Haskell Examples for Iteration and Coiteration on Higher-Order Datatypes

Andreas Abel*
Theoretical Computer Science, University of Munich
abel@informatik.uni-muenchen.de

January 31, 2003

This document gives a Haskell implementations of the examples in the article Iteration and Coiteration for Higher-Order Nested Datatypes by Abel and Matthes [AM03]. The programs make essential use of the rank-2 extensions of Haskell 98 and can be run under hugs -98 or compiled with ghc -fglasgow-exts.

Thanks to Ralph Hinze who provided lhs2TeX which was used to type-set the literate Haskell sources automatically.

1 (Co)inductive types

module Rank1 where

Inductive types.

```
data Mu1f= In1 (f (Mu1f))
it1 :: Functor f}=>(fa->a)->Mu1f->
it1 s(In1 t)}=s(fmap(it1s) t
```

Coinductive types.
data $N u 1 f=$ forall a. Coit1 $(a \rightarrow f a) a$
out1 :: Functor $f \Rightarrow N u 1 f \rightarrow f(N u 1 f)$
out1 $($ Coit1 $s t)=$ fmap $($ Coit1 $s)(s t)$

2 (Co)inductive functors

module Rank2 (Functor2, Mu2, In, it, Nu2, Coit, out) where

[^0]Rank 2 monotonicity.

```
class Functor2 ff where
    ffmap :: (forall a b. (a->b) ->fa->gb) }
    (a->b)->fffa->ff gb
```

Inductive functors. Formation and introduction.
data Mu2 ff $a=\operatorname{In}(f f(M u 2$ ff $\quad a)$
Elimination and computation.

$$
\begin{aligned}
& \text { it :: Functor2 ff } \Rightarrow(\text { forall } b \\
& \quad(a \rightarrow b) \rightarrow \text { Mu2 ff } a \rightarrow g b \\
& \text { it } s f(\text { In } t)=s(\text { ffmap }(\text { it } s) \quad f t)
\end{aligned}
$$

Functoriality
instance Functor2 ff \Rightarrow Functor (Mu2 ff) where fmap $=$ it $I n$

Coinductive functors. Formation and introduction.
data Nu2 ff $b=$ forall $g a$. Coit
(forall a.g $a \rightarrow f f g a)$ $(a \rightarrow b)$
($g a$ a)
Elimination and computation.
out :: Functor2 ff \Rightarrow Nu2 ff $a \rightarrow f f(N u 2 f f) a$
out $($ Coit $s f t)=f f m a p($ Coit s) $f(s t)$
Functoriality.
instance Functor2 ff \Rightarrow Functor (Nu2 ff) where
fmap $=$ Coit out

3 Powerlists

3.1 Powerlist reversal

First, the version of powerlists where the map operation performs a reversal of the whole list.

```
module RevPowerlist where
import Prelude hiding (succ)
import Rank2 (Functor2, Mu2, In, it, Nu2, Coit,out)
```

The constructor of pure kind 2 which we need to define powerlists. We take the freedom and use labelled sums.

```
data PListF f a = Zero a | Succ (f (a,a))
```

We give a monotonicity witness which performs reversal.

```
swap :: \((a \rightarrow b) \rightarrow(a, a) \rightarrow(b, b)\)
\(\operatorname{swap} f\left(a_{1}, a_{2}\right)=\left(f a_{2}, f a_{1}\right)\)
pListFRev :: (forall \(a b .(a \rightarrow b) \rightarrow f a \rightarrow g b) \rightarrow\)
    \((a \rightarrow b) \rightarrow\) PListF \(f a \rightarrow\) PListF \(g b\)
pListFRev sf(Zero a) \(=\) Zero \((f a)\)
\(p\) ListFRev sf(Succ \(l)=\operatorname{Succ}(s(\operatorname{swap} f) l)\)
instance Functor2 PListF where
    ffmap sfl\(=p\) ListFRev sf \(l\)
```

Inductive type of powerlists.
type PList $a=$ Mu2 PListF a
Powerlist constructors.

```
zero :: \(a \rightarrow\) PList \(a\)
zero \(a=\) In id (Zero a)
succ :: PList \((a, a) \rightarrow\) PList a
succ \(l=\) In id \((\) Succ \(l)\)
```

Fast powerlist reversal.
This is just the map function.
pListRev :: PList $a \rightarrow$ PList a
p ListRev $=$ fmap $i d$

3.2 Powerlist summation

module Powerlist where
import Prelude hiding (succ, sum)
import Rank2 (Functor2, Mu2, In, it, Nu2, Coit, out)

```
pair :: (a->b) ->(a,a) ->(b,b)
pair f(a, a, ) =(f a a ,f a ( )
```

The constructor of pure kind 2 which we need to define powerlists. We take the freedom and use labelled sums.

```
data PListF \(f a=\) Zero \(a \mid \operatorname{Succ}(f(a, a))\)
```

instance Functor2 PListF where
ffmap sf(Zero a) = Zero $\left(\begin{array}{ll}f & \text { a }\end{array}\right.$
ffmap sf(Succ l)=Succ $(s($ pair $f) l)$

Inductive type of powerlists.
type PList $a=$ Mu2 PListF a
Powerlist constructors.

```
zero :: \(a \rightarrow\) PList \(a\)
zero \(a=\operatorname{In}(\) Zero \(a)\)
succ :: PList \((a, a) \rightarrow\) PList \(a\)
succ \(l=\) In \((\) Succ \(l)\)
```

Summing up a powerlist of Integers.
We make use of the right Kan extension. Unfortunately, we cannot use a type definition and need a datatype instead.
newtype RKanInt $a=$ RKanInt $((a \rightarrow$ Integer $) \rightarrow$ Integer $)$
Step term.

```
stepSum :: PListF RKanInt \(a \rightarrow\) RKanInt \(a\)
stepSum \((\) Zero \(a)=R\) KanInt \((\lambda f \rightarrow f a)\)
stepSum \((\operatorname{Succ}(\) RKanInt \(l))=R K a n I n t ~\left(\lambda f \rightarrow l\left(\lambda\left(a_{1}, a_{2}\right) \rightarrow f a_{1}+f a_{2}\right)\right)\)
sum \(^{\prime}::(a \rightarrow b) \rightarrow\) PList \(a \rightarrow\) RKanInt \(b\)
sum \(^{\prime}=\) it stepSum
sum :: PList Integer \(\rightarrow\) Integer
sum \(l=k\) id
    where (RKanInt \(k\) ) \(=\) sum' \(^{\prime}\) id \(l\)
```


4 De Bruijn terms

module DeBruijn where
import Prelude hiding (abs)
import Rank2

Rank 2 type constructor for a de Bruijn representation of lambda-terms.

```
data LamF f a = Var a | App(fa)(fa)| Abs(f(Maybe a))
instance Functor2 LamF where
    ffmap s f (Var a) = Var (f a)
    ffmap s f (App t1 t2) = App (sft1) (sft2)
    ffmap sf (Abs r) = Abs (s (fmap f)r)
```

Type of de Bruijn terms over a variable set A.

```
type Lam a = Mu2 LamF a
```

De Bruijn term constructors.

```
var :: a Lam a
var a = In (Var a)
app :: Lam a L Lam a Lam a
app t1 t2 = In (App t1 t2)
abs :: Lam (Maybe a) -> Lam a
abs r = In (Abs r)
```

Weakening,

```
weak :: Lam a mam (Maybe a)
weak t=fmap Just t
```

Parallel substitution
Step term.

```
newtype \(R\) KanLam \(b=R\) KanLam \((\) forall \(c .((b \rightarrow\) Lam \(c) \rightarrow\) Lam \(c))\)
stepSub :: LamF RKanLam \(a \rightarrow\) RKanLam \(a\)
stepSub \((\) Var \(a)=\) RKanLam \((\lambda \operatorname{sigma} \rightarrow \operatorname{sigma} a)\)
stepSub \((\) App \((\) RKanLam t1 \()(\) RKanLam t2 \())=\) RKanLam \((\lambda\) sigma \(\rightarrow\)
    app ( \(\mathrm{t1}\) sigma) ( \(\mathrm{t2}\) sigma) )
\(\operatorname{stepSub}(\) Abs \((\) RKanLam \(r))=R K a n L a m ~(\lambda s i g m a ~ \rightarrow ~\)
    abs (r (maybe (var Nothing) ( weak.sigma) )) )
```

Substitution in general form.

```
subst \({ }^{\prime}:(a \rightarrow b) \rightarrow\) Lam \(a \rightarrow\) RKanLam \(b\)
subst \({ }^{\prime}=\) it stepSub
```

Substitution (monad operation).

```
subst :: Lam a }->(a->\mathrm{ Lam b) }->\mathrm{ Lam b
```

subst t sigma $=k$ sigma
where $($ RKanLam $k)=$ subst $^{\prime}$ id t

Join operation.

```
join' :: (a -> b) -> Lam (Lam a) ->Lam b
join' ft=k id where (RKanLam k)=subst' (fmap f)t
join :: Lam (Lam a) -> Lam a
join t = subst t id
```


5 Functions over binary trees

module BTFun where
import Prelude hiding (span, head, tail)
import Rank1
import Rank2
Binary trees without content.
data BTF $a=$ Leaf $\mid \operatorname{Span}\{$ left $:: a$, right $:: a\}$
instance Functor BTF where
fmap f Leaf $=$ Leaf
fmap $f(S p a n t u)=\operatorname{Span}(f t)(f u)$
type $B T=M u 1 B T F$
leaf :: BT
leaf $=$ In1 Leaf
span $:: B T \rightarrow B T \rightarrow B T$
span $t u=\operatorname{In} 1($ Span $t u)$
Functions over binary trees as coinductive datatype. (Thorsten Altenkirch)
data TFunF $f a=$ Cons $\{h d:: a, t l::(f(f a))\}$
instance Functor2 TFunF where
ffmap sf(Cons a $t)=$ Cons $(f a)(s(s f) t)$
type TFun $a=$ Nu2 TFunF a
Destructors.
head :: TFun $a \rightarrow a$
head $b=h d$ (out b)
tail :: TFun $a \rightarrow$ TFun (TFun a)
tail $b=t l($ out $b)$

Creating a TFun from a function over BT by coiteration.

```
newtype BTto \(a=\) BTto \((B T) \rightarrow a\)
stepLam :: BTto \(a \rightarrow\) TFunF BTto a
stepLam (BTto \(f\) ) \(=\) Cons ( \(f\) leaf)
    \((B T \not t o \lambda t \rightarrow\) BTto \((\lambda u \rightarrow f(\) span \(t u))))\)
lamBT \(::(a \rightarrow b) \rightarrow(B T \rightarrow a) \quad \rightarrow\) TFun \(b\)
lamBT'f \(g=\) Coit stepLam \(f\) (BTto \(g)\)
lamBT \(::(B T \rightarrow a) \rightarrow\) TFun \(a\)
\(\operatorname{lamBT} g=\operatorname{lamBT} T^{\prime}\) id \(g\)
```

Applying a TFun to a BT.
newtype TFto $=$ TFto (forall a. TFun $a \rightarrow a)$
stepApp :: BTF TFto \rightarrow TFto
stepApp Leaf $=$ TFto $(\lambda b \rightarrow$ head $b)$
stepApp $($ Span $($ TFto $l)($ TFto $\eta) \quad)=$ TFto $(\lambda b \rightarrow r(l($ tail $b)))$
$a p p B T:: B T \rightarrow$ TFun $a \rightarrow a$
$\operatorname{appBT} t=g$ where $($ TFto $g)=$ it1 stepApp t

References

[AM03] Andreas Abel and Ralph Matthes. (Co-)iteration for higher-order nested datatypes. TYPES'02 Proceedings, 2003.

[^0]: *Supported by the PhD Programme Logic in Computer Science (GKLI) of the Deutsche Forschungsgemeinschaft.

