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A core idea in programming and mathematics is abstraction: the exact details of how an
object is represented should not affect its abstract properties. The principle of univalence
captures this by extending the equality on the universe of types to incorporate equivalent types.
This provides a form of abstraction, or invariance up to equivalence, in the sense that equivalent
types will share the same structures and properties. The fact that equality is proof relevant
in dependent type theory is the key to enabling this. The data of an equality proof can store
the equivalence and transporting along this equality should then apply the function underlying
the equivalence. In particular, this allows programs and properties to be transported between
equivalent types, hereby increasing modularity and decreasing code duplication. A concrete
example are the equivalent representations of natural numbers in unary and binary format.
In a univalent system it is possible develop theory about natural numbers using the unary
representation, but compute using the binary representation, and as the two representations
are equivalent they share the same properties.

The principle of univalence is the major new addition in Homotopy Type Theory and Uni-
valent Foundations (HoTT/UF) [The Univalent Foundations Program, 2013]. However, these
new type theoretic foundations add univalence as an axiom which disrupts the good construc-
tive properties of type theory. In particular, if we transport addition on binary numbers to the
unary representation we will not be able to compute with it as the system would not know how
to reduce the univalence axiom. Cubical Type Theory (CTT) [Cohen et al., 2015a] addresses
this problem by introducing a novel representation of equality proofs and thereby providing
computational content to univalence. This makes it possible to constructively transport pro-
grams and proofs between equivalent types. This representation of equality proofs has many
other useful consequences, in particular functional and propositional extensionality and the
equivalence between bisimilarity and equality for coinductive types [Vezzosi, 2017].

Dependently typed functional languages such as Agda, Coq, Idris, and Lean, provide rich
and expressive environments supporting both programming and proving within the same lan-
guage. However, the extensionality principles mentioned above are not available out of the
box and need to be assumed as axioms just as in HoTT/UF. Unsurprisingly, this suffers from
the same drawbacks as it compromises the computational behavior of programs that use these
axioms. It even makes subsequent proofs more complicated as equational properties do not
hold by computation.

So far, CTT has been developed with the help of a prototype Haskell implementation
called cubicaltt [Cohen et al., 2015b], but it has not been integrated into one of the main
dependently typed functional languages. Recently, an effort was made, using Coq, to obtain
effective transport for restricted uses of the univalence axiom [Tabareau et al., 2018], because,
as the authors mention, “it is not yet clear how to extend [proof assistants] to handle univalence
internally”.
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We achieve this, and more, by making Agda into a cubical programming language with na-
tive support for univalence and higher inductives types (HITs). We call this extension Cubical
Agda [2019] as it incorporates and extends CTT. In addition to providing a fully constructive
univalence theorem, Cubical Agda extends the theory by allowing proofs of equality by copat-
terns, HITs as in Coquand et al. [2018] with nested pattern matching, and interval and partial
pre-types. The extension of dependent (co)pattern matching [Cockx and Abel, 2018] to the
equality type allows for convenient programming with HITs and univalence. We demonstrate
this by the proof that the torus is equal to two circles in Cubical Agda.

data S¹ : Set where
base : S¹
loop : base ≡ base

data Torus : Set where
point : Torus
line1 : point ≡ point
line2 : point ≡ point
square : PathP (λ i → line1 i ≡ line1 i) line2 line2

t2c : Torus → S¹ × S¹
t2c point = (base , base)
t2c (line1 i) = (loop i , base)
t2c (line2 j) = (base , loop j)
t2c (square i j) = (loop i , loop j)

c2t : S¹ × S¹ → Torus
c2t (base , base) = point
c2t (loop i , base) = line1 i
c2t (base , loop j) = line2 j
c2t (loop i , loop j) = square i j

The proof that t2c and c2t are inverses is just reflexivity in each of the four cases. We can then
the isomorphism into an equality, using the implementation of univalence.

While this is a rather elementary result in topology it had a surprisingly non-trivial proof in
HoTT because of the lack of definitional computation for higher constructors [Sojakova, 2016,
Licata and Brunerie, 2015]. With the additional definitional computation rules and pattern-
matching of Cubical Agda this proof is now almost entirely trivial.
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