
Resourceful Dependent Types

Andreas Abel1

1Department of Computer Science and Engineering
Chalmers and Gothenburg University, Sweden

Types for Proofs and Programs
TYPES 2018

University Do Minho, Braga, Portugal
20 June 2018

Abel Resourceful Types TYPES 2018 1 / 19



Martin Hofmann’s Resourceful Types

CSL 1997
A mixed modal/linear lambda calculus with applications to

Bellantoni-Cook safe recursion
ESOP 2000

A type system for bounded space and functional in-place update
POPL 2003, with S. Jost

Static prediction of heap space usage for first-order functional
programs

Projects: MRG, Embounded, ...

Abel Resourceful Types TYPES 2018 2 / 19



Martin Hofmann’s Breakthroughs on Dependent Types

LiCS 1994, with T. Streicher
The Groupoid Model Refutes Uniqueness of Identity Proofs

TYPES 1995
Conservativity of Equality Reflection over Intensional Type Theory

Distinguished dissertation 1997
Extensional constructs in intensional type theory

Syntax and semantics of dependent types

Abel Resourceful Types TYPES 2018 3 / 19



What is a linear function?
Which functions should be considered linear?

dup : N→ N× N
dup n = (n, n)

Is dup linear?

Abel Resourceful Types TYPES 2018 4 / 19



Linear λ-definability
Consider a universe of types Ty with L_M : Ty→ Set.
A function f : LAM is X -definable if there exists a closed term ` t : A
in calculus X such that LtM = f .
“dup linear” depends on X :

dup not definable in linear STLC.

dup : N ( N⊗ N
dup n = (n, ?)

dup definable in linear Gödel’s T.

dup : N ( N⊗ N
dup zero = (zero, zero)
dup (suc n) = suc2 (dup n)

suc2 : N⊗ N ( N⊗ N
suc2 (n,m) = (suc n, sucm)

Abel Resourceful Types TYPES 2018 5 / 19



A Free Theorem from linear typing

Theorem (Bob Atkey)

Given an abstract type K of “keys” with operation

compare : (K ⊗ K ) ( (Bool⊗ K ⊗ K )

and a program (i.e., closed term)

f : ListK ( ListK

then f is a list permutation.

Proof formalized in Agda.
https://github.com/bobatkey/sorting-types.

Abel Resourceful Types TYPES 2018 6 / 19

https://github.com/bobatkey/sorting-types


Proof of the free theorem
Category W of lists over K and permutations w ↪→ w ′.
W symmetric monoidal: empty list 1, concatenation ⊗.
Logical relation |=A ⊆W× A natural in W (i.e., closed under ↪→).
w |=A a: value a can be constructed exactly from the resources w .

w |=1 () iff w = 1

w |=A1⊕A2 ini (a) iff w |=Ai
a

w |=A⊗B (a, b) iff w ↪→ w1 ⊗ w2 and w1 |=A a and w2 |=B b
for some w1,w2

w |=A(B f iff w ′ |=A a implies w ⊗ w ′ |=B f (a) for all w ′

Setting: w |=K k iff w is singleton k .
Remember: ListK = 1⊕ (K ⊗ ListK ).
Consequence: w |=ListK ks iff w is a permutation of ks.

Abel Resourceful Types TYPES 2018 7 / 19



Proof of the free theorem (ctd.)

Fundamental theorem: If Γ ` t : A and w |=Γ σ then w |=A tσ.
` f : ListK ( ListK implies 1 |=ListK(ListK f

With ks |=ListK ks have 1⊗ ks |= f (ks), thus ks ↪→ f (ks).

Remarks:
We call the world w of (mandatorily) consumable resources support.
Elements of closed types (not mentioning K ) have empty support.
Eliminators like if : Bool ( (A&A) ( A use additive conjunction &.

w |=A&B (a, b) iff w |=A a and w |=B b

Subexponentials for n ∈ N where wn = w ⊗ . . .⊗ w (n times):

w |=!nA a iff w ↪→ w0
n and w0 |=A a for some w0

w |=?nA a iff wn |=A a

Gives quadratic functions like λ2x . (x , x) : !2A ( A× A. But affine?
Abel Resourceful Types TYPES 2018 8 / 19



Choice of resources
Abstract K with e : K and _·_ : K ( K ( K and boolean b : B :

λ{0,1}x . if b then x else e : !{0,1}K ( K

λ{1,2}x . if b then x else x · x : !{1,2}K ( K

Imprecision in usage quantity of x .
Want !qA ( B for q ⊆ N.
Extend W by non-empty additive products &i∈q Ai (infima).
Morphisms w ↪→ w ′ now include dropping of alternatives A&B ↪→ A.
In general, &i∈q Ai ↪→&j∈q′ Aj for q′ ⊆ q.
Exponent: wq = &n∈q w

n.
w1 |=!qA a iff w2 |=A a for some w2 with w1 ↪→ w2

q.
Ordinary A→ B is !NA ( B .

Abel Resourceful Types TYPES 2018 9 / 19



Quantity lattice
Function classification:

constant linear non-linear

affine strict

function

Expressed as quantitative information q ⊆ N in (!qA) ( B :

{0} {1} N \ {0, 1}

{0, 1} N \ {0}

N

Call this lattice Q.
Abel Resourceful Types TYPES 2018 10 / 19



Quantity semiring

Composition:

f : !qB ( C and g : !rA ( B implies f ◦ g : !q·rA ( C

Multiplication q · r = {m · n | m ∈ q, n ∈ r} rounded up to be in Q.

Choice:

u : !qA and v : !rA implies if x then u else v : !q+rA

Addition q + r = {m + n | m ∈ q, n ∈ r} rounded up to be in Q.

Abel Resourceful Types TYPES 2018 11 / 19



Dependent linear types

Multiplicative linear dependent function and pair types.

w |=ΠAF f iff w ′ |=A a implies w ⊗ w ′ |=F (a) f (a) for all w ′

w |=ΣAF (a, b) iff w1 |=A a and w2 |=F (a) b for some w1,w2
with w ↪→ w1 ⊗ w2

Obvious, no?

Abel Resourceful Types TYPES 2018 12 / 19



Dependent linear types, what took you so long?

1972: Martin-Löf: (Dependent) Type Theory
1987: Girard: Linear logic
(3 decades later)
2016: McBride: I got plenty of nuttin’
2018: Atkey: Syntax and Semantics of Quantitative Type Theory
What took us so long?
(Wrong) paradigms!?

Focus on structural rules (weakening, contraction)!?
Separate contexts for linear and intuitionistic assumptions!?
Same quantity context for term and types!?

Γ ` t : A implies Γ ` A : Type

Specific models of linearity!?
Missing generalization to quantitative typing!?

Abel Resourceful Types TYPES 2018 13 / 19



Quantitative type theory

Syntax (q, r ∈ Q):

t, u,A,F ::= x name (free variable)
| λqx . t λ-abstraction (binder) with quantity
| t ·q u application with quantity
| Πq,rAF dependent function type (no binder)
| U` sort

Usage calculation |t| : Var→ Q .

|x | = {x 7→ 1}
|t ·q u| = |t|+ q|u|
|λqx . t| = |t| \ x
|U`| = ∅

|Πq,rAF | = |A|+ |F |

Abel Resourceful Types TYPES 2018 14 / 19



Quantitative typing

` Γ

Γ ` x : Γ(x)

Γ ` t : Πq,rAF Γ ` u : A

Γ ` t ·q u : F ·r u

Γ, x :A ` t : F ·r x
Γ ` λqx . t : Πq,rAF

q ⊇ |t|x

` Γ

Γ ` U` : U`′
`<`′

Γ ` A : U` Γ ` F : A
r→ U`

Γ ` Πq,rAF : U`

Γ ` t : A Γ ` A ≤ B

Γ ` t : B

Abel Resourceful Types TYPES 2018 15 / 19



Conclusions

Quantitative typing generalizes linear typing.
Practical uses:

Cardinality analysis in compilers: strictness, dead code.
Differential privacy (Reed Peirce ICFP 2010)
Erasure in type theory (EPTS).
Security typing!

Thesis:
The generalization of linear typing to quantitative typing
allows a smooth integration with dependent typing.

Abel Resourceful Types TYPES 2018 16 / 19



Related Work

Simple types: abundance of quantitative type systems (TYPES 2015).
McBride 2016: Q = {{0}, {1},N}. Usage in types does not count!
Atkey 2018, QTT: Q semiring.
Brady: implementing McBride/Atkey system in Idris 2.

Abel Resourceful Types TYPES 2018 17 / 19



Future work

CwF-like model for my variant of QTT.
Internalize free theorems from linearity?!
Relate to other modal type theories.
Add to Agda.

Abel Resourceful Types TYPES 2018 18 / 19



Subtyping

Γ ` A = A′ : U`

Γ ` A ≤ A′

` Γ

Γ ` U` ≤ U`′
` ≤ `′

Γ ` A′ ≤ A Γ, x :A′ ` F ·r x ≤ F ′ ·r x
Γ ` Πq,rAF ≤ Πq,rA′ F ′

Abel Resourceful Types TYPES 2018 19 / 19


