
A Modular Type-Checking Algorithm for
Type Theory with Singleton Types and

Proof Irrelevance

Andreas Abel1, Thierry Coquand2, and Miguel Pagano3

1 Ludwig-Maximilians-Universität München, abel@informatik.uni-muenchen.de
2 Göteborg University, coquand@cs.chalmers.se

3 Universidad Nacional de Córdoba, miguel.pagano@gmail.com

Abstract. We define a logical framework with singleton types and one
universe of small types. We give the semantics using a PER model; it is
used for constructing a normalisation-by-evaluation algorithm. We prove
completeness and soundness of the algorithm; and get as a corollary the
injectivity of type constructors. Then we give the definition of a correct
and complete type-checking algorithm for terms in normal form. We
extend the results to proof-irrelevant propositions.

1 Introduction and Related Work

One of the raisons d’être of proof-checkers like Agda [26], Coq [18], and Epigram
[23] is to decide if a given term has some type; i.e., if a term corresponds to a
proof of a proposition [17]. Hence, the convenience of such a system is, in part,
determined by the types for which the system can check membership. We ex-
tend the decidability of type-checking done in previous works [1, 2] for Martin-Löf
type-theories [21, 25] by considering singleton types and proof-irrelevant propo-
sitions.

Singleton types were introduced by Aspinall [8] in the context of specification
languages. An important use of singletons is as definitions by abbreviations (see
[8, 14]); they were also used to model translucent sums in the formalisation of
SML [19]. It is interesting to consider singleton types because beta-eta phase
separation fails: one cannot do eta-expansion before beta-normalisation because
the shape of the types at which to eta-expand is still unknown at this point;
and one cannot postpone eta-expansion after beta-normalisation, because eta-
expansion can trigger new beta-reductions. Stone and Harper [29] decide type
checking in a LF with singleton types and subtyping. Yet it is not clear whether
their method extends to computation on the type level. As far as we know, our
work is the first where singleton types are considered together with a universe.

De Bruijn proposed the concept of irrelevance of proofs [11], for reducing the
burden in the formalisation of mathematics. As shown by Werner [30], the use of
proof-irrelevance types together with sigma types is one way to get subset types
à la PVS [27] in type-theories having the eta rule—this direction was explored
by Sozeau [28, Sec. 3.3].

Checking dependent types relies on checking types for equality. To this end,
we compute η-long normal forms using normalisation by evaluation (NbE) [22].
Syntactic expressions are evaluated into a semantic domain and then reified back
to expressions in normal form. To handle functional and open expressions, the
semantic domain has to be equipped with variables; a major challenge in rigorous
treatments of NbE has been the problem to generate fresh identifiers. Solutions
include term families [10], liftable de Bruijn terms [7], or Kripke semantics [4].
In this work we present a novel formulation of NbE which avoids the problem
completely: reification is split into an η-expansion phase (↓) in the semantics,
followed by a read back function (R) into the syntax which is indexed by the
number of already used variables. This way, a standard PER model is sufficient,
and technical difficulties are avoided.

Outline. The definitions of two calculi are presented in section 2. In section 3
we define the semantics of this LF in a PER model, and we show soundness of
the model wrt. the derived rules of the calculus. We use this model to intro-
duce a NbE algorithm, for which we prove completeness (if t = s is derivable,
then nbe(t) and nbe(s) are identical). In section 4 we prove, using logical rela-
tions, the soundness of the algorithm (i.e., t = nbe(t) is derivable). In section 5
we define a bi-directional algorithm for checking the type of normal forms and
inferring the type of neutral terms.

2 The calculus as a Generalised Algebraic Theory

In the section, we introduce the calculus. For ease of reading, and for showing
the modularity of our approach, we present it as two calculi: the first one has
dependent function spaces, singleton types, and a universe closed under function
spaces and singletons. In the second calculus we leave out singleton types and
we add proof-irrelevant types.

We present the calculi using the formalism proposed by Cartmell for gener-
alised algebraic theories (GAT) [12]; however, our calculi are not proper GATs
(the rules are written in the so-called “informal syntax” and the rule for ap-
plication is ambiguous). We give only the introductory rules and the axioms;
the rules stating that equality is a congruence relation, called derived rules, are
omitted. An example of a derived rule is

A = B ∈ Type(Γ) γ = δ ∈ ∆ → Γ

Aγ = B δ ∈ Type(∆)
.

Calculus with singleton types.
Sorts. The set of sort symbols is {Ctx,→,Type, Term}.

Ctx is a type
(ctx-sort)

Γ, ∆ ∈ Ctx

Γ → ∆ is a type
(subs-sort)

Γ ∈ Ctx

Type(Γ) is a type
(type-sort)

Γ ∈ Ctx A ∈ Type(Γ)
Term(Γ,A) is a type

(term-sort)

In the following, whenever a rule has a hypothesis A ∈ Type(Γ), then Γ ∈ Ctx
shall be a further, implicit hypothesis. Similarly, σ ∈ Γ → ∆ presupposes Γ ∈
Ctx and ∆ ∈ Ctx, and t ∈ Term(Γ,A) presupposes A ∈ Type(Γ), which in turn
presupposes Γ ∈ Ctx. Note that judgements of the form Γ ∈ Ctx, A ∈ Type(Γ),
t ∈ Term(Γ, A), and σ ∈ Γ → ∆ correspond to the more conventional forms Γ `,
Γ ` A, Γ ` t : A, and Γ ` σ : ∆, resp. In the rest of the paper we use the latter.

Operators. The set of operators is quite large and instead of giving it at once, we
define it as the union of the disjoint sets of operators for contexts, substitutions,
types, and terms.

Contexts. There are two operators for contexts: SC = {¦, . }.

¦ ∈ Ctx
(empty-ctx)

Γ ∈ Ctx A ∈ Type(Γ)
Γ.A ∈ Ctx

(ext-ctx)

Substitutions. For substitutions we have five operators: SS = {id , 〈〉, (,), , p}.

Γ ∈ Ctx

idΓ ∈ Γ → Γ
(id-subs)

Γ ∈ Ctx

〈〉 ∈ Γ → ¦ (empty-subs)

δ ∈ Γ → Θ σ ∈ Θ → ∆

σ δ ∈ Γ → ∆
(comp-subs)

σ ∈ Γ → ∆ t ∈ Term(Γ, Aσ)
(σ, t) ∈ Γ → ∆.A

(ext-subs)
A ∈ Type(Γ)
p ∈ Γ.A → Γ

(fst-subs)

Types. The set of operators for types is ST = {U,Fun , , { } }.

Γ ∈ Ctx

U ∈ Type(Γ)
(u-f)

A ∈ Term(Γ, U)
A ∈ Type(Γ)

(u-el)
A ∈ Type(Γ) B ∈ Type(Γ.A)

FunAB ∈ Type(Γ)
(fun-f)

A ∈ Type(Γ) t ∈ Term(Γ, A)
{t}A ∈ Type(Γ)

(sing-f)
A ∈ Type(∆) σ ∈ Γ → ∆

A σ ∈ Type(Γ)
(subs-type)

Terms. The set of operators for terms is SE = {Fun , { } , , q, λ , App }.

A ∈ Term(Γ, U) B ∈ Term(Γ.A, U)
FunAB ∈ Term(Γ, U)

(fun-u-i)
t ∈ Term(Γ.A, B)

λt ∈ Term(Γ,FunAB)
(fun-i)

B ∈ Type(Γ.A) t ∈ Term(Γ,FunAB) u ∈ Term(Γ, A)
App t u ∈ Term(Γ, B (idΓ , u))

(fun-el)

σ ∈ Γ → ∆ t ∈ Term(∆,A)
t σ ∈ Term(Γ,A σ)

(subs-term)
A ∈ Type(Γ)

q ∈ Term(Γ.A, A p)
(hyp)

A ∈ Term(Γ, U) t ∈ Term(Γ,A)
{t}A ∈ Term(Γ, U)

(sing-u-i)
t ∈ Term(Γ,A)

t ∈ Term(Γ, {t}A)
(sing-i)

a ∈ Term(Γ, A) t ∈ Term(Γ, {a}A)
t ∈ Term(Γ, A)

(sing-el)

Axioms. We give the axioms without the premises, except in the cases where
they can not be inferred.

Substitutions.

(σ δ) γ = σ (δ γ) 〈〉σ = 〈〉
idΓ σ = σ σ idΓ = σ

id¦ = 〈〉 idΓ.A = (p, q)
p (σ, t) = σ (σ, t) δ = (σ δ, t δ)

Substitutions on types, and terms; η and β-axioms.

U γ = U {t}A σ = {t σ}A σ

(FunAB)σ = Fun (Aσ) (B (σ p, q)) q (σ, t) = t

t (σ δ) = (t σ) δ t idΓ = t

(λt)σ = λ(t (σ p, q)) (App r s)σ = App (r σ) (s σ)
App (λt) r = t (idΓ , r) λ(App (t p) q) = t

t, t′ ∈ Term(Γ, {a}A)
t = t′ ∈ Term(Γ, {a}A)

(sing-eq-i)
t = t′ ∈ Term(Γ, {a}A)

t = t′ ∈ Term(Γ,A)
(sing-eq-el)

Notation. We denote with |Γ | the length of the context Γ ; and Γ !i is the pro-
jection of the i-th component of Γ , for 0 6 i < |Γ |. We say ∆ 6i Γ if ∆ ` pi : Γ ;
where pi is the i-fold composition of p with itself. We denote with Terms the
set of words freely generated using symbols in SS ∪ ST ∪ SE . We write t ≡T t′

for denoting syntactically equality of t and t′ in T ⊆ Terms. We call A the tag
of {a}A.

Definition 1 (Neutral terms, and normal forms).

Ne 3 k ::= q | qpi+1 | App k v

Nf 3 v, V,W ::= U | FunV W | {v}V | λv | k

Remark 1 (Weakening of judgements). Let ∆ 6i Γ , Γ ` A = A′, and Γ ` t =
t′ : A; then ∆ ` A pi = A′ pi, and ∆ ` t pi = t′ pi : A pi.

Remark 2 (Syntactic validity).

1. If Γ ` t : A, then Γ ` A.
2. If Γ ` t = t′ : A, then both Γ ` t : A, and Γ ` t′ : A.
3. If Γ ` A = A′, then both Γ ` A, and Γ ` A′.

Lemma 1 (Inversion of types).

1. If Γ ` FunA B, then Γ ` A, and Γ.A ` B.
2. If Γ ` {a}A, then Γ ` A, and Γ ` a : A.
3. If Γ ` k, then Γ ` k : U.

Lemma 2 (Inversion of typing).

1. If Γ ` FunA′B′ : A, then Γ ` A′ : U, and also Γ.A′ ` B′ : U;
2. If Γ ` {b}B : A, then Γ ` B : U, and also Γ ` b : B;
3. If Γ ` λt : A, then Γ.A′ ` t : B′.
4. If Γ ` t : {a}A, then Γ ` t : A, and Γ ` t = a : A.
5. If Γ ` q pi : A, then either Γ ` A = (Γ !i) pi+1; or Γ ` A = {a}A′ , and

Γ ` a = q pi : A′.

Calculus with Proof-Irrelevance. Our treatment of proof-irrelevance is based
on [9, 20]. The motivation for a canonical element witnessing the existence of a
proof is to keep the modularity of the algorithm for deciding equality; but since
its introduction breaks completeness of type-checking, we consider two calculi:
the proof (programming) developments are done in a calculus without prf-tm,
and the type-checking is performed in a calculus with it. We show then that this
is a conservative extension.

Introductory rules.

A ∈ Type(Γ)
Prf A ∈ Type(Γ)

(prf-f)
a ∈ Term(Γ,A)

[a] ∈ Term(Γ, Prf A)
(prf-i)

t ∈ Term(Γ, A)
O ∈ Term(Γ, Prf A)

(prf-tm)

A ∈ Type(Γ) t, t′ ∈ Term(Γ,Prf A)
t = t′ ∈ Term(Γ,Prf A)

(prf-eq)

B ∈ Type(Γ) b ∈ Term(Γ.A,B p) t ∈ Term(Γ, Prf A)

b whereB t ∈ Term(Γ,Prf B)
(prf-el)

(Prf A) δ = Prf (Aδ) [t] δ = [t δ] O δ = O

(b whereB t) δ = b (δ p, q) whereB δ (t δ) bwhereB [t] = [b (id, t)]

Lemma 3 (Inversion).

1. If Γ ` [t] : A, then Γ ` A = Prf A′ and Γ ` t′ : A′.
2. If Γ ` b whereB t : A, then Γ ` A = Prf B, and Γ ` t : Prf A′, and Γ.A′ ` b :

B p.

As is expected we have now more normal forms, and more neutral terms:

Ne 3 k ::= . . . | v whereV k

Nf 3 v, V ::= . . . | Prf V | [v] | O

Now we prove that the calculus with prf-tm is a conservative extension of
the one without it. We decorate the turnstile, and the equality symbol with ∗

for referring to judgements in the extended calculus.

Definition 2. A term t′ is called a lifting of a term t, if all the occurrences of
O in t have been replaced by terms s0, . . . , sn−1, and O does not occur in any si.
We extend this definition to substitutions, contexts, and equality judgements.

If Γ ′ is a lifting of Γ , and Γ =∗ Γ ′, and also Γ ′ ` then we say that Γ ′ is a
good-lifting of Γ . We extend the definition of good-lifting to the others kinds of
judgement.

Lemma 4. Let Γ `∗ J , then there exists a good-lifting Γ ′ ` J ′; moreover for
any other good-lifting Γ ′′ ` J ′′ of Γ `∗ J , we have Γ ′ = Γ ′′, and Γ ′ ` J ′ = J ′′.

Corollary 1. The calculus `∗ is a conservative extension of `.

3 Semantics

In this section we define a PER model of the calculus presented in the previous
section. The model is used to define a normalisation function later.

3.1 PER semantics

Definition 3. We define a domain D = O⊕Var⊥ ⊕ [D → D]⊕D ×D ⊕D ×
D ⊕ O ⊕ D × [D → D] ⊕ D × D, where Var is a denumerable set of variables
(as usual we write xi and assume xi 6= xj if i 6= j, for i, j ∈ N), E⊥ = E ∪ {⊥}
is lifting, O = {>}⊥ is the Sierpinski space, [D → D] is the set of continuous
functions from D to D, ⊕ is the coalesced sum, and D × D is the Cartesian
product of D [6].

An element of D which is not ⊥ can be of one of the forms:

> (d, d′) for d, d′ ∈ D

Var xi U for xi ∈ Var
Lam f Fun d f for d ∈ D, and f ∈ [D → D]
App d d′ Sing d d′ for d, d′ ∈ D .

We define application · : [D ×D → D] and the projections p, q : [D → D] by

f · d = if f = Lam f ′ then f ′ d else ⊥,
p d = if d = (d1, d2) then d1 else ⊥,
q d = if d = (d1, d2) then d2 else ⊥.

We define a partial function R : N → D → Terms which reifies elements
from the model into terms; this function is similar to the read-back function of
Gregoire and Leroy’s [16].

Definition 4 (Read-back function).

Rj U = U
Rj (FunX F) = Fun (Rj X)

(Rj+1 (F (Var xj)))
Rj (Sing dX) = {Rj d}Rj X

Rj (App d d′) = App (Rj d) (Rj d′)
Rj (Lam f) = λ(Rj+1 (f(Var xj)))

Rj (Var xi) =

{
q if j 6 i

q pj−i−1 if j > i

Partial Equivalence Relations. A partial equivalence relation (PER) over a set
D is a binary relation over D which is symmetric and transitive.

If R is a PER over D, and (d, d′) ∈ R then it is clear that (d, d) ∈ R. We
define dom(R) = {d ∈ D | (d, d) ∈ R} . If (d, d′) ∈ R, sometimes we will write
d = d′ ∈ R, and d ∈ R if d ∈ dom(R). We denote with PER(D) the set of all
PERs over D.

If R ∈ PER(D) and F : dom(R) → PER(D), we say that F is a family of
PERs indexed by R iff for all d = d′ ∈ R, F d = F d′. If F is a family indexed
by R, we write F : R→ PER(D).

We define two binary relations over D: one for neutral terms and the other
for normal forms.

d = d′ ∈ Ne : ⇐⇒ ∀i ∈ N. Ri d and Ri d′ are defined and Ri d ≡Ne Ri d′

d = d′ ∈ Nf : ⇐⇒ ∀i ∈ N. Ri d and Ri d′ are defined and Ri d ≡Nf Ri d′

The following definitions are standard [8, 14] (except for 1); they will be used
in the definition of the model.

Definition 5. Let X ∈ PER(D) and F ∈ X → PER(D).

– 1 = {(>,>)};
–

∐ X F = {(d, d′) | p d = p d′ ∈ X and q d = q d′ ∈ F (p d)};
–

∏ X F = {(f, f ′) | f · d = f ′ · d′ ∈ F d, for all d = d′ ∈ X};
– {{d}}X = {(e, e′) | d = e ∈ X and d = e′ ∈ X}.

We define U , T ∈ PER(D) and [] : dom(T) → PER(D) using Dybjer’s
schema of inductive-recursive definition [15]. We show then that [] is a family
of PERs over D.

Definition 6 (PER model).

– Inductive definition of U ∈ PER(D).
• Ne ⊆ U ,
• if X = X ′ ∈ U and d = d′ ∈ [X], then Sing dX = Sing d′X ′ ∈ U ,
• if X = X ′ ∈ U and for all d = d′ ∈ [X], F d = F ′ d′ ∈ U then

FunX F = FunX ′ F ′ ∈ U .
– Inductive definition of T ∈ PER(D).

• U ⊂ T ,
• U = U ∈ T ,
• if X = X ′ ∈ T , and d = d′ ∈ [X] then Sing dX = Sing d′X ′ ∈ T ,
• if X = X ′ ∈ T , and for all d = d′ ∈ [X], F d = F ′ d′ ∈ T , then

FunX F = FunX ′ F ′ ∈ T .
– Recursive definition of [] ∈ dom(T) → PER(D).

• [U] = U ,
• [Sing d X] = {{d}}[X],
• [FunX F] =

∏
[X] (d 7→ [F d]),

• [d] = Ne, in all other cases.

Lemma 5. The function [] is a family of PER(D) over T .

3.2 Normalisation and η-Expansion in the Model

The usual way to define NbE [7] is to introduce a reification function which maps
elements from the model into normal forms; and a function mapping neutral
terms to elements of the model (the former function is called the inverse of the
evaluation function, and the later “make self evaluating” in [10]). A tricky point
of the algorithm is to find a new variable when reifying functions as abstractions.

In this work we do not need to worry about variable capturing when reify-
ing, because we can define functions corresponding to reification, and lifting of
neutrals in the model avoiding completely the need to deal with fresh variables.

Definition 7. The partial functions ↑ , ↓ : D → D → D and ⇓ : D → D are
given as follows:

↑Fun X F d = Lam (e 7→ ↑F e App d ↓X e) ↓Fun X F d = Lam (e 7→ ↓F ↑X e (d · ↑X e))

↑Sing d X e = d ↓Sing d X e = ↓X d

↑U d = d ↓U d = ⇓ d

↑d e = e ↓d e = e, in all other cases.

⇓(FunX F) = Fun (⇓X) (d 7→ ⇓(F ↑X d)) ⇓U = U

⇓(Sing dX) = Sing (↓X d) (⇓X) ⇓ d = d, in all other cases.

Lemma 6 (Characterisation of ↑, ↓, and ⇓). Let X = X ′ ∈ T , then

1. if k = k′ ∈ Ne then ↑X k = ↑X′ k′ ∈ [X];
2. if d = d′ ∈ [X], then ↓X d = ↓X′ d′ ∈ Nf ;
3. and also ⇓X = ⇓X ′ ∈ Nf .

Definition 8 (Semantics).

Contexts.

[[¦]] = 1 [[Γ.A]] =
∐

[[Γ]] (d 7→ [[[A]]d])

Substitutions.

[[¦]]d = > [[id]]d = d

[[(γ, t)]]d = ([[γ]]d, [[t]]d) [[p]]d = p d

[[γ δ]]d = [[γ]]([[δ]]d)

Terms (and types).

[[U]]d = U [[FunAB]]d = Fun ([[A]]d) (e 7→ [[B]](d, e))
[[{a}A]]d = Sing ([[a]]d) ([[A]]d) [[App t u]]d = [[t]]d · [[u]]d

[[λt]]d = Lam (d′ 7→ [[t]](d, d′)) [[t γ]]d = [[t]]([[γ]]d)
[[q]]d = q d

Definition 9 (Validity).

1. ¦ ² iff true
2. Γ.A ² iff Γ ² A
3. Γ ² A iff Γ ² A = A
4. Γ ² A = A′ iff Γ ² and for all d = d′ ∈ [[Γ]], [[A]]d = [[A′]]d′ ∈ T
5. Γ ² t : A iff Γ ² t = t : A
6. Γ ² t = t′ : A iff Γ ² A and for all d = d′ ∈ [[Γ]], [[t]]d = [[t′]]d′ ∈ [[[A]]d]
7. Γ ² σ : ∆ iff Γ ² σ = σ : ∆
8. Γ ² σ = σ′ : ∆ iff Γ ², ∆ ², and for all d = d′ ∈ [[Γ]], [[σ]]d = [[σ′]]d′ ∈ [[∆]].

Theorem 1 (Soundness of the Judgements). if Γ ` J , then Γ ² J .

Proof. By induction on Γ ` J .

Theorem 2 (Completeness of NbE). If ` t = t′ : A, then ↓[[A]] [[t]] =
↓[[A]] [[t′]] ∈ Nf .

Proof. By Thm. 1 we have [[t]] = [[t′]] ∈ [[[A]]] and we conclude by Lem. 6.

Calculus with Proof-Irrelevance. We extend all the definition concerning
the construction of the model;

D = . . .⊕D ⊕O ;

the new inhabitants will be written as Prf d, and ?, respectively. The read-back
function is extended by the equations Rj (Prf d) = Prf (Rj d) and Rj ? = O. We
add a new clause in the definition of T ,

if X = X ′ ∈ T , then Prf X = Prf X ′ ∈ T , and [Prf X] = {(?, ?)} .

The definitions of normalisation and expansion are extended for Prf X,

↑Prf X d = ? ↓Prf X d = ? ⇓Prf X = Prf ⇓X .

The semantic equations for the new constructions are

[[Prf A]]d = Prf [[A]]d [[[a]]]d = ?

[[bwhereB t]]d = ? [[O]]d = ? .

Remark 3. All of lemmata 5, 6, and theorems 1, and 2 are valid for the calculus
with proof-irrelevance.

4 Logical relations

In order to prove soundness of our normalisation algorithm we define logical
relations [24] between types and elements in the domain of T , and between
terms and elements in the domain of the PER corresponding to elements of T .

Definition 10 (Logical relations). The relations Γ ` A ∼ X ∈ T (ternary)
and Γ ` t : A ∼ d ∈ [X] are defined simultaneously by induction on X ∈ T .

– Neutral types: X ∈ Ne.
• Γ ` A ∼ X ∈ T iff for all ∆ 6i Γ , ∆ ` A pi = R|∆| ⇓X.
• Γ ` t : A ∼ d ∈ [X] iff Γ ` A ∼ X ∈ T , and for all ∆ 6i Γ ,

∆ ` t pi = R|∆| ↓X d : A pi.
– Universe X = U.

• Γ ` A ∼ U ∈ T iff Γ ` A = U.
• Γ ` t : A ∼ X ∈ [U] iff Γ ` A = U, and Γ ` t ∼ X ∈ T .

– Singletons.
• Γ ` A ∼ Sing dX ∈ T iff Γ ` A = {a}A′ for some A′, a, and Γ ` a :

A′ ∼ d ∈ [X].
• Γ ` t : A ∼ d′ ∈ [Sing dX] iff Γ ` A = {a}A′ for some A′, a, such that

Γ ` t : A′ ∼ d ∈ [X], and Γ ` A′ ∼ X ∈ T .
– Function spaces.

• Γ ` A ∼ FunX F ∈ T iff Γ ` A = FunA′B, and Γ ` A′ ∼ X ∈ T , and
∆ ` B (pi, s) ∼ F d ∈ T for all ∆ 6i Γ and ∆ ` s : A′ pi ∼ d ∈ [X].

• Γ ` t : A ∼ f ∈ [FunX F] iff Γ ` A = FunA′B, Γ ` A′ ∼ X,
and ∆ ` App (t pi) s : B (pi, s) ∼ f · d ∈ [F d] for all ∆ 6i Γ and
∆ ` s : A′ pi ∼ d ∈ [X].

The following lemmata show that the logical relations are preserved by judge-
mental equality, weakening of the judgement, and the equalities on the corre-
sponding PERs.

Lemma 7. Let Γ ` A = A′, Γ ` t = t′ : A, Γ ` A ∼ X ∈ T , and Γ ` t : A ∼
d ∈ [X]; then Γ ` A′ ∼ X ∈ T , and Γ ` t′ : A′ ∼ d ∈ [X].

Lemma 8 (Monotonicity). Let ∆ 6i Γ , then

1. if Γ ` A ∼ X ∈ T , then ∆ ` A pi ∼ X ∈ T ; and
2. if Γ ` t : A ∼ d ∈ [X], then ∆ ` t pi : A pi ∼ d ∈ [X].

Lemma 9. Let Γ ` A ∼ X ∈ T and Γ ` t : A ∼ d ∈ [X], then

1. if X = X ′ ∈ T , then Γ ` A ∼ X ′ ∈ T ; and
2. if d = d′ ∈ [X], then Γ ` t : A ∼ d′ ∈ [X].

The following lemma plays a key role in the proof of soundness. It proves
that if a term is related to some element in (some PER), then it is convertible
to the reification of the corresponding element in the PER of normal forms.

Lemma 10. Let Γ ` A ∼ X ∈ T , Γ ` t : A ∼ d ∈ [X], and k ∈ Ne, then

1. Γ ` A = R|Γ | ⇓X,
2. Γ ` t = R|Γ | ↓X d : A; and
3. if for all ∆ 6i Γ , ∆ ` t pi = R|∆| k : A pi, then Γ ` t : A ∼ ↑X k ∈ [X].

In order to finish the proof of soundness we have to prove that each well-
typed term (and each well-formed type) is logically related to its denotation;
with that aim we extend the definition of logical relations to substitutions and
prove the fundamental theorem of logical relations.

Definition 11 (Logical relation for substitutions).

– Γ ` σ : ¦ ∼ d ∈ 1.
– Γ ` (σ, t) : ∆.A ∼ (d, d′) ∈ ∐ X (d 7→ [F d]) iff Γ ` σ : ∆ ∼ d ∈ X ,

Γ ` Aσ ∼ F d ∈ T , and Γ ` t : Aσ ∼ d′ ∈ [F d].

After proving the counterparts of 7, 8 and 9 for substitutions, we can proceed
with the proof of the main theorem of logical relations.

Theorem 3 (Fundamental theorem of logical relations). Let ∆ ` δ : Γ ∼
d ∈ [[Γ]].

1. If Γ ` A, then ∆ ` Aδ ∼ [[A]]d ∈ T ;
2. if Γ ` t : A, then ∆ ` t δ : Aδ ∼ [[t]]d ∈ [[[A]]d]; and
3. if Γ ` γ : Θ then ∆ ` γ δ : Θ ∼ [[γ]]d ∈ [[Θ]].

We define for each context Γ an element ρΓ of D, that is, by construction,
logically related to idΓ . This environment will be used to define the normalisation
function; also notice that if we instantiate Thm. 3 with ρΓ , then a well-typed
term under Γ will be logically related to its denotation.

Definition 12. Let ρΓ = PΓ >, where P¦ d = d and PΓ.A d = (d′, ↑[[A]]d′ Var x|Γ |)
with d′ = PΓ d. Then Γ ` idΓ : Γ ∼ ρΓ ∈ [[Γ]] for Γ ∈ Ctx.

Definition 13 (Normalisation algorithm). Let Γ ` A, and Γ ` t : A.

nbeΓ (A) = R|Γ | ⇓[[A]]ρΓ

nbeA
Γ (t) = R|Γ | ↓[[A]]ρΓ

[[t]]ρΓ

The first point of soundness is a direct consequence of Thm. 3 and Lem. 7;
and the second point is obtained using Lem. 10.

Corollary 2 (Soundness of NbE). Let Γ ` A, and Γ ` t : A, then

1. Γ ` A ∼ [[A]]ρΓ ∈ T , and Γ ` t : A ∼ [[t]]ρΓ ∈ [[[A]]ρΓ]; and
2. Γ ` A = nbe(A), and Γ ` t = nbe(t) : A.

Remark 4. By expanding the definitions, we easily check

1. nbeΓ (FunAB) = Fun (nbeΓ (A)) (nbeΓ.A(B)), and
2. nbeΓ ({a}A) = {nbeA

Γ (a)}nbeΓ (A).

Corollary 3. If Γ ` A, and Γ ` A′, then we can decide Γ ` A = A′. Also if
Γ ` t : A, and Γ ` t′ : A, we can decide Γ ` t = t′ : A.

Corollary 4 (Injectivity of Fun and of { }). If Γ ` FunAB = FunA′B′,
then Γ ` A = A′, and Γ.A ` B = B′. Also Γ ` {t}A = {t′}A′ , then Γ ` A = A′,
and Γ ` t = t′ : A.

Calculus with Proof-Irrelevance. We add the corresponding cases in the
definition of logical relations,

Γ ` A ∼ Prf X ∈ T , iff Γ ` A = Prf A′, and Γ ` A′ ∼ X ∈ T ; and
Γ ` t : A ∼ d ∈ [Prf X], iff Γ ` A ∼ Prf X ∈ T .

Remark 5. All the lemmata 7, 8, 9, 10, theorem 3, and remarks 2, 4 are still
valid. Moreover we also have nbe(Prf A) = Prf (nbe(A)).

5 Type-checking algorithm

In this section we define a bi-directional type-checking algorithm for terms in
normal form, and a type-inference algorithm for neutral terms. We prove its
correctness and completeness.

The algorithm is similar to previous ones [13, 3]. The only difference is due
to the presence of singleton types. We deal with this by η-normalising the type,
and considering first if the normalised type is a singleton (side-condition in type-
checking of neutrals); in that case we check that the term is typeable with the
tag of the singleton type, and that it is equal to the term of the singleton.

We stress the importance of having a normalisation function with the prop-
erty stated in Rem. 4, and also to have decidability of equality. In fact, it is
enough to have a function nbe() such that:

1. nbe({a}A) = {nbe(a)}nbe(A), and nbe(FunAB) = Funnbe(A)nbe(B) ;
2. nbeΓ (A) = nbeΓ (B) if and only if Γ ` A = B, and nbeA

Γ (t) = nbeA
Γ (t′), if

and only if Γ ` t = t′ : A.

In this section, let V, V ′,W, v, v′, w ∈ Nf , and k ∈ Ne. We define a function
to get the deepest tag of a singleton, that is essentially the same as in [8],

V =

{
W if V ≡ {w}W

V otherwise.

The predicates for type-checking are defined mutually inductively, together with
the function for inferring types.

Definition 14 (Type-checking and type-inference).

Types Γ ⇐ V . We presuppose Γ `.

Γ ⇐ U

Γ ⇐ V Γ.V ⇐ W

Γ ⇐ FunV W

Γ ⇐ V Γ ` v ⇐ nbe(V)
Γ ⇐ {v}V

Γ ` k ⇐ U

Γ ⇐ k

Terms Γ ` v ⇐ V . We presuppose Γ ` V , and V in η-long normal form with
respect to Γ .

Γ ` V ⇐ U Γ.V ` W ⇐ U

Γ ` FunV W ⇐ U

Γ.V ` v ⇐ W

Γ ` λv ⇐ FunV W

Γ ` V ⇐ U Γ ` v ⇐ nbe(V)
Γ ` {v}V ⇐ U

Γ ` v ⇐ V ′ Γ ` v′ = v : V ′

Γ ` v ⇐ {v′}V ′

Γ ` k ⇒ V ′ Γ ` V ′ = V

Γ ` k ⇐ V
V 6≡ {w}W

Type inference Γ ` k ⇒ V . We presuppose Γ `.

Γ.Ai. . . . A0 ` q pi ⇒ nbe(Ai pi+1)
Γ ` k ⇒ V Γ ` V = FunV ′W Γ ` v ⇐ V ′

Γ ` App k v ⇒ nbe(W (id, v))

Theorem 4 (Correctness of type-checking).

1. If Γ ⇐ V , then Γ ` V .
2. If Γ ` v ⇐ V , then Γ ` v : V .
3. If Γ ` k ⇒ V , then Γ ` k : V .

Proof. By simultaneous induction on the type-checking judgement.

In order to prove completeness we define a lexicographic order on pairs of
terms and types, in this way we can make induction over the term, and the type.

Definition 15. Let v, v′ ∈ Nf , and A,A′ ∈ Type(Γ), then (v, A) ≺ (v′, A′) is
the lexicographic order on Nf × Type(Γ). The corresponding orders are v ≺ v′

iff v is an immediate sub-term of v′; and A ≺Γ A′, iff nbe(A′) ≡ {w}nbe(A).

Theorem 5 (Completeness of type-checking).

1. If Γ ` V , then Γ ⇐ V .
2. If Γ ` v : A, then Γ ` v ⇐ nbe(A).
3. If Γ ` k : A, and Γ ` k ⇒ V ′, then Γ ` nbe(A) = V ′.

Proof. By simultaneous induction on V , and well-founded induction on (v, A).

Calculus with Proof-Irrelevance.

Definition 16 (Type-checking and type-inference).

Γ ⇐ V

Γ ⇐ Prf V

Γ ` v ⇐ V

Γ ` [v] ⇐ Prf V

Γ ` k ⇒ Prf V ′ Γ.V ′ ` v ⇐ nbe(V p)

Γ ` v whereV k ⇒ Prf V

Remark 6. Thm. 4 is still valid for the calculus with prf-tm. Moreover, Thm. 5
is valid if we add the axiom Γ ` O ⇐ Prf V.

Remark 7. Type checking happens always before normalisation. If the term to
type-check does not contain O, the case Γ ` O ⇐ Prf V will never be reached—
although occurrences of O may be created by normalisation.

Corollary 5. The type-checking algorithm is correct (by Cor. 1) and complete
(by last remark) with respect to the calculus without prf-tm.

6 Conclusion

The main contributions of the paper are the definition of a correct and complete
type-checking algorithm, and the simplification of the NbE algorithm for a cal-
culus with singletons, one universe, and proof-irrelevant types. The type-checker
is based on the NbE algorithm which is used to decide equality and to prove the
injectivity of the type constructors. We emphasise that the type-checking algo-
rithm is modular with respect to the normalisation algorithm. All the results
can be extended to a calculus with annotated lambda abstractions, yielding a
type-checking algorithm for terms not necessarily in normal forms.

The full version [5] extends this work by sigma-types and data types and an
implementation of the type checker in Haskell.

References

1. Abel, A., Aehlig, K., Dybjer, P.: Normalization by evaluation for Martin-Löf type
theory with one universe. In: Fiore, M., ed., Proc. of the 23rd Conf. on the Math-
ematical Foundations of Programming Semantics (MFPS XXIII), volume 173 of
Electr. Notes in Theor. Comp. Sci. Elsevier (2007), 17–39

2. Abel, A., Coquand, T., Dybjer, P.: Normalization by evaluation for Martin-Löf
Type Theory with typed equality judgements. In: Proc. of the 22nd IEEE Symp.
on Logic in Computer Science (LICS 2007). IEEE Computer Soc. Press (2007),
3–12

3. Abel, A., Coquand, T., Dybjer, P.: On the algebraic foundation of proof assistants
for intuitionistic type theory. In: Garrigue, J., Hermenegildo, M. V., eds., Proc. of
the 9th Int. Symp. on Functional and Logic Programming, FLOPS 2008, volume
4989 of Lect. Notes in Comput. Sci. Springer-Verlag (2008), 3–13

4. Abel, A., Coquand, T., Dybjer, P.: Verifying a semantic βη-conversion test for
Martin-Löf type theory. volume 5133 of Lect. Notes in Comput. Sci. Springer-
Verlag (2008), 29–56

5. Abel, A., Coquand, T., Pagano, M.: A modular type-checking algorithm for type
theory with singleton types and proof irrelevance (full version) (2009). Available
on http://www.tcs.ifi.lmu.de/˜abel/singleton.pdf

6. Abramsky, S., Jung, A.: Handbook of Logic in Computer Science, chapter Domain
Theory. Oxford University Press (1994), 1–168

7. Aehlig, K., Joachimski, F.: Operational aspects of untyped normalization by eval-
uation. Math. Struct. in Comput. Sci. 14 (2004) 587–611

8. Aspinall, D.: Subtyping with singleton types. In: Pacholski, L., Tiuryn, J., eds.,
Computer Science Logic, 8th Int. Wksh., CSL ’94, volume 933 of Lect. Notes in
Comput. Sci. Springer-Verlag (1995), 1–15

9. Awodey, S., Bauer, A.: Propositions as [Types]. J. Log. Comput. 14 (2004) 447–471
10. Berger, U., Schwichtenberg, H.: An inverse to the evaluation functional for typed λ-

calculus. In: Proc. of the 6th IEEE Symp. on Logic in Computer Science (LICS’91).
IEEE Computer Soc. Press (1991), 203–211

11. Bruijn, N. G. d.: Some extensions of Automath : the AUT-4 family (1994)
12. Cartmell, J.: Generalised algebraic theories and contextual categories. Annals of

Pure and Applied Logic (1986) 32–209
13. Coquand, T.: An algorithm for type-checking dependent types. Science of Com-

puter Programming 26 (1996) 167–177
14. Coquand, T., Pollack, R., Takeyama, M.: A logical framework with dependently

typed records. Fundam. Inform. 65 (2005) 113–134
15. Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions

in type theory. The Journal of Symbolic Logic 65 (2000) 525–549
16. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: Proc.

of the 7th ACM SIGPLAN Int. Conf. on Functional Programming (ICFP ’02),
volume 37 of SIGPLAN Notices. ACM Press (2002), 235–246

17. Harper, R., Honsell, F., Plotkin, G.: A Framework for Defining Logics. Journal of
the Association of Computing Machinery 40 (1993) 143–184

18. INRIA: The Coq Proof Assistant, Version 8.1. INRIA (2007). http://coq.inria.fr/
19. Lee, D. K., Crary, K., Harper, R.: Towards a mechanized metatheory of Standard

ML. In: Hofmann, M., Felleisen, M., eds., Proc. of the 34th ACM Symp. on
Principles of Programming Languages, POPL 2007. ACM Press (2007), 173–184

20. Maillard, O.-A.: Proof-irrelevance, strong-normalisation in Type-Theory and PER.
Technical report, Chalmers Institute of Technology (2006)

21. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)
22. Martin-Löf, P.: Normalization by evaluation and by the method of computability

(2004). Talk at JAIST, Japan Advanced Institute of Science and Technology,
Kanazawa

23. McBride, C.: Epigram: Practical programming with dependent types. In: Vene,
V., Uustalu, T., eds., 5th Int. School on Advanced Functional Programming, AFP
2004, Revised Lectures, volume 3622 of Lect. Notes in Comput. Sci. Springer-Verlag
(2005), 130–170

24. Mitchell, J. C., Moggi, E.: Kripke-Style models for typed lambda calculus. In:
LICS (1987), 303–314

25. Nordström, B., Petersson, K., Smith, J. M.: Programming in Martin Löf’s Type
Theory: An Introduction. Clarendon Press, Oxford (1990)

26. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, Göteborg, Sweden (2007)

27. Shankar, N., Owre, S.: Principles and Pragmatics of Subtyping in PVS. In: WADT
’99: Selected papers from the 14th International Workshop on Recent Trends in
Algebraic Development Techniques. Springer-Verlag, London, UK (2000), 37–52

28. Sozeau, M.: Subset coercions in Coq. In: Altenkirch, T., McBride, C., eds., Types
for Proofs and Programs, Int. Wksh., TYPES 2006, volume 4502 of Lect. Notes in
Comput. Sci. Springer-Verlag (2007), 237–252

29. Stone, C. A., Harper, R.: Extensional equivalence and singleton types. ACM Trans.
Comput. Logic 7 (2006) 676–722

30. Werner, B.: On the strength of proof-irrelevant type theories. Logical Meth. in
Comput. Sci. 4 (2008)

