Resourceful Dependent Types

Andreas Abel¹

¹Department of Computer Science and Engineering Chalmers and Gothenburg University, Sweden

Types for Proofs and Programs TYPES 2018 University Do Minho, Braga, Portugal 20 June 2018

Martin Hofmann's Resourceful Types

• CSL 1997

A mixed modal/linear lambda calculus with applications to Bellantoni-Cook safe recursion

• ESOP 2000

A type system for bounded space and functional in-place update

• POPL 2003, with S. Jost

Static prediction of heap space usage for first-order functional programs

• Projects: MRG, Embounded, ...

Martin Hofmann's Breakthroughs on Dependent Types

• LiCS 1994, with T. Streicher

The Groupoid Model Refutes Uniqueness of Identity Proofs

• TYPES 1995

Conservativity of Equality Reflection over Intensional Type Theory

• Distinguished dissertation 1997

Extensional constructs in intensional type theory Syntax and semantics of dependent types

What is a linear function?

• Which functions should be considered *linear*?

 $\begin{array}{rcl} \mathsf{dup} & : & \mathbb{N} \to \mathbb{N} \times \mathbb{N} \\ \mathsf{dup} & n & = & (n,n) \end{array}$

• Is dup linear?

イロト 不得下 イヨト イヨト 二日

Linear λ -definability

- \bullet Consider a universe of types Ty with ([_]) : Ty \rightarrow Set.
- A function f : (|A|) is X-definable if there exists a closed term ⊢ t : A in calculus X such that (|t|) = f.
- "dup linear" depends on \mathcal{X} :
 - dup not definable in linear STLC.

 $\begin{array}{rcl} \mathsf{dup} & : & \mathbb{N} \multimap \mathbb{N} \otimes \mathbb{N} \\ \mathsf{dup} & n & = & (n,?) \end{array}$

• dup definable in linear Gödel's T.

dup	:	$\mathbb{N}\multimap\mathbb{N}\otimes\mathbb{N}$
dup zero	=	(zero, zero)
dup (suc n)	=	$suc_2(dup n)$
suc ₂	1	$\mathbb{N}\otimes\mathbb{N}\multimap\mathbb{N}\otimes\mathbb{N}$
$suc_2(n,m)$	=	(suc <i>n</i> , suc <i>m</i>)

イロト イポト イヨト イヨト 二日

A Free Theorem from linear typing

```
Theorem (Bob Atkey)
```

Given an abstract type K of "keys" with operation

```
compare : (K \otimes K) \rightarrow (Bool \otimes K \otimes K)
```

and a program (i.e., closed term)

f : List $K \rightarrow \text{List } K$

then f is a list permutation.

Proof formalized in Agda.
https://github.com/bobatkey/sorting-types.

Proof of the free theorem

- Category \mathbb{W} of lists over K and permutations $w \hookrightarrow w'$.
- W symmetric monoidal: empty list 1, concatenation ⊗.
- Logical relation $\models_A \subseteq \mathbb{W} \times A$ natural in \mathbb{W} (i.e., closed under \hookrightarrow).
- $w \models_A a$: value a can be constructed exactly from the resources w.

$$w \models_{1} () \quad \text{iff } w = 1$$

$$w \models_{A_{1} \oplus A_{2}} \text{in}_{i}(a) \quad \text{iff } w \models_{A_{i}} a$$

$$w \models_{A \otimes B} (a, b) \quad \text{iff } w \hookrightarrow w_{1} \otimes w_{2} \text{ and } w_{1} \models_{A} a \text{ and } w_{2} \models_{B} b$$

for some w_{1}, w_{2}

$$w \models_{A \multimap B} f \quad \text{iff } w' \models_{A} a \text{ implies } w \otimes w' \models_{B} f(a) \text{ for all } w'$$

- Setting: $w \models_{\mathcal{K}} k$ iff w is singleton k.
- Remember: List $K = 1 \oplus (K \otimes \text{List } K)$.
- Consequence: $w \models_{\text{List } K} ks$ iff w is a permutation of ks.

Proof of the free theorem (ctd.)

- Fundamental theorem: If $\Gamma \vdash t : A$ and $w \models_{\Gamma} \sigma$ then $w \models_{A} t\sigma$.
- $\vdash f$: List $K \longrightarrow$ List K implies $\mathbb{1} \models_{\text{List } K \longrightarrow \text{List } K} f$
- With $ks \models_{\text{List } K} ks$ have $\mathbb{1} \otimes ks \models f(ks)$, thus $ks \hookrightarrow f(ks)$.

Remarks:

- We call the world w of (mandatorily) consumable resources support.
- Elements of *closed* types (not mentioning *K*) have *empty* support.
- Eliminators like if : Bool \multimap (A&A) \multimap A use additive conjunction &.

 $w \models_{A\&B} (a, b)$ iff $w \models_A a$ and $w \models_B b$

• Subexponentials for $n \in \mathbb{N}$ where $w^n = w \otimes \ldots \otimes w$ (*n* times):

$$w \models_{!^n A} a$$
 iff $w \hookrightarrow w_0^n$ and $w_0 \models_A a$ for some w_0
 $w \models_{?^n A} a$ iff $w^n \models_A a$

• Gives quadratic functions like $\lambda^2 x. (x, x) : !^2 A \multimap A \times A$. But affine?

Choice of resources

• Abstract K with e: K and $_\cdot_: K \multimap K \multimap K$ and boolean b: B:

 $\lambda^{\{0,1\}}x. \text{ if } b \text{ then } x \text{ else } e \qquad : \quad !^{\{0,1\}}K \multimap K$ $\lambda^{\{1,2\}}x. \text{ if } b \text{ then } x \text{ else } x \cdot x \quad : \quad !^{\{1,2\}}K \multimap K$

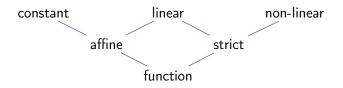
Imprecision in usage quantity of x.

- Want $!^q A \multimap B$ for $q \subseteq \mathbb{N}$.
- Extend \mathbb{W} by non-empty additive products $\&_{i \in q} A_i$ (infima).
- Morphisms w → w' now include dropping of alternatives A & B → A. In general, & i∈q Ai → & i∈q' Aj for q' ⊆ q.
- Exponent: $w^q = \bigotimes_{n \in q} w^n$.
- $w_1 \models_{!^q A} a$ iff $w_2 \models_A a$ for some w_2 with $w_1 \hookrightarrow w_2^q$.
- Ordinary $A \to B$ is $!^{\mathbb{N}}A \multimap B$.

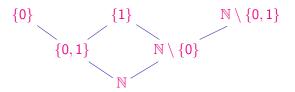
▲日▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー つくつ

Quantity lattice

• Function classification:



• Expressed as quantitative information $q \subseteq \mathbb{N}$ in $(!^q A) \multimap B$:



• Call this lattice Q.

Quantity semiring

• Composition:

 $f: !^{q}B \multimap C$ and $g: !^{r}A \multimap B$ implies $f \circ g: !^{q \cdot r}A \multimap C$

• Multiplication $q \cdot r = \{m \cdot n \mid m \in q, n \in r\}$ rounded up to be in Q.

• Choice:

 $u: !^{q}A$ and $v: !^{r}A$ implies if x then u else $v: !^{q+r}A$

• Addition $q + r = \{m + n \mid m \in q, n \in r\}$ rounded up to be in Q.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二頁 - のへで

Dependent linear types

• Multiplicative linear dependent function and pair types.

 $w \models_{\prod AF} f$ iff $w' \models_A a$ implies $w \otimes w' \models_{F(a)} f(a)$ for all w'

 $w \models_{\Sigma AF} (a, b)$ iff $w_1 \models_A a$ and $w_2 \models_{F(a)} b$ for some w_1, w_2 with $w \hookrightarrow w_1 \otimes w_2$

• Obvious, no?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣A@

Dependent linear types, what took you so long?

- 1972: Martin-Löf: (Dependent) Type Theory
- 1987: Girard: Linear logic
- (3 decades later)
- 2016: McBride: I got plenty of nuttin'
- 2018: Atkey: Syntax and Semantics of Quantitative Type Theory
- What took us so long?
- (Wrong) paradigms!?
 - Focus on structural rules (weakening, contraction)!?
 - Separate contexts for linear and intuitionistic assumptions!?
 - Same quantity context for term and types!?

 $\Gamma \vdash t : A \text{ implies } \Gamma \vdash A : \mathsf{Type}$

- Specific models of linearity !?
- Missing generalization to quantitative typing !?

Abel

> =

Quantitative type theory

• Syntax $(q, r \in Q)$:

t

$$, u, A, F ::= x | \lambda^q x. t | t.^q u | \Pi^{q,r} A | U_{\ell}$$

name (free variable) λ -abstraction (binder) with quantity application with quantity dependent function type (no binder) sort

• Usage calculation $|t| : Var \rightarrow Q$.

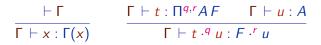
$$\begin{aligned} |x| &= \{x \mapsto 1\} \\ |t \cdot^{q} u| &= |t| + q|u| \\ |\lambda^{q} x. t| &= |t| \setminus x \\ |U_{\ell}| &= \emptyset \\ \mathsf{T}^{q,r} A F| &= |A| + |F| \end{aligned}$$

F

1

TYPES 2018 14 / 19

Quantitative typing



 $\frac{\Gamma, x: A \vdash t: F \cdot^{r} x}{\Gamma \vdash \lambda^{q} x. t: \Pi^{q, r} A F} \ q \supseteq |t|^{x}$

$$\frac{\vdash \Gamma}{\Gamma \vdash \mathsf{U}_{\ell}: \mathsf{U}_{\ell'}} \ \ell < \ell' \qquad \frac{\Gamma \vdash A: \mathsf{U}_{\ell} \quad \Gamma \vdash F: A \xrightarrow{r} \mathsf{U}_{\ell}}{\Gamma \vdash \Pi^{q,r} A F: \mathsf{U}_{\ell}}$$

 $\frac{\Gamma \vdash t : A \quad \Gamma \vdash A \le B}{\Gamma \vdash t : B}$

TYPES 2018 15 / 19

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣A@

Conclusions

- Quantitative typing generalizes linear typing.
- Practical uses:
 - Cardinality analysis in compilers: strictness, dead code.
 - Differential privacy (Reed Peirce ICFP 2010)
 - Erasure in type theory (EPTS).
 - Security typing!
- Thesis:

The generalization of linear typing to quantitative typing allows a smooth integration with dependent typing.

Related Work

- Simple types: abundance of quantitative type systems (TYPES 2015).
- McBride 2016: $Q = \{\{0\}, \{1\}, \mathbb{N}\}$. Usage in types does not count!
- Atkey 2018, QTT: Q semiring.
- Brady: implementing McBride/Atkey system in Idris 2.

イロト イポト イヨト イヨト 二日

Future work

- CwF-like model for my variant of QTT.
- Internalize free theorems from linearity?!
- Relate to other modal type theories.
- Add to Agda.

э

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Subtyping

$$\frac{\mathsf{\Gamma} \vdash \mathsf{A} = \mathsf{A}' : \mathsf{U}_{\ell}}{\mathsf{\Gamma} \vdash \mathsf{A} \leq \mathsf{A}'}$$

$$\frac{\vdash \mathsf{\Gamma}}{\mathsf{\Gamma} \vdash \mathsf{U}_{\ell} \leq \mathsf{U}_{\ell'}} \ \ell \leq \ell'$$

 $\frac{\Gamma \vdash A' \leq A \qquad \Gamma, \ x:A' \vdash F \cdot r \ x \leq F' \cdot r \ x}{\Gamma \vdash \Pi^{q,r} A F \leq \Pi^{q,r} A' F'}$

Abel

TYPES 2018 19 / 19