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Abstract

The decidability of equality is proved for Martin-Löf
type theory with a universe á la Russell and typed beta-
eta-equality judgements. A corollary of this result is that
the constructor for dependent function types is injective, a
property which is crucial for establishing the correctness of
the type-checking algorithm. The decision procedure uses
normalization by evaluation, an algorithm which first in-
terprets terms in a domain with untyped semantic elements
and then extracts normal forms. The correctness of this al-
gorithm is established using a PER-model and a logical re-
lation between syntax and semantics.

1. Introduction

The most important metatheorems of Martin-Löf’s in-
tensional intuitionistic type theory [21, 26] (and related in-
tensional type theories such as the Calculus of Construc-
tions) state that its judgements are decidable. These theo-
rems are fundamental both philosophically and practically.
They are the main reasons for preferring intensional to ex-
tensional type theory [22, 11]. It is a tenet of the philosophy
of constructivism that it should be mechanically decidable
whether a certain construction a is a witness to the truth of
a given proposition A. Moreover, proof checkers for inten-
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sional type theories such as Coq, Agda, and Epigram, all
rely on the decision algorithm for a : A using normaliza-
tion: the user attempts to prove the theorem A by building
a construction a, and the system checks that a is indeed a
proof of A.

Typed equality judgements. In spite of many years of re-
search into the metatheory of type theory a completely sat-
isfactory story has yet to be told. Systems with an untyped
notion of conversion, such as Barendregt’s pure type sys-
tems, are well-understood, but there are reasons why theo-
ries with a typed notion of conversion (equality judgements)
are more fundamental. Firstly, the constructive meaning of
equality in the sense of Martin-Löf [22, 23] is relative to
a type; two objects are not just equal, they are equal with
respect to a type. For this reason all systems of Martin-Löf
type theory from 1973 and onwards [21, 22, 26] use equality
judgements rather than untyped conversion. Secondly, sys-
tems with a typed notion of conversion have clearer math-
ematical semantics: we can compute the semantics of an
element a : A in an arbitrary model of type theory, for ex-
ample, defined as a category with families [15].

Although some authors have studied the decidability
problem for various systems with typed conversion (Martin-
Löf [21], Coquand [12], Altenkirch [7], Adams [4]), there
is still a need for a clear treatment of the main system of
Martin-Löf type theory. Goguen [17] uses typed operational
semantics to develop the metatheory of Luo’s system UTT
including normalization and Church-Rosser. UTT is an im-
predicative system having a predicative subsystem which is
a version of Martin-Löf type theory. It differs from our sys-
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tem since UTT’s rules for the universe are formulated à la
Tarski rather than à la Russell. Moreover, unlike our sys-
tem, UTT does not have η-conversion on the universe level.
More recently, Harper and Pfenning [18] have addressed
the problem for the logical framework (LF), with the aim
of finding a simpler treatment of its metatheory. However,
their method requires injectivity of the dependent function
type constructor to be proved early in the development of
LF’s metatheory. It is not clear how to extend this method to
a system of dependent type theory with a universe of small
types. The reader is referred to Harper and Pfenning [18]
for discussion and references to related work.

Normalization by evaluation (nbe). We shall employ
this method for proving the main decidability theorems for
the theory λΠUN of Martin-Löf type theory with one uni-
verse and natural numbers and typed equality judgements.
An important advantage of nbe is that it bypasses the need
for a separate proof of the Church-Rosser property, a dis-
covery due to Peter Hancock [21]. Instead it follows di-
rectly from the model construction that convertible terms
have equal normal forms.

The nbe-method has previously been used for the combi-
natory version of Martin-Löf type theory [21] with a weak
notion of conversion. This theory was however abandoned,
and the most recent version of Martin-Löf type theory is
based on a logical framework with a type of “sets” (a uni-
verse of small types) and dependent function types with β
and η-conversion. In recent unpublished work Martin-Löf
[24] has shown how to construct an nbe-algorithm for this
system, incorporating the technique developed by Berger
and Schwichtenberg [10] for the simply-typed λ-calculus.
Martin-Löf did however not consider a system with a uni-
verse of small types closed under dependent function sets
which is the main difficulty here. Such a system was in-
stead considered by Abel, Aehlig, and Dybjer [1] who used
ideas from Aehlig and Joachimski’s work on untyped nbe
[5]. However, the system in [1] has an untyped notion of
conversion and thus differs from the present one; it was not
known whether the two systems are equivalent.

The use of nbe has made it possible both to strengthen
and to simplify previous treatments of the metatheory of
Martin-Löf type theory with a universe and typed equality
judgements. Furthermore, our method generalizes to de-
pendent product types (Σ-types) and also to singleton types,
and thus generalizes results by Stone and Harper [30].

We expect that our results will play a key role in the the-
oretical justification of proof systems for Martin-Löf type
theory, including the new version of the Agda system cur-
rently being developed in Göteborg.

Plan of the paper. In Section 2 we introduce our version
of Martin-Löf type theory λΠUN with typed equality judge-

ments. The main point here is to give an nbe-algorithm for
this theory and to prove it correct. This algorithm consists
of an evaluation function given in 3.1 and reification and
reflection functions given in 3.2, and studied further as a
system of rewrite rules in 3.3. The central property of the
nbe-algorithm is that it returns unique representatives (nor-
mal forms) for equivalence class of convertible terms and
convertible types. We prove this property in two steps: com-
pleteness in Section 3 and soundness in Section 4.

By completeness we mean that terms or types which
are convertible (we can prove the respective equality judge-
ments) map to identical normal forms. We establish this in
Section 3 by defining a family of PERs expressing a no-
tion of typed equality in the model. We then show that the
interpretation function maps convertible terms and types to
equivalent elements in the model and that reification maps
equivalent elements to equal normal forms.

By soundness we mean that a term or type is convert-
ible to its normal form as returned by the nbe-algorithm. To
this end we define a logical relation between syntactic ex-
pressions and elements in the model in Section 4. Having
proved both soundness and completeness the two main re-
sults of the paper (decidability of equality and injectivity of
Π) follow as corollaries.

In Section 5 we explain how our method extends if we
add unit types and dependent product types (Σ-types), and
also can be adapted to some other variations of the theory.

2. Syntax and inference rules

In this section we introduce a version of Martin-Löf type
theory λΠUN with a type of natural numbers N and a uni-
verse U of small types. In this system we can build fami-
lies of small types (elements of U) by primitive recursion.
As a consequence, we cannot erase type dependencies, a
technique which can otherwise be used in the metatheoretic
analysis of the system [18].

The inference rules of the theory are quite standard: we
have the usual rules for the dependently typed lambda cal-
culus formulated with equality judgements, the usual rules
for N, and the usual rules for a universe U à la Russell.
We remark that we have both β and η-conversion for Π-
types. Moreover, the substitution rule is primitive rather
than admissible, and thus standard properties of the system
are proved easily. We also remark that the nbe-method is
quite robust and not so dependent on the precise formulation
of the inference rules. It is only when proving decidability
of type-checking that we need to know that typing rules are
invertible (see Lemma 2), something we can show for our
system, even though we have a primitive substitution rule.

Expressions (terms and types). Since we work with
Russell-style universes it is natural to have a common syn-
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tactic category Λ for terms and types:

Var 3 x, y, z
Const 3 c ::= Fun | U | N | s | z | rec
Λ 3 r, s, t ::= c | x | λx.t | r s

The contexts are generated by

Cxt 3 Γ,∆ ::= ¦ | Γ, x :A

To aid the reader, we use the letters A, B,C for expressions
which are to be understood as types and r, s, t for terms.
Dependent function types, usually written Πx : A.B, are
written FunA (λx.B). When B does not depend on x we
have a non-dependent function type and write A→ B.

We identify expressions up to α-conversion and adopt
the convention that in contexts Γ all variables must be dis-
tinct. Hence, we can view Γ as a map from variables to
types with finite domain dom(Γ) and let Γ(x) = A iff
(x : A) ∈ Γ. In context extensions Γ, x : A we presuppose
x 6∈ dom(Γ). As usual FV(t) is the set of free variables
of t. We let FV(t1, . . . , tn) = FV(t1) ∪ · · · ∪ FV(tn) and
FV(Γ) =

⋃
x∈dom(Γ) FV(Γ(x)).

Simultaneous substitutions σ, τ ∈ Var → Λ are map-
pings from variables to expressions where the set {x |
σ(x) 6= x}, called dom(σ), is finite. We set FV(σ) =⋃

x∈dom(σ) FV(σ(x)). The identity substitution is denoted
by σid. When f ∈ Var → S for some set S, x ∈ Var and
a ∈ S, let f [x 7→ a] be the function f ′ defined by f ′(x) = a
and f ′(y) = f(y) for y 6= x. This update operation will be
used for substitutions and later also for environments map-
ping variables to elements of a semantic domain.

The term t[σ] is the result of substituting σ(x) for x in t
for all x ∈ FV(t) in parallel. Parallel substitution ∆[σ] into
contexts is defined by (∆[σ])(x) = (∆(x))[σ] and compo-
sition of substitutions σ[σ′] by (σ[σ′])(x) = (σ(x))[σ′].

Judgements. The type theory λΠUN has the following
forms of judgement:

Γ ` Γ is a well-formed context
Γ ` A A is a well-formed type in Γ
Γ ` t : A t has type A in Γ
Γ ` σ : ∆ σ is a well-formed substitution in Γ
Γ ` A = A′ A and A′ are equal types in Γ
Γ ` t = t′ : A t and t′ are equal terms of type A in Γ
Γ ` σ = σ′ : ∆ σ and σ′ are equal substitutions in Γ

Note that the judgement Γ ` A : U stating that A is a well-
formed small type in Γ, is a special case of the third form.

For an arbitrary judgement, we write Γ ` J , where J is
a collection of the syntactic entities (terms, contexts, sub-
stitutions) to the right of ` in a judgement. The notation
J [σ] is understood as the substitution of σ into all entities
in J , and FV(J) is the union of the free variable sets of all

entities in J . Exceptions are FV(σ : ∆), which is defined
as

⋃
x∈dom(∆) FV(∆(x), σ(x)), and FV(σ = σ′ : ∆) =⋃

x∈dom(∆) FV(∆(x), σ(x), σ′(x)).
In our inference rules, we use the abbreviation

Rec (λx.C) for the type of the primitive recursion combi-
nator rec with the result type C depending on x : N.

Rec (λx.C) = C[z/x]→
(Fun N (λn.C[n/x]→ C[s n/x]))→
FunN (λx.C)

The inference rules are given in Figure 1.
In the following, we state some simple syntactic prop-

erties of λΠUN which will be needed in Section 4. Since
substitution is a primitive rule these properties are easier to
establish than in systems without this primitive rule [18, 2].
On the other hand, if substitution is a primitive rule, the
injectivity of Π does not follow easily by syntactic consid-
erations. Instead, this will be one of our main results.

Lemma 1 (Basic properties)

1. (Scope:) If Γ ` J then FV(J) ⊆ dom(Γ).

2. (Context well-formedness:) If Γ, x : A, Γ′ ` J , then
Γ ` A.

3. (Weakening:) If Γ,Γ′ ` J and both Γ ` A and x 6∈
dom(Γ, Γ′), then Γ, x :A,Γ′ ` J .

4. (Context conversion:) Let Γ ` B = A and Γ ` B. If
Γ, x :A, Γ′ ` J then Γ, x :B, Γ′ ` J .

5. (Substitution:)

(a) If Γ ` σ : ∆ and x ∈ dom(∆) then Γ ` σ(x) :
∆(x)[σ].

(b) Γ ` = : ∆ is an equivalence relation.

(c) If Γ ` then Γ ` σid : Γ and Γ ` σid = σid : Γ.

Lemma 2 (Inversion)

1. If Γ ` z : C then Γ ` N = C.

2. If Γ ` s : C then Γ ` N→ N = C.

3. If Γ ` rec (λx.A) : C then Γ ` Rec (λx.A) = C.

4. If Γ ` x : C then Γ ` Γ(x) = C.

5. If Γ ` λx.t : C then Γ ` FunA (λx.B) = C and
Γ, x :A ` t : B.

6. If Γ ` r s : C then Γ ` r : FunA (λx.B) with Γ `
s : A and Γ ` B[s/x] = C.

7. If Γ ` FunA (λx.B) : C then Γ ` A : U and Γ, x :
A ` B : U with Γ ` U = C.

8. If Γ ` FunA (λx.B) then Γ ` A and Γ, x :A ` B.

3



Well-formed contexts Γ `.

CXT-EMPTY ¦ ` CXT-EXT
Γ ` A

Γ, x :A `
Well-formed types Γ ` A.

N-F
Γ `

Γ ` N
UNIV-F

Γ `
Γ ` U

FUN-F
Γ ` A Γ, x :A ` B

Γ ` FunA (λx.B)
UNIV-E

Γ ` A : U

Γ ` A

Well-typed terms Γ ` t : A.

HYP
Γ ` (x :A) ∈ Γ

Γ ` x : A
CONV

Γ ` t : A Γ ` A = A′

Γ ` t : A′

UNIV-I-N
Γ `

Γ ` N : U
UNIV-I-FUN

Γ ` A : U Γ, x :A ` B : U

Γ ` FunA (λx.B) : U

FUN-I
Γ, x :A ` t : B

Γ ` λx.t : FunA (λx.B)
FUN-E

Γ ` r : FunA (λx.B) Γ ` s : A

Γ ` r s : B[s/x]

N-I-Z
Γ `

Γ ` z : N
N-I-S

Γ `
Γ ` s : N→ N

N-E
Γ, x :N ` C

Γ ` rec (λx.C) : Rec (λx.C)

Well-formed substitutions Γ ` σ : ∆ and parallel substitution.

SUBST-EMPTY
Γ `

Γ ` σ : ¦ SUBST-EXT
Γ ` σ : ∆ ∆ ` A Γ ` σ(x) : A[σ]

Γ ` σ : (∆, x :A)
SUBST

Γ ` σ : ∆ ∆ ` J

Γ ` J [σ]

Equal types Γ ` A = A′. (Congruence and equivalence rules which are omitted.)

Equal terms Γ ` t = t′ : A. (Congruence and equivalence rules and the type conversion rule are omitted.)

EQ-FUN-β
Γ, x :A ` t : B Γ ` s : A

Γ ` (λx.t) s = t[s/x] : B[s/x]
EQ-FUN-η

Γ ` t : FunA (λx.B)
Γ ` (λx. t x) = t : FunA (λx.B)

x 6∈ dom(Γ)

EQ-N-ι-Z
Γ, x :N ` C Γ ` z : C[z/x] Γ ` s : Fun N (λn.C[n/x]→ C[s n/x])

Γ ` rec (λx.C) z s z = z : C[z/x]

EQ-N-ι-S
Γ, x :N ` C Γ ` z : C[z/x] Γ ` s : Fun N (λn.C[n/x]→ C[sn/x]) Γ ` n : N

Γ ` rec (λx.C) z s (s n) = s n (rec (λx.C) z s n) : C[s n/x]

Equal substitutions Γ ` σ = σ′ : ∆ and functionality.

EQ-SUBST-EMPTY
Γ `

Γ ` σ = σ′ : ¦ EQ-SUBST-EXT
Γ ` σ = σ′ : ∆ ∆ ` A Γ ` σ(x) = σ′(x) : A[σ]

Γ ` σ = σ′ : (∆, x :A)

EQ-FUNC-TY
Γ ` σ = σ′ : ∆ ∆ ` A

Γ ` A[σ] = A[σ′]
EQ-FUNC

Γ ` σ = σ′ : ∆ ∆ ` t : A

Γ ` t[σ] = t[σ′] : A[σ]

Figure 1. Inference rules for λΠUN.
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Lemma 3 (Syntactic validity)

1. Typing: If Γ ` t : A then Γ ` A.

2. Equality: If Γ ` t = t′ : A then Γ ` A and both
Γ ` t : A and Γ ` t′ : A.

3. Type equality: If Γ ` A = A′ then Γ ` A and Γ `
A′.

3. Models and Completeness of NbE

We now show that if we can prove an equality judgement
expressing that two types or terms are equal, then they have
the same normal form, as computed by our algorithm. To
this end, we build a model of λΠUN over a model of the
untyped λ-calculus.

In 3.1 we consider the class of all PER models of λΠUN

and show soundness of the inference rules. In 3.2 we add a
few new operations and equations to our notion of syntac-
tic combinatory algebra. One of these operations is reifica-
tion. An abstract nbe-algorithm can be obtained by compos-
ing evaluation with the reification function of that algebra.
To establish the completeness of this nbe-algorithm we de-
fine a residualizing PER-model. Completeness of nbe fol-
lows from the facts that (i) provably equal syntactic terms
and types are evaluated to PER-equivalent elements in the
model, and (ii) PER-equivalent elements in the model are
reified to identical normal forms.

In 3.3 we show a new way to instantiate the underlying
syntactic combinatorial algebra of the residualizing PER-
model by an extended lambda calculus.

3.1. PER models

A syntactical combinatory algebra consists of a set D
with an application operation (juxtaposition) ∈ D×D→
D, constructor constants Fun, U, N, z, s and a constant for
primitive recursion rec. Each constructor c is injective:
c ~d = c ~e implies ~d = ~e. Primitive recursion satisfies the
usual equations:

DEN-ι-Z rec F dz ds z = dz

DEN-ι-S rec F dz ds (s e) = ds e (rec F dz ds e)

Note that the first argument of rec is a dependent type, the
type of the result of the function defined by rec. Further-
more, there is an evaluation function [[ ]] ∈ Λ × Env → D
satisfying

DEN-CONST [[c]]ρ = c (c constant)
DEN-VAR [[x]]ρ = ρ(x)
DEN-FUN-E [[r s]]ρ = [[r]]ρ [[s]]ρ
DEN-β [[λx.t]]ρ d = [[t]]ρ[x7→d]

DEN-SUBST [[t[σ]]]ρ = [[t]][[σ]]ρ

In the following, we let ρ range over environments in
Env := Var → D. We use X,Y, F to range over elements
of D which denote types. The denotation [[σ]]ρ of a substi-
tution σ is the environment [[σ]]ρ(x) = [[σ(x)]]ρ.

PER models. Let Per(D) denote the set of all partial
equivalences over D. If A ∈ Per(D) we write d = d′ ∈ A
for (d, d′) ∈ A and |A| = {d | d = d ∈ A} for the do-
main of A. We often simply write d ∈ A for d ∈ |A|. If
A ∈ Per(D), let Fam(A) be the set of functionsF ∈ |A| →
Per(D) such that F(d) = F ′(d′) for all d = d′ ∈ A.

A PER model of λΠUN consists of a syntactic combina-
tory algebra and two PERs U ⊂ Type ∈ Per(D) and a
family of PERs [ ] ∈ Fam(Type) with the following clo-
sure conditions. The first two conditions express that the
PER U of small types contains N and is closed under Π:

PER-1 N = N ∈ U ; then z = z ∈ [N], and s d = s d′ ∈ [N]
if d = d′ ∈ [N].

PER-2 Fun X F = Fun X ′ F ′ ∈ U if X = X ′ ∈ U
and F d = F ′ d′ ∈ U for all d = d′ ∈ [X]; then
f = f ′ ∈ [FunX F ] if f d = f ′ d′ ∈ [F d] for all
d = d′ ∈ [X].

Moreover, the PER Type of all types contains all small
types and U, and is closed under Π:

PER-3 Type ⊃ U .

PER-4 U = U ∈ Type; then [U] = U .

PER-5 Fun X F = Fun X ′ F ′ ∈ Type if X = X ′ ∈ Type
and F d = F ′ d′ ∈ Type for all d = d′ ∈ [X]; then
f = f ′ ∈ [FunX F ] if f d = f ′ d′ ∈ [F d] for all
d = d′ ∈ [X].

Finally, since the first argument of the recursion-constant
rec is a family of types it is not covered by the rules for Π
above. Hence to validate the rule EQ-N-E it is necessary to
stipulate separately that it preserves PER-equalities:

PER-6 If F d = F ′ d′ ∈ Type for all d = d′ ∈ [N], dz =
d′z ∈ [F z], ds dn dr = d′s d′n d′r ∈ [F (s dn)] for all
dn = d′n ∈ [N] and dr = d′r ∈ [F dn], and e = e′ ∈
[N] then recF dz ds e = rec F ′ d′z d′s e′ ∈ [F e].

From now on we often write d = d′ ∈ X for d = d′ ∈ [X].

Validity of the judgements in λΠUN. Let ρ = ρ′ ∈ Γ
hold if ρ(x) = ρ′(x) ∈ [[A]]ρ for all (x : A) ∈ Γ. Define
Γ |= J , meaning that Γ ` J is valid in a given PER-model,
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as follows:

|= :⇐⇒ true
Γ, x :A |= :⇐⇒ Γ |= A

Γ |= A :⇐⇒ Γ |= A = A
Γ |= A = A′ :⇐⇒ Γ |= and
∀ρ = ρ′ ∈ Γ. [[A]]ρ = [[A′]]ρ′ ∈ Type

Γ |= t : A :⇐⇒ Γ |= t = t : A
Γ |= t = t′ : A :⇐⇒ Γ |= A and
∀ρ = ρ′ ∈ Γ. [[t]]ρ = [[t′]]ρ′ ∈ [[A]]ρ

Γ |= σ : ∆ :⇐⇒ Γ |= σ = σ : ∆
Γ |= σ = σ′ : ∆ :⇐⇒ Γ |= and ∆ |= and
∀ρ = ρ′ ∈ Γ. [[σ]]ρ = [[σ′]]ρ′ ∈ ∆

Lemma 4 (Soundness of EQ-FUN-η) If Γ |= t :
FunA (λx.B) and x 6∈ dom(Γ) then Γ |= λx. t x = t :
FunA (λx.B).

Proof. Assume ρ = ρ′ ∈ Γ and d = d′ ∈ [[A]]ρ. By the
laws of the syntactic combinatory algebra, [[λx. t x]]ρ d =
[[t x]]ρ[x 7→d] = [[t]]ρ[x 7→d] d. Since x 6∈ dom(Γ) we have
ρ[x 7→ d] = ρ′ ∈ Γ, hence, [[λx. t x]]ρ d = [[t]]ρ[x 7→d] d =
[[t]]ρ′ d

′ ∈ [[B]]ρ[x7→d]. ¤

Lemma 5 (Soundness of EQ-FUNC-TY) If Γ |= σ = σ′ :
∆ and ∆ |= A then Γ |= A[σ] = A[σ′].

Proof. Assume ρ = ρ′ ∈ Γ. Then [[σ]]ρ = [[σ′]]ρ′ ∈ ∆
and [[A]][[σ]]ρ

= [[A]][[σ′]]ρ′ ∈ Type which implies [[A[σ]]]ρ =
[[A[σ′]]]ρ′ ∈ Type by DEN-SUBST. ¤

Theorem 6 (Soundness of the inference rules) If Γ ` J
then Γ |= J .

Proof. Standard, by induction on the derivation of Γ ` J .
This proof is straightforward since the inference rules were
designed with the PER model in mind. ¤

3.2 An abstract nbe-algorithm and its
completeness

We shall now extend our syntactical combinatory alge-
bras with a new constructor Up which maps neutral terms
(see below) to elements in D and operations for reification
and reflection. Then we can define a normalization by eval-
uation function by composing the evaluation function with
the reification function. To prove the completeness of this
algorithm we define a residualizing PER-model. We em-
phasize again that in this section we only define an “ab-
stract” nbe-algorithm, which leaves the choice of the exact

implementation of D open. In Section 3.3 we will instanti-
ate D with an extended lambda calculus Λ↓↑.

We define the set Nf ⊆ Λ of βι-normal forms simultane-
ously with the set Ne ⊆ Λ of neutral terms (normal forms
with a head variable).

Nf 3 v, w, V,W ::= λx.v | z | s v | U | FunV λx.W | u
Ne 3 u ::= x | u v | rec V v w u

A residualizing PER-model. Given a syntactical com-
binatory algebra with an additional injective constructor
Up : Ne → D, we define a residualizing PER model as
follows.

First define N ∈ Per(D) inductively by the following
rules.

z = z ∈ N
d = d′ ∈ N

s d = s d′ ∈ N Upu = Up u ∈ N
We then give a simultaneous inductive-recursive definition
[16] of the PERs U and [d]. There are several ways to
understand such definitions set-theoretically [28, 3, 9]. If
Rel(D) is the set of relations on D, we can e. g. follow
[6, 1] and inductively define the graph of a partial function
[ ] : D ⇀ Rel(D) such that the following equations hold:

[Up u] = {(Upu′, Up u′) | u′ ∈ Ne}
[N] = N
[FunX F ] = {(f, f ′) | (f d, f ′ d′) ∈ [F d]

for all (d, d′) ∈ [X]}
To prove univalence of this relation we use that Up, N,
and Fun are constructors. Then we define the universe of
small types U ∈ Rel(D) inductively (using PER notation,
although we have not yet proved that it is a PER):

Upu = Up u ∈ U N = N ∈ U

X = X ′ ∈ U F d = F ′ d′ ∈ U for all d = d′ ∈ X

FunX F = FunX ′ F ′ ∈ U
We then show by induction on this relation that if X =
X ′ ∈ U then [X] and [X ′] are well-defined and equal PERs.
It follows that U ∈ Per(D). We extend the partial function
by [U] = U and define the universe of all types Type ∈
Rel(D) inductively.

U ⊆ Type
U = U ∈ Type

X = X ′ ∈ Type F d = F ′ d′ ∈ Type for all d = d′ ∈ X

FunX F = FunX ′ F ′ ∈ Type
As for U , we can now show that [ ] ∈ Fam(Type)
and Type ∈ Per(D), and it is immediate to check that
(U , Type, [ ]) constitutes a PER model of λΠUN, validating
PER-1-5. The remaining requirement PER-6 will be ful-
filled in the next section.
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Reflection and reification. Assume furthermore, that for
each X ∈ Type there are functions

↑X ∈ Ne→ |[X]| reflection,
↓X ∈ |[X]| → Nf reification,
⇓ ∈ |Type| → Nf type reification,

such that the following equations in D hold:

(↑Fun X F u) d = ↑F d(u ↓Xd)
↑X u = Upu

where X in the second equation is a term beginning with
a constructor different from Fun. Moreover, we have the
following syntactical identities in Λ:

↓Fun X F f = λx. ↓F (↑Xx)(f (↑Xx)) (*)

↓Nz = z
↓N(s d) = s (↓Nd)
↓N(Upu) = u

↓Up u′(Upu) = u
↓UX = ⇓X
⇓(FunX F ) = Fun (⇓X) (λx.⇓(F (↑Xx))) (*)
⇓N = N
⇓(Up u) = u
⇓U = U

The equations (*) shall hold for all but finitely many x ∈
Var. Since we consider λ-terms modulo α-equivalence, this
is equivalent to postulating them for some “fresh” x. One
way to make this precise is to require D to be a nominal set
[27] or FM-domain [29]. We let D be the λ-calculus modulo
β and rewrite rules for recursion, reflection and reification.
We come to that later, for now let us just assume that the
reification functions always choose fresh variables x.

The following central lemma shows that the above equa-
tions define total reflection and reification functions on the
PERs of our model, and their result does not depend on the
choice of representative for each equivalence class.

Lemma 7 (Characterization of reflection and reification)
Let X = X ′ ∈ Type. Then ↑Xu = ↑X′

u ∈ X and
⇓X = ⇓X ′, and if d = d′ ∈ X then ↓Xd = ↓X′

d′.

Proof. Simultaneously by induction on X = X ′ ∈ Type,
showing the lemma for X = X ′ ∈ U first. In case of
function types FunX F = FunX ′ F ′ ∈ U and f = f ′ ∈
FunX F we have by induction hypothesis ↑Xx = ↑X′

x ∈
X for a fresh x, hence, f ↑Xx = f ′ ↑X′

x ∈ F ↑Xx.
Since F ↑Xx = F ′ ↑X′

x ∈ U , by induction hypothe-
sis ↓F ↑Xx(f ↑Xx) and ↓F ′ ↑X′x(f ′ ↑X′

x) are identical βι-
normal forms. Hence, we can abstract x in both terms,
which shows that ↓Fun X F f = ↓Fun X′ F ′f ′ ∈ Nf. This
was the most interesting case. ¤

Since we have a new constructor e = Up r for neutral
values, we need to add a new equation for rec:

rec F dz ds (Up r) =
↑F (Up r)(rec (λx.⇓(F (↑Nx)))

(↓F zdz)
(λnλy. ↓F (s n)(ds (↑Nn) (↑F ny)))
r)

The variables x, n, y must be fresh for F, s. We can now
prove PER-6, the totality of rec, by induction on N .

Summarizing the developments in this section, we have
a complete method for checking judgmental equality:

Corollary 8 (Completeness of NbE) Let ρ = ρ ∈ Γ.

1. If Γ ` A = A′ then ⇓[[A]]ρ = ⇓[[A′]]ρ.

2. If Γ ` t = t′ : A then ↓[[A]]ρ [[t]]ρ = ↓[[A]]ρ [[t′]]ρ.

Proof. We have [[A]]ρ = [[A′]]ρ ∈ Type by Thm. 6, hence
⇓[[A]]ρ is syntactically equal to ⇓[[A′]]ρ by the lemma. Anal-
ogously for term equality. ¤

3.3 Extended λ-calculus

We shall now instantiate the domain D with a lambda
calculus Λ↓↑ ⊇ Λ extended by four new constants
Up, up, down,Down. On Λ↓↑ we consider βι-reduction
−→, given as the reflexive-transitive compatible closure of
the β-axiom (λx.t) s −→ t[s/x] and the ι-axioms listed in
Figure 2.

In the three rules which create an abstraction, x 6∈
FV(A,C, t). Under this assumption, each of the ι-
reductions preserves the set of free variables. Since there
are no reductions for terms headed by constants c ∈
{Fun, N, z, s,U, Up}, these c are constructors, whereas the
other constants f ∈ {rec, up, down, Down} satisfy pattern
matching equations. The left hand sides of all ι-rules are
algebraic, linear, and non-overlapping. Reduction −→ is a
orthogonal constructor combinatory reduction system [20],
hence, it is confluent. Thus, −→ ◦ ←− is an equivalence,
which we denote by =βι. Reduction is also standardizing;
one can apply the call-by-name strategy to find the normal
form, if it exists.

Let r denote the equivalence class of r modulo =βι. The
set of equivalence classes D = Λ↓↑/=βι forms a syntactical
combinatory algebra with application operation r · s = r s
and denotation operation [[r]]ρ = r[σ] where σ is arbitrary
with σ(x) = ρ(x) for all x ∈ Var. (D is even a syntactical
λ-model [8].)

One easily checks that all equations assumed in the last
section are satisfied by D. Since recursion is well-defined
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by induction on N and ↑X , ↓X ,⇓X are well-defined by in-
duction on X ∈ Type , the implementation of these function
by rewriting is terminating on arguments which inhabit the
PERs of our model. Also, for X ∈ Type, the free variables
of the normal form of upX u for u ∈ Ne are exactly the
free variables of u, the free variables of the normal form of
downX v for v ∈ X normal are exactly the free variables
of v, and for X ∈ Type normal the free variables of the
normal form of Down X are exactly the free variables of
X . This simplifies the task of finding fresh variables during
reflection and reification, since suitable candidates can be
fixed in the beginning.

rec C z s z −→ z
rec C z s (s n) −→ s n (recC s z n)
rec C z s (Up r) −→ up (C (Up r))

(rec (down (N→ U) C)
(down (C z) z)
(down (FunN (λn. C n→ C (sn))) s)
r)

up (FunA C) t −→ λx. up (C x) (t (downAx))
upN t −→ Up t
up (Up r) t −→ Up t
upU t −→ Up t

down (FunA C) t −→ λx. down (C (up Ax))
(t (upAx))

downN z −→ z
downN (s n) −→ s (downN n)
downN (Up t) −→ t

down (Up r) (Up t) −→ t
downU −→ Down

Down (FunAC) −→ Fun (DownA)
(λx. Down (C (up Ax)))

DownN −→ N
Down (Up t) −→ t
DownU −→ U

Figure 2. ι-reduction in Λ↓↑.

Our solution to freshness is similar to the work of Danvy
[14] and Aehlig and Joachimski [5] who introduce a second-
level lambda-calculus to model computation in D. How-
ever, our approach is simpler, we do not need two levels, so
we can apply standard results of λ-calculus. Furthermore,
in our case recursion, reflection, and reification are always
terminating, which is not the case in untyped NbE.

4 Logical Relations and Soundness of NbE

In this section we show soundness of NbE for λΠUN, that
is, that a term (or type) is provably equal to its normal form
as computed by the nbe-algorithm: Γ ` a = ⇓[[a]] : A. De-
cidability of judgmental equality is then a direct corollary
of soundness and completeness.

Let Ty(Γ) = {C | Γ ` C} be the set of well-formed
types in context Γ and Tm(Γ, C) = {t | Γ ` t : C} be the
set of terms of type C in Γ. We say that ∆ extends a well-
formed context Γ, written ∆ ≥ Γ, if ∆ ` and Γ(x) = ∆(x)
for all x ∈ dom(Γ).

By induction on X ∈ Type , we simultaneously define
relations

` R© X
` : R© ∈ X

such that (Γ ` R© X) ⊆ Ty(Γ) and (Γ ` : C R©
∈ X) ⊆ Tm(Γ, C) × [X]. We always assume that Γ is

well-formed.

Γ ` C R© FunX F :⇐⇒
Γ ` C = FunA (λx.B) for some A,B and
Γ ` A R© X and
∆ ` B[s/x] R© F d for all ∆ ≥ Γ

and ∆ ` s : A R© d ∈ X

Γ ` C R© X :⇐⇒ Γ ` C = ⇓X for X 6= FunY F

Γ ` r : C R© f ∈ FunXF :⇐⇒
Γ ` C = FunA (λx.B) for some A,B and
Γ ` A R© X and
∆ ` r s : B[s/x] R© f d ∈ F d for all ∆ ≥ Γ

and ∆ ` s : A R© d ∈ X

Γ ` A : C R© X ∈ U :⇐⇒ Γ ` C = U and Γ ` A R© X

Γ ` r : C R© d ∈ X :⇐⇒ Γ ` r = ↓Xd : C
for X = N,Up u

Note that these definitions do not depend on the choice of
the representative X , the relations are invariant under re-
placement of X by X ′ if X = X ′ ∈ Type.

Lemma 9 Let X = X ′ ∈ Type.

1. If Γ ` C R© X then Γ ` A R© X ′.

2. If Γ ` t : C R© d ∈ X and d = d′ ∈ X then Γ ` t :
C R© d′ ∈ X ′.

Simultaneously with the definition one proves the fol-
lowing lemma.

Lemma 10 (Properties of the logical relations) Let X ∈
Type, Γ ` C R© X , and Γ ` t : C R© d ∈ X .

1. (Monotonicity:) If ∆ ≥ Γ then ∆ ` C R© X and
∆ ` t : C R© d ∈ X .
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2. (In:) If Γ ` r = u : C then Γ ` r : C R© ↑Xu ∈ X .

3. (Out:) Γ ` C = ⇓X and Γ ` t = ↓Xd : C.

A consequence of Out is that the choice of A,B in the
defining clauses of the relations for FunX F does not mat-
ter, since A is determined by X up to judgmental equality
uniquely, and B by F . Hence, the following lemma is easily
proved by induction on X ∈ Type:

Lemma 11 Let X ∈ Type and Γ ` C = C ′.

1. If Γ ` C R© X then Γ ` C ′ R© X .

2. If Γ ` t : C R© d ∈ X and Γ ` t = t′ : C then
Γ ` t′ : C ′ R© d ∈ X .

We relate substitutions ∆ ` σ : Γ to environments ρ ∈ Γ
by the following definition:

∆ ` σ : Γ R© ρ :⇐⇒ for all x ∈ dom(Γ),
∆ ` σ(x) : Γ(x)[σ] R© ρ(x) ∈ [[Γ(x)]]ρ

We define the propositions Γ ° J as follows:

° :⇐⇒ true
Γ, x :A ° :⇐⇒ Γ ° A

Γ ° A :⇐⇒ Γ ° A = A
Γ ° A = A′ :⇐⇒ Γ ° and

∆ ` A[σ] R© [[A′]]ρ
for all ∆ ` σ : Γ R© ρ.

Γ ° t : A :⇐⇒ Γ ° t = t : A
Γ ° t = t′ : A :⇐⇒ Γ ° A and

∆ ` t[σ] : A[σ] R© [[t′]]ρ ∈ [[A]]ρ
for all ∆ ` σ : Γ R© ρ.

Γ ° τ : Γ′ :⇐⇒ Γ ° τ = τ : Γ′

Γ ° τ = τ ′ : Γ′ :⇐⇒ Γ ° and Γ′ ° and
∆ ` τ [σ] : Γ′ R© [[τ ′]]ρ
for all ∆ ` σ : Γ R© ρ

Theorem 12 (Fundamental theorem of logical relations)
If Γ ` J then Γ ° J .

Proof. By induction on Γ ` J . ¤

We define a special valuation ρΓ by induction on Γ, where
ρ¦(x) is arbitrary and ρ(Γ,x:A) = ρΓ[x 7→ ↑[[A]]ρΓ x]. It
follows that ρΓ ∈ Γ and Γ ` σid : Γ R© ρΓ.

Corollary 13 (Soundness of NbE)

1. If Γ ` t : A then Γ ` t = ↓[[A]]ρΓ [[t]]ρΓ
: A.

2. If Γ ` A then Γ ` A = ⇓[[A]]ρΓ
.

Corollary 14 (Decidability of equality)

1. If Γ ` t, t′ : A we can decide whether Γ ` t = t′ : A.

2. If Γ ` A,A′ we can decide whether Γ ` A = A′.

Proof. It follows from soundness and completeness that
two terms or types are equal (in the sense of judgmental
equality) iff their normal forms, as computed by the nbe-
function, are equal. ¤

Corollary 15 (Injectivity of Π) If Γ ` FunA (λx.B) =
FunA′ (λx.B′) then Γ ` A = A′ and Γ, x :A ` B = B′.

Proof. Let ρ = ρΓ. By Thm. 6, [[FunA (λx.B)]]ρ =
[[FunA′ (λx.B′)]]ρ ∈ Type . First, this implies [[A]]ρ =
[[A′]]ρ ∈ Type by inversion on Type, hence, ⇓[[A]]ρ and
⇓[[A′]]ρ are syntactically identical. With soundness of NbE,
this implies Γ ` A = A′. Secondly, since d := ↑[[A]]ρx ∈
[[A]]ρ, we get [[λx.B]]ρ d = [[λx.B′]]ρ d ∈ Type . With
ρ′ = ρ[x 7→ ↑[[A]]ρx] = ρ(Γ,x:A) this implies that [[B]]ρ′ =
[[B′]]ρ′ ∈ Type, so with soundness we get Γ, x : A ` B =
B′. ¤

5 Extensions

Since we work with judgmental equality it is simple to
extend our method to a system with a unit type 1 with in-
habitant Γ ` () : 1 and η-law Γ ` t = () : 1 for Γ ` t : 1.
In the PER model, we simply let d = d′ ∈ [1] for all d, d′.
Reification ↓1d = () and reflection ↑1u = () return both the
constant (), so the result of nbe never depends on a particu-
lar inhabitant t of the unit type.

Similarly, we can extend our method to deal with Σ-
types and singleton types, constructions which present
problems in systems with untyped conversion. Such types
are handled by Harper and Pfenning’s [18] type-directed al-
gorithmic equality. However, their method is based on era-
sure of type dependencies and fails for systems which also
include universes like λΠUN.

Finally, our approach is robust to changes of syntax. For
instance, it can deal with typed abstraction λx : A.t. In the
PER model, which is based on the untyped λ-calculus, A
is simply ignored. The reification function ↓Fun X F t then
returns an abstraction annotated with type ⇓X . We could
also adapt it to the more explicit syntax for abstraction and
application suggested in [31]. Yet another possibility is to
use our method for proving the basic properties of the ini-
tial category with families (cwf) [15, 19], which is a more
algebraic way to present type theory.

We can now prove the correctness of a standard bidi-
rectional type checking algorithm [18] for normal terms.
This proof is a corollary of decidability of judgmental
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equality together with the syntactical inversion properties
(Lemma 2). Such algorithms are currently used in the core
languages of the dependently typed languages Agda [13]
developed at Chalmers and Epigram [25] developed at Not-
tingham University. With typed abstraction, type checking
is decidable also for non-normal terms.
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[22] P. Martin-Löf. Constructive mathematics and computer pro-
gramming. In Logic, Methodology and Philosophy of Sci-
ence, VI, 1979, pages 153–175. North-Holland, 1982.
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