On η -Expansion in NbE and Type Casts

Andreas Abel Department of Computer Science Ludwig-Maximilians-University Munich andreas.abel@ifi.lmu.de

13 October 2011

This small note justifies the asymmetry in the definition of the η -expansion functions \uparrow and \downarrow for function types in the context of normalization by evaluation for dependent types [ACD07, Abe10, ACP11].

$$\begin{pmatrix} \uparrow^{\mathsf{Fun}\,A\,F}\,n \end{pmatrix} a = \uparrow^{F\,a}n\,(\downarrow^{A}\,a) \\ (\downarrow^{\mathsf{Fun}\,A\,F}\,f)\,x = \downarrow^{F\,\uparrow^{A}\,x}\,f\,(\uparrow^{A}\,x)$$

The asymmetry F a vs. $F \uparrow^A x$ can be derived from a view of \uparrow and \downarrow as embedding-projection pair, or up- and downcast functions, with a symmetric definition:

$$(\uparrow_{\operatorname{Fun}AF}^{\operatorname{Fun}A'F'}f)a' = \uparrow_{F(\downarrow_A^{A'}a)}^{F'a'}f(\downarrow_A^{A'}a') (\downarrow_{\operatorname{Fun}AF}^{\operatorname{Fun}F'}f')a = \downarrow_{Fa}^{F'(\uparrow_A^{A'}a)}f(\uparrow_A^{A'}a)$$

Upcast $\uparrow_A^{A'}$ casts a value of type A to one of type A'; downcast $\downarrow_A^{A'}$ casts in the opposite direction, from A' to A. The definition is symmetric, we have for all A, A',

$$\uparrow^{A'}_A = \downarrow^A_{A'}$$

The upcast $\uparrow^A n$ in the context of NbE casts a neutral $n \in \mathsf{Ne}$ into A, and the downcast $\downarrow^A a$ casts a value $a \in A$ into the set of normal forms Nf. Since

 $\mathsf{Ne}\subseteq\mathsf{Nf}\to\mathsf{Ne} \ \mathrm{and} \ \mathsf{Ne}\to\mathsf{Nf}\subseteq\mathsf{Nf}$

we can identify Ne with Fun Nf λ -Ne and Nf with Fun Ne λ -Nf. More precisely, if we want to convert from Ne it is sufficient to convert from Nf \rightarrow Ne. And if we want to convert into Nf it is sufficient to convert into Ne \rightarrow Nf. This yields

$$(\uparrow_{\mathsf{Ne}}^{\mathsf{Fun}\,A'\,F'}f)\,a' = (\uparrow_{\mathsf{Fun}\,\mathsf{Nf}\,\lambda-\mathsf{Ne}}^{\mathsf{Fun}\,A'\,F'}f)\,a' = \uparrow_{\mathsf{Ne}}^{F'\,a'}f\,(\downarrow_{\mathsf{Nf}}^{A'}a') (\downarrow_{\mathsf{Nf}}^{\mathsf{Fun}\,A'\,F'}f')\,a = (\downarrow_{\mathsf{Fun}\,\mathsf{Ne}\,\lambda-\mathsf{Nf}}^{\mathsf{Fun}\,A'\,F'}f')\,a = \downarrow_{\mathsf{Nf}}^{F'\,(\uparrow_{\mathsf{Ne}}^{A'}a)}f\,(\uparrow_{\mathsf{Ne}}^{A'}a)$$

from which we can drop the redundant indices Ne and Nf to arrive at the NbE-definition of \uparrow and \downarrow .

References

- [Abe10] Andreas Abel. Towards Normalization by Evaluation for the $\beta\eta$ -Calculus of Constructions. In *FLOPS'10*, volume 6009 of *LNCS*, pages 224–239. Springer, 2010.
- [ACD07] Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by evaluation for Martin-Löf Type Theory with typed equality judgements. In *LICS'07*, pages 3–12. IEEE CS Press, 2007.
- [ACP11] Andreas Abel, Thierry Coquand, and Miguel Pagano. A modular type-checking algorithm for type theory with singleton types and proof irrelevance. *LMCS*, 7(2:4):1–57, 2011.