ∆ Γ ⊢ ∀n.(φ(n) → φ(n+ 1)), ∆

Γ ⊢ ∀n.φ(n), ∆
(7)

The meaning of a sequent calculus rule is that, in order to prove a sequent
matching the conclusion of the rule (here “Γ ⊢ ∀n.φ(n), ∆”), it is sufficient
to prove all premisses (two in this case). As usual, the rules are actually rule
schemas and appear properly instantiated in the context of a concrete proof.

But what has the induction rule (7) to do with Java Card DL, as it looks
like a pure first-order rule? The point is that φ matches an arbitrary formula in
Java Card DL, possibly containing Java Card code (in a modality). And indeed,
this rule can be employed for handling loops in φ. After applying (7), one proof
branch handles the “loop exit” case. In the other branch, the step case is handled,
where the loop is unwound once using the loop unwind rule:

Γ ⊢ 〈π if (e) {p while(e) p} ω〉φ, ∆
Γ ⊢ 〈π while(e) p ω〉φ, ∆

(8)

This is the interplay of symbolic execution and induction which is best de-
scribed by the title of Burstall’s original paper [6]: “Program proving as hand
simulation with a little induction.”

6 User-Friendly Graphical User Interface

In spite of a high degree of automation (see Sect. 8), in many cases there are
significant, non-trivial tasks left for the user. For that purpose, the KeY system
provides a user-friendly graphical user interface (GUI). When proving a property



which is too involved to be handled fully automatically, certain rule applications
need to be performed in an interactive manner, in dialogue with the system. This
is the case when either the automated strategies are exhausted, or else when the
user deliberately performs a strategic step (like a case distinction) manually,
before automated strategies are invoked (again).

Fig. 2. Screenshot of the GUI of the KeY prover.

In the case of human-guided rule application, the user is asked to solve tasks
like: selecting a proof rule to be applied, providing instantiations for the proof
rule’s schema variables, or providing instantiations for quantified variables of
the logic. The system, and its advanced GUI, are designed to support these
steps well. For instance, the selection of the right rule, out of over 1500(!), is
greatly simplified by allowing the user to highlight any subexpression of the
proof goal simply by positioning the mouse. In the screenshot of the GUI of the
KeY prover displayed in Fig. 2, a try-catch statement is highlighted. The first
active statement in it, the if statement, appears in grey.

A dynamic context menu will offer only those few rules that apply to this
expression, in this case, the rule for a statement within a try-catch block that
is not a throw. Furthermore, the menus provide tooltips for each rule. When
it comes to interactive variable instantiation, drag-and-drop mechanisms greatly
simplify and speed-up the usage of the instantiation dialogues, and in some
cases even allow to omit explicit rule selection. For example, if the user drags an



equation onto a term, the system will try to rewrite the term with the equation.
And if the user drags a term onto a quantifier, the system will try to instantiate
the quantifier with this term.

Other supported forms of interaction in the context of proof construction are
the inspection of proof trees, the pruning of proof branches, stepwise backtrack-
ing, and the triggering of proof reuse.

7 A Simple High-Level Rule Language

The implementation of the sequent proof rules in the KeY prover is closely related
to the pragmatics of interaction within the GUI as described in the previous sec-
tion. The rules are written in a high-level language, called the “taclet language.”
Each rule is represented as one taclet. Besides the conventional declarative se-
mantics, taclets have an operational semantics that defines their pragmatics in
automatic and interactive proof search. The following example shows a “modus
ponens” rule in textbook notation (left) and as a taclet (right):

Γ, φ, ψ ⊢ ∆

Γ, φ, φ→ ψ ⊢ ∆

\find (p −> q ==>) // implication in antecedent
\assumes (p ==>) // side condition
\replacewith(q ==>) // action on focus
\heuristics(simplify) // strategy information

This example taclet consists of four clauses. The arrow “==>”, appearing
in three of them, is the KeY system’s representation of the sequent arrow ⊢.
Within taclets, “==>” is used to indicate whether a matching formula appears
on the left- or right-hand side of the sequent.

The find clause specifies the potential application focus. The taclet will be
offered to the user when selecting a matching focus and if a formula mentioned
in the assumes clause is present in the sequent. The action clauses replacewith
and add (not present in this example) allow modifying (or replacing) the formula
in focus, as well as adding additional formulae. The heuristics clause records
information for the parameterised automated proof search strategy.

Taclets are not only used to represent calculus rules, but also lemmata. The
latter can be proven correct against the provided taclets [4]. The taclet language
is quickly mastered and makes the rule base easy to maintain and extend. A full
account of the taclet language is given in the KeY book [3, Chapt. 4].

8 Automated Proof Search

For automated proof search, a number of predefined strategies are available in
KeY using different rule sets that are, for example, optimised to symbolically
executing loop-free programs or proving pure first-order formulae.

In order to better interleave interactive and automated proof construction,
KeY uses a proof confluent sequent calculus, which means that automated proof



search does not require backtracking over rule applications. The taclet language
and application mechanism are designed in such a way that the user can write
only rules with local effects on sequents, and the handling of meta variables,
skolemisation, constraints, etc. is taken care of automatically, to reduce the risk
of inadvertently introducing rules which damage confluence.

The automated search for quantifier instantiations uses meta variables7 that
are place-holders for terms. Instead of backtracking over meta-variable instan-
tiations, instantiations are postponed to the point where the whole proof can
be closed, and an incremental global closure check is used. Rule applications
requiring particular instantiations (unifications) of meta variables are handled
by attaching unification constraints to the resulting formulas [11].

There is a back end to SMT-LIB syntax8 for proving near-propositional proof
goals with external decision procedures.

9 Customisable Verification

The KeY system offers to customise the rule set used for verification. For in-
stance, the user can choose between different semantics of the primitive Java
integer types byte, short, int, long, and char. Options are: the mathematical
integers (easy to verify, but not a faithful model of Java and, hence, unsound),
mathematical integers with overflow check (sound, reasonably easy to verify,
but unable to verify programs that depend on Java’s finite ring semantics), and
a faithful semantics of Java integers (sound, complete, but difficult to verify).
KeY1.0 comes with the mathematical integer semantics chosen as default option,
to optimise usability for beginners. However, for a sound treatment of integers,
the user should switch to either of the other semantics. Alternatively, one can
employ the proof reuse feature of KeY, to first construct a proof using the mathe-
matical integer option, and then replay the proof with the mathematical overflow
semantics selected.

Other examples where one can customise the degree of faithfulness, versus
simplicity, are object creation, and null pointer treatment.

10 A Broader Perspective on Verification

One of the most important insights we gained from our work is the realisation
that verification technology with symbolic execution can be seen as the base
technology of a whole range of applications in software analysis, many of which
are more automatic than full verification. In the future we will develop the KeY
system into a general software analysis platform where formal verification is only
one of many analysis techniques.

7 This kind of variables are known in the tableau theorem proving community under
the name of “free variables” [10].

8 See http://combination.cs.uiowa.edu/smtlib/



For example, in the area of model-based test case generation [2, 9] the prover
is used to compute path conditions and to identify infeasible paths. Fully au-
tomatic white-box unit test generation for Java Card is possible based on ap-
proximative attempts at formal verification of the implementation under test [9].
White-box testing can also be done by combining deduction-based specification
extraction and black-box testing, i.e., one generates specifications for given pro-
grams and then uses these specifications as input for black-box testing tools [2].

Another usage of verification is in security analysis [8], where the absence
and presence of secure information flow including information declassification
is shown. Since many security analyses are implemented on the basis of type
systems [23] it is promising to try to combine the advantages of type-based and
deduction-based methods. In [13] it is shown that dynamic logic can serve as a
common framework where such a combination can be realized.

Most of the time, verification attempts are not successful, because the specifi-
cation or the implementation contains bugs. In this case, it is extremely valuable
for the user to obtain information from failed proof attempts without having to
wade through large proof trees. Generating counter examples for failed proofs,
so-called “disproving” of programs, is only started to being explored [22].

It is also possible to cast symbolic program execution to the user interface
and the functionality offered by a symbolic source code debugger. One can then
set breakpoints, watches, and inspect the intermediate program state. But in
contrast to a conventional debugger, such a truly symbolic debugger is based on
a symbolic execution tree and can represent not only one program run, but all
possible program runs [1]. We expect interesting synergies on both sides from
combining verification with debugging.

11 Applications

Among the major achievements in program verification using the KeY system
are the treatment of the Demoney case study, an electronic purse application
provided by Trusted Logic S.A. [3, Chapt. 14] and the verification of a Java
implementation of the Schorr-Waite graph marking algorithm [3, Chapt. 15].
This algorithm, originally developed for garbage collectors, has recently become
a popular benchmark for program verification tools. As far as we are aware, the
KeY study provides the first verification of an executable Java implementation.
A case study [17] performed within the HIJA project9 included formal verifi-
cation of the lateral module of a flight management system being part of the
on-board control software from Thales Avionics. Recently, for the first time an
implementation of the Mondex banking card case study [24] was verified with
the KeY prover [25].

The flexibility of KeY w.r.t. the used logic and calculus manifests itself in
the fact that the prover has been chosen as a reasoning engine for a variety
of other logics. These include the mechanisation of a logic for Abstract State

9 See http://www.hija.info.



Machines [21] and the implementation of a calculus for simplifying OCL con-
straints [12]. A version of the KeY prover that supports the C programming
language will be released later this year.

KeY is also very useful for teaching logic, deduction, and formal methods.
Its graphical user interface makes KeY easy to use for students. They can step
through proofs using different degrees of automation (using the full verification
calculus or just the first-order core rules). The authors have been successfully
teaching courses for several years using the KeY system. An overview and course
materials are available at www.key-project.org/teaching.
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