Strong Normalization for Equi-(Co-)Inductive Types

Andreas Abel

Department of Computer Science Ludwig-Maximilians-University Munich

TYPES Workshop, 2 May 2007 Cividale, Italy

Introduction

- Theme: Liberate recursive definitions in Type Theory.
- More convenient use of proof assistants.
- Functional programming approach.
- Interesting interplay between recursion/corecursion.

• • • • • • • • • • • •

Inductive Types

- Least fixed-points μF of monotone type constructors F.
- E.g. List $A = \mu F$ with $F X = 1 + A \times X$.
- Iso-inductive types: Explicit folding and unfolding.

 $F(\mu F) \xrightarrow{\text{in}} \mu F \xrightarrow{\text{out}} F(\mu F)$ nil := in \circ inl : 1 \rightarrow List A cons := in \circ inr : A \times List A \rightarrow List A

Equi-inductive types: Implicit (deep) folding via type equality.

 $F(\mu F) = \mu F$ nil := inl cons := inr

イロト 不得 トイヨト イヨト ヨー ろくの

Motivation

- In normalization proofs, mostly iso-types are chosen (Altenkirch [93–99], Barthe et al.[01–06], Geuvers [92], Giménez, Matthes [98], Mendler [87-91]; CIC).
- Notable exceptions: Parigot [92], Raffalli [93–94].
- Iso-types can be trivially simulated by equi-types, normalization results can be inherited.
- Equi-types in iso-types only by translation of typing derivations.
- Normalization for equi-types not implied by norm. for iso-types.
- Loss of structure on terms requires compensating structures on types.

< ロ > < 同 > < 回 > < 回 >

Inductive Types: Construction From Below

• Least fixed-points can be reached by ordinal iteration:

- Size expressions $a ::= i \mid 0 \mid a + 1 \mid \infty$.
- Sized inductive types $\mu^{a}F$.
- Laws: β , η , and

$$\infty + 1 = \infty$$

 $\mu^{a+1}F = F(\mu^a F).$

List^a A contains list of length < a.

A D N A B N A B N

Recursion

• General recursion (partial):

$$\frac{f: A \to C \vdash t: A \to C}{\operatorname{fix} (\lambda f.t): A \to C}$$

• Recursion on size (total):

$$\frac{f:\mu^{i}F \to C \vdash t:\mu^{i+1}F \to C}{\mathsf{fix}^{\mu}(\lambda f.t):\mu^{\infty}F \to C}$$

Sized Coinductive Types

- Greatest fixed-points $\nu^{\infty} F$ of monotone F.
- Approximation from above.
- E.g. Stream^{*a*} $A = \nu^a \lambda X$. $A \times X$ contains streams of depth $\geq a$.
- Corecursion on depth (total):

 $\frac{f:\nu^{\imath}F\vdash t:\nu^{\imath+1}F}{\mathsf{fix}^{\nu}(\lambda f.t):\nu^{\infty}F}$

• E.g., repeat $x = fix^{\nu}(\lambda y. (x, y))$.

< ロ > < 同 > < 回 > < 回 >

Terminating Reduction for Recursion

- Naive reduction $fix^{\mu}s \longrightarrow s(fix^{\mu}s)$ diverges.
- Lazy (weak head) values $v ::= (r, s) | \cdots | \lambda xt | \operatorname{fix}^{\mu} s | \operatorname{fix}^{\nu} s$.
- Only expand recursive functions applied to a value.

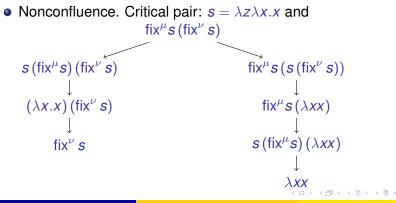
 $fix^{\mu}sv \longrightarrow s(fix^{\mu}s)v$

- Shallow evaluation contexts $e() := \text{fst} | \cdots | s | \text{fix}^{\mu} s$.
- Deep evaluation contexts $E(_) = e_1(...e_n(_))$ for $n \ge 0$.

Termination Reduction for Corecursion

• Only expand corecursive objects whose value is demanded.

 $e(\operatorname{fix}^{\nu} s) \longrightarrow e(s(\operatorname{fix}^{\nu} s))$



Breaking the Symmetry

• Do not unfold corecursive arguments of recursive functions.

 $e(\operatorname{fix}^{\nu} s) \longrightarrow e(s(\operatorname{fix}^{\nu} s)) \qquad e(_) \neq \operatorname{fix}^{\mu} s'_$

- Confluence regained.
- Strong normalization provable.

Proving Strong Normalization

- S set of strongly normalizing terms.
- Safe (weak head) reduction, preserves s.n. in both directions.

 $\begin{array}{lll} E((\lambda xt) \, s) & \rhd & E([s/x]t) & \text{if } s \in \text{SN} \\ E(\operatorname{fix}^{\mu} s \, v) & \rhd & E(s \, (\operatorname{fix}^{\mu} s) \, v) \\ E(e(\operatorname{fix}^{\nu} s)) & \rhd & E(e(s \, (\operatorname{fix}^{\nu} s))) & \text{if } e(_) \neq \operatorname{fix}^{\mu} s'_ \\ \cdots \\ \text{reflexivity, transitivity} \end{array}$

- $\mathcal{N} = \{t \mid t \triangleright E(x)\}$ set of neutral terms.
- A saturated, $A \in SAT$, if $N \subseteq A \subseteq S$ and A is closed under safe reduction and expansion.

イロト 不得 トイヨト イヨト ヨー ろくの

Soundness of Recursion

Semantical recursion rule:

$$\frac{\forall i. \boldsymbol{s} \in (\mu^{i} \mathcal{F} \to \mathcal{C}) \to \mu^{i+1} \mathcal{F} \to \mathcal{C}}{\mathsf{fix}^{\mu} \boldsymbol{s} \in \mu^{\alpha} \mathcal{F} \to \mathcal{C}}$$

Show $r \in \mu^{\alpha} F$ implies fix^{μ} s $r \in C$ by induction on ordinal α .

- Case $\alpha = 0$. Then $\mu^0 \mathcal{F} = \mathcal{N}$ and $r \in \mathcal{N}$ implies fix^{μ}s $r \in \mathcal{N} \subseteq \mathcal{C}$.
- Case $\alpha = \alpha' + 1$ and $r \triangleright v$.
 - fix^{μ} $s \in \mu^{\alpha'} \mathcal{F} \to \mathcal{C}$ by induction hypothesis.
 - $s(\operatorname{fix}^{\mu} s) \in \mu^{\alpha'+1} \mathcal{F} \to \mathcal{C}$ by assumption.
 - $\operatorname{fix}^{\mu} s r \triangleright s(\operatorname{fix}^{\mu} s) v \in C$.
- Case α limit. By induction hypothesis.

不同 トイモトイモ

Soundness of Corecursion

Semantical corecursion rule:

$$\frac{\forall i. \mathbf{S} \in \nu^{i} \mathcal{F} \rightarrow \nu^{i+1} \mathcal{F}}{\mathsf{fix}^{\nu} \mathbf{S} \in \nu^{\alpha} \mathcal{F}}$$

By induction on α .

- Case $\alpha = 0$. Then $\nu^0 \mathcal{F} = S$ and $s \in S$ implies fix $\nu s \in S$.
- Case $\alpha = \alpha' + 1$.
 - fix^{ν} $s \in \nu^{\alpha'} \mathcal{F}$ by induction hypothesis.
 - $s(\operatorname{fix}^{\nu} s) \in \nu^{\alpha'+1} \mathcal{F}$ by assumption.
 - How to prove fix $\nu s \in \nu^{\alpha'+1} \mathcal{F}$??

Idea: make this additional closure property on saturated sets.

4 **A N A B N A**

Guarded Saturated Sets

• Consider closure property

 $s(\operatorname{fix}^{\nu} s) \in \mathcal{A} \text{ implies } \operatorname{fix}^{\nu} s \in \mathcal{A}.$

Unsound for N: must not contain values!

• Otherwise fix^{μ}s $\in \mathcal{N} \to \mathcal{N}$ fails.

• Solution: define a subclass of guarded saturated sets closed under (1).

• • • • • • • • • • • •

(1)

Checking Guardedness

- 1, $A \rightarrow B$, $A \times B$, ... are guarded.
- 0, $\mu^0 F$ are unguarded.
- $\nu^{a}F$ is guarded if F 0 is or a = 0.
- $\mu^{a}F$ is guarded if F 0 is and a = 0.
- Statically checkable through kinding system with two base kinds
 *_u (unguarded type) and *_g (guarded type).
- Guardedness is not emptyness: $1 \rightarrow 0$ is empty, but guarded.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Conclusion

- Present work closes gap in my PhD thesis.
- Further work: develop and verify guardedness calculus.
- Test guardedness restriction in practice.
- Acknowledgments:

Guardedness idea arose during invitation to LORIA by Frédéric Blanqui and Colin Riba.

• • • • • • • • • • • • •