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Abstract

Sized types have been developed to make termination checking more perspicuous, more powerful,
and more modular by integrating termination into type checking. In dependently-typed proof assistants
where proofs by induction are just recursive functional programs, the termination checker is an integral
component of the trusted core, as validity of proofs depends on termination. However, a rigorous
integration of full-fledged sized types into dependent type theory is lacking so far. Such an integration
is non-trivial, as explicit sizes in proof terms might get in the way of equality checking, making terms
appear distinct that should have the same semantics. In this work, we integrate dependent types
and sized types with higher-rank size polymorphism, which is essential for generic programming and
abstraction. We introduce a size quantifier ∀ which lets us ignore sizes in terms for equality checking,
alongside with a second quantifier Π for abstracting over sizes that do affect the semantics of types and
terms. Judgmental equality is decided by an adaptation of normalization-by-evaluation.

Agda [5] features first-class size polymorphism [1] in contrast to theoretical accounts of sized
dependent types [6, 7, 10] who typically just have prenex (ML-style) size quantification. Conse-
quently, Agda’s internal language contains size expressions in terms wherever a size quantifier
is instantiated. However, these size expressions, which are not unique due to subtyping, can get
in the way of reasoning about sizeful programs. Consider the type of sized natural numbers.

data Nat : Size → Set where
zero : ∀ i → Nat (i + 1)
suc : ∀ i → Nat i → Nat (i + 1)

We define subtraction x .−y on natural numbers, sometimes called the monus function, which
computes max(0, x−y). It is defined by induction on the size j of the second argument y, while
the output is bounded by size i of the first argument x. (The input-output relation of monus is
needed for a natural implementation of Euclidean divison.)

monus : ∀ i → Nat i → ∀ j → Nat j → Nat i
monus i x .(j + 1) (zero j) = x
monus .(i + 1) (zero i) .(j + 1) (suc j y) = zero i
monus .(i + 1) (suc i x) .(j + 1) (suc j y) = monus i x j y

We wish to prove that subtracting x from itself yields 0, by induction on x. The case x = 0
should be trivial, as x .− 0 = x by definition, hence, 0 .− 0 = 0. A simple proof by reflexivity
should suffice. However, the goal shows a mismatch between size ∞ and size i coming from the
computation of monus (i+ 1) (zero i) (i+ 1) (zero i).

monus-diag : ∀ i → (x : Nat i) → zero ∞ ≡ monus i x i x
monus-diag .(i + 1) (zero i) = {! zero ∞ ≡ zero i !} -- goal
monus-diag .(i + 1) (suc i x) = monus-diag i x
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The proof could be completed by an application of reflexivity if Agda ignored sizes where
they act as type argument, i. e., in constructors and term-level function applications, but not in
types where they act as regular argument, e. g., in Nat i.

The problem is solved by distinguishing relevant (Π) from irrelevant (∀) size quantification.
The relevant quantifier is the usual dependent function space over sizes. In particular, the
congruence rule for size application requires matching size arguments:

Γ ` t = t′ : Πi. T Γ ` a : Size

Γ ` t a = t′ a : T [a/i]

Typically, the relevant quantifier is used in types of types, for instance, in its non-dependent
form, in Nat : Size→ Set. In contrast, the irrelevant size quantifier is used in types of programs
and ignores sizes in size applications. The rules for application, while Church-style, de facto
implement Curry-style quantification:

Γ ` t = t′ : ∀i. T Γ⊕ ` a, a′, b : Size

Γ ` t a = t′ a′ : T [b/i]

Γ ` t : ∀i. T Γ⊕ ` a, b : Size

Γ ` t a : T [b/i]

Further, the size arguments are scoped in the resurrected [9] context Γ⊕ and, thus, are allowed
to mention irrelevant size variables. Those are introduced by irrelevant size abstraction and
marked by the ÷-symbol in the context. In contrast, the quantified size variable may occur
relevantly in the type.

Γ, i÷ Size ` t : T

Γ ` λi. t : ∀i. T
Γ, i :Size ` T : Set

Γ ` ∀i. T : Set

The lack of type unicity arising from the size application rule has prevented us from adopting
the usual incremental algorithm for equality checking [8, 3]. However, we have succeeded to
employ normalization by evaluation [2] for deciding judgmental equality [4].
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