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Martin Hofmann’s Resourceful Types

CSL 1997
A mixed modal/linear lambda calculus with applications to

Bellantoni-Cook safe recursion
ESOP 2000

A type system for bounded space and functional in-place update
POPL 2003, with S. Jost

Static prediction of heap space usage for first-order functional
programs

Projects: MRG, Embounded, ...
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Martin Hofmann’s Breakthroughs on Dependent Types

LiCS 1994, with T. Streicher
The Groupoid Model Refutes Uniqueness of Identity Proofs

TYPES 1995
Conservativity of Equality Reflection over Intensional Type Theory

Distinguished dissertation 1997
Extensional constructs in intensional type theory

Syntax and semantics of dependent types
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What is a linear function?
Which functions should be considered linear?

dup : N→ N× N
dup n = (n, n)

Is dup linear?
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Linear λ-definability
Consider a universe of types Ty with L_M : Ty→ Set.
A function f : LAM is X -definable if there exists a closed term ` t : A
in calculus X such that LtM = f .
“dup linear” depends on X :

dup not definable in linear STLC.

dup : N ( N⊗ N
dup n = (n, ?)

dup definable in linear Gödel’s T.

dup : N ( N⊗ N
dup zero = (zero, zero)
dup (suc n) = suc2 (dup n)

suc2 : N⊗ N ( N⊗ N
suc2 (n,m) = (suc n, sucm)
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A Free Theorem from linear typing

Theorem (Bob Atkey)

Given an abstract type K of “keys” with operation

compare : (K ⊗ K ) ( (Bool⊗ K ⊗ K )

and a program (i.e., closed term)

f : ListK ( ListK

then f is a list permutation.

Proof formalized in Agda.
https://github.com/bobatkey/sorting-types.
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Proof of the free theorem
Category W of lists over K and permutations w ↪→ w ′.
W symmetric monoidal: empty list 1, concatenation ⊗.
Logical relation |=A ⊆W× A natural in W (i.e., closed under ↪→).
w |=A a: value a can be constructed exactly from the resources w .

w |=1 () iff w = 1

w |=A1⊕A2 ini (a) iff w |=Ai
a

w |=A⊗B (a, b) iff w ↪→ w1 ⊗ w2 and w1 |=A a and w2 |=B b
for some w1,w2

w |=A(B f iff w ′ |=A a implies w ⊗ w ′ |=B f (a) for all w ′

Setting: w |=K k iff w is singleton k .
Remember: ListK = 1⊕ (K ⊗ ListK ).
Consequence: w |=ListK ks iff w is a permutation of ks.
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Proof of the free theorem (ctd.)

Fundamental theorem: If Γ ` t : A and w |=Γ σ then w |=A tσ.
` f : ListK ( ListK implies 1 |=ListK(ListK f

With ks |=ListK ks have 1⊗ ks |= f (ks), thus ks ↪→ f (ks).

Remarks:
We call the world w of (mandatorily) consumable resources support.
Elements of closed types (not mentioning K ) have empty support.
Eliminators like if : Bool ( (A&A) ( A use additive conjunction &.

w |=A&B (a, b) iff w |=A a and w |=B b

Subexponentials for n ∈ N where wn = w ⊗ . . .⊗ w (n times):

w |=!nA a iff w ↪→ w0
n and w0 |=A a for some w0

w |=?nA a iff wn |=A a

Gives quadratic functions like λ2x . (x , x) : !2A ( A× A. But affine?
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Choice of resources
Abstract K with e : K and _·_ : K ( K ( K and boolean b : B :

λ{0,1}x . if b then x else e : !{0,1}K ( K

λ{1,2}x . if b then x else x · x : !{1,2}K ( K

Imprecision in usage quantity of x .
Want !qA ( B for q ⊆ N.
Extend W by non-empty additive products &i∈q Ai (infima).
Morphisms w ↪→ w ′ now include dropping of alternatives A&B ↪→ A.
In general, &i∈q Ai ↪→&j∈q′ Aj for q′ ⊆ q.
Exponent: wq = &n∈q w

n.
w1 |=!qA a iff w2 |=A a for some w2 with w1 ↪→ w2

q.
Ordinary A→ B is !NA ( B .
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Quantity lattice
Function classification:

constant linear non-linear

affine strict

function

Expressed as quantitative information q ⊆ N in (!qA) ( B :

{0} {1} N \ {0, 1}

{0, 1} N \ {0}

N

Call this lattice Q.
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Quantity semiring

Composition:

f : !qB ( C and g : !rA ( B implies f ◦ g : !q·rA ( C

Multiplication q · r = {m · n | m ∈ q, n ∈ r} rounded up to be in Q.

Choice:

u : !qA and v : !rA implies if x then u else v : !q+rA

Addition q + r = {m + n | m ∈ q, n ∈ r} rounded up to be in Q.
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Dependent linear types

Multiplicative linear dependent function and pair types.

w |=ΠAF f iff w ′ |=A a implies w ⊗ w ′ |=F (a) f (a) for all w ′

w |=ΣAF (a, b) iff w1 |=A a and w2 |=F (a) b for some w1,w2
with w ↪→ w1 ⊗ w2

Obvious, no?
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Dependent linear types, what took you so long?

1972: Martin-Löf: (Dependent) Type Theory
1987: Girard: Linear logic
(3 decades later)
2016: McBride: I got plenty of nuttin’
2018: Atkey: Syntax and Semantics of Quantitative Type Theory
What took us so long?
(Wrong) paradigms!?

Focus on structural rules (weakening, contraction)!?
Separate contexts for linear and intuitionistic assumptions!?
Same quantity context for term and types!?

Γ ` t : A implies Γ ` A : Type

Specific models of linearity!?
Missing generalization to quantitative typing!?
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Quantitative type theory

Syntax (q, r ∈ Q):

t, u,A,F ::= x name (free variable)
| λqx . t λ-abstraction (binder) with quantity
| t ·q u application with quantity
| Πq,rAF dependent function type (no binder)
| U` sort

Usage calculation |t| : Var→ Q .

|x | = {x 7→ 1}
|t ·q u| = |t|+ q|u|
|λqx . t| = |t| \ x
|U`| = ∅

|Πq,rAF | = |A|+ |F |
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Quantitative typing

` Γ

Γ ` x : Γ(x)

Γ ` t : Πq,rAF Γ ` u : A

Γ ` t ·q u : F ·r u

Γ, x :A ` t : F ·r x
Γ ` λqx . t : Πq,rAF

q ⊇ |t|x

` Γ

Γ ` U` : U`′
`<`′

Γ ` A : U` Γ ` F : A
r→ U`

Γ ` Πq,rAF : U`

Γ ` t : A Γ ` A ≤ B

Γ ` t : B
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Conclusions

Quantitative typing generalizes linear typing.
Practical uses:

Cardinality analysis in compilers: strictness, dead code.
Differential privacy (Reed Peirce ICFP 2010)
Erasure in type theory (EPTS).
Security typing!

Thesis:
The generalization of linear typing to quantitative typing
allows a smooth integration with dependent typing.
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Related Work

Simple types: abundance of quantitative type systems (TYPES 2015).
McBride 2016: Q = {{0}, {1},N}. Usage in types does not count!
Atkey 2018, QTT: Q semiring.
Brady: implementing McBride/Atkey system in Idris 2.
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Future work

CwF-like model for my variant of QTT.
Internalize free theorems from linearity?!
Relate to other modal type theories.
Add to Agda.
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Subtyping

Γ ` A = A′ : U`

Γ ` A ≤ A′

` Γ

Γ ` U` ≤ U`′
` ≤ `′

Γ ` A′ ≤ A Γ, x :A′ ` F ·r x ≤ F ′ ·r x
Γ ` Πq,rAF ≤ Πq,rA′ F ′
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