Untyped Algorithmic Equality for Martin-Löf's Logical Framework with Surjective Pairs

Andreas Abel

Slide 1

joint work with Thierry Coquand

TLCA'05 Nara, Japan April 21, 2005

Work supported by: TYPES & APPSEM-II (EU), CoVer (SSF)

Background: $\beta\eta$ -equality

- Checking dependent types requires equality test
- One approach: reduce to normal form and compare syntactically
- Works fine for β -equality
- Slide 2 Problem with η -reduction: surjective pairing destroys confluence (Klop 1980)
 - Even subject reduction fails:

 $z: \mathsf{Pair}\,A\,(\lambda x.\,F\,x) \ \vdash \ (z \,\mathsf{L},\,z \,\mathsf{R}) \ : \ \mathsf{Pair}\,A\,(\lambda_{-}.\,F\,(z \,\mathsf{L}))$

[I write Pair $A(\lambda xB)$ for $\Sigma x : A.B$]

Thierry's Equality Algorithm

- Incremental check for $\beta\eta$ -equality in dependently-typed λ -calculus (Coquand 1991)
- Alternates weak head normalization and comparison of head symbols
- Slide 3
- We extend this algorithm to $\Sigma\text{-types}$ with surjective pairing
- Challenge: termination and completeness
- Two major technical difficulties to overcome

Martin-Löf's Logical Framework (MLF)

• Expressions = Curry-style λ -terms

c ::= Fun | El | Set constants r, s, t, A, B, C ::= $c | x | \lambda xt | rs$ expressions

Slide 4 • Examples

$FunA(\lambda xB)$	dependent function space $\Pi x : A. B$
Fun Set $(\lambda a. \operatorname{Fun} (\operatorname{El} a) (\lambda_{-}. \operatorname{El} a))$	type of identity: $\forall a : *. a \rightarrow a$

Martin-Löf's logical framework

• Judgements for typing and equality, e.g.,

$$\begin{split} \Gamma &\vdash t : A & t \text{ has type } A \\ \Gamma &\vdash t = t' : A & t \text{ and } t' \text{ are equal terms of type } A \end{split}$$

Slide 5 • Example: application rule

$$\frac{\Gamma \vdash r: \mathsf{Fun}\, A\,(\lambda xB) \quad \Gamma \vdash s: A}{\Gamma \vdash r\, s: B[s/x]}$$

Weak head evaluation

• Weak head values

n	::=	$c\vec{t} x\vec{t}$	neutral expressions
w	::=	$n \mid \lambda x t$	weak head values

Slide 6 • Weak head evaluation (call-by-name)

$$(r s)\downarrow := r\downarrow@s$$

$$t\downarrow := t t not application$$

$$n@s := n s$$

$$(\lambda xt)@s := (t[s/x])\downarrow$$

Untyped Algorithmic Equality

- $\beta\eta$ -conversion test for weak head values $w \sim w'$
- Two neutral expressions

$$\frac{1}{c \sim c} \qquad \frac{n \sim n' \quad s \downarrow \sim s' \downarrow}{n \, s \sim n' \, s'}$$

Slide 7

• At least one
$$\lambda$$

$t {\downarrow} \sim t' {\downarrow}$	$t \! \! \downarrow \sim n x$	$nx\sim t'\!\downarrow$
$\overline{\lambda xt} \sim \lambda xt'$	$\overline{\lambda xt} \sim n$	$\overline{n \sim \lambda x t'}$

- Relation \sim is transitive
- Completeness to be shown by model construction

Lambda Model

• Entities

 $\begin{array}{rcl} u,v,f,V,F & \in & \mathsf{D} & & \text{elements of the model} \\ \rho & & \in & \mathsf{Var} \to \mathsf{D} & & \text{environments} \end{array}$

Slide 8 • Operations

$f \cdot v$	\in	D	application in the model
t ho	\in	D	denotation of expression t in environment ρ

Computation (β)

 $(\lambda xt)\rho \cdot v \quad = \quad t(\rho, x \!=\! v)$

Congruences

Slide 9

 $c\rho = c$ $x\rho = \rho(x)$ $(r s)\rho = r\rho \cdot (s\rho)$

Injectivity

$EI \cdot v$	=	$EI\cdot v'$	implies $v = v'$
$Fun \cdot V \cdot F$	=	$Fun \cdot V' \cdot F'$	implies $V = V'$ and $F = F'$

PER Model

[Set]

- Assume a basic partial equivalence relation (PER) ${\cal S}$ on D
- Interpretation of *types* in D as sub-PERs of S

Slide 10

$EI \cdot v]$	=	S
$[Fun \cdot V \cdot F]$	=	$\{(f, f') \mid (f \cdot v, f' \cdot v') \in [F \cdot v] \text{ for all } (v, v') \in [V]\}$

• Soundness of typing and equality rules

= S

If $\Gamma \vdash t$: A then $(t \rho, t \rho) \in [A\rho]$ for all $\rho \in [\Gamma]$. If $\Gamma \vdash t = t' : A$ then $(t \rho, t'\rho) \in [A\rho]$ for all $\rho \in [\Gamma]$.

• Implication: $(t \rho, t' \rho) \in S$

Substitution and Extensionality

• Difficulty 1: Soundness proof of application rule

$$\frac{\Gamma \vdash r: \mathsf{Fun}\, A\,(\lambda xB) \qquad \Gamma \vdash s: A}{\Gamma \vdash r\, s: B[s/x]}$$

• requires substitution property

Slide 11

$$(B[s/x])\rho = B(\rho, x = s\rho).$$

• Hence, model needs additional axiom

(
$$\xi$$
) $(\lambda xt)\rho = (\lambda xt')\rho'$
if $t(\rho, x=v) = t'(\rho', x=v)$ for all $v \in \mathsf{D}$

Completeness of Algorithmic Equality

- Recall: $\vdash t = t' : A \text{ implies } (t, t') \in S$
- Take model instance

Slide 12 $D = \beta$ -equivalence classes $f \cdot v = \overline{f v}$ $t\rho = \overline{t[\rho]}$ $S = \text{lifted algorithmic equality} \sim$

• algorithmic equality on β -equivalence classes

$$\overline{t} \sim \overline{t'} \iff t =_{\beta} v \text{ and } t' =_{\beta} v' \text{ for some } v, v' \text{ with } v \sim v'$$

- Using standardization, $\overline{t} \sim \overline{t'}$ implies $t \downarrow \sim t' \downarrow$.
- Summary (ρ_0 is identity valuation):

Extension to Σ -types

• Expressions

С	::=	$\cdots \mid Pair$	$\operatorname{constants}$
r, s, t, A, B, C	::=	$\cdots \mid (r,s) \mid t L \mid t R$	expressions

- **Slide 14** Example: Pair $A(\lambda x B)$ dependent type of pairs $(\Sigma x: A, B)$
 - Surjective pairing rule

$$\frac{\Gamma \vdash r = r': \mathsf{Pair}\,A\left(\lambda xB\right)}{\Gamma \vdash (r\,\mathsf{L},\;r\,\mathsf{R}) = r':\mathsf{Pair}\,A\left(\lambda xB\right)}$$

Extended Algorithmic Equality

• Neutral expressions

$$\frac{n \sim n'}{n \,\mathsf{L} \sim n' \,\mathsf{L}} \qquad \frac{n \sim n'}{n \,\mathsf{R} \sim n' \,\mathsf{R}}$$

 $\bullet\,$ At least one pair

Slide 15

$$\frac{r \! \downarrow \sim r' \! \downarrow \qquad \! s \! \downarrow \sim s' \! \downarrow}{(r,s) \sim (r',s')}$$

$$\frac{r \! \downarrow \sim n \, \mathsf{L}}{(r,s) \sim n} \sum_{n < n} \frac{n \, \mathsf{L} \sim r' \! \downarrow n \, \mathsf{R} \sim s' \! \downarrow}{n \sim (r',s')}$$

Transitivity

- Problem 2: Alg. Eq. not transitive
- $\lambda x. z x \sim z$ and $z \sim (z \mathsf{L}, z \mathsf{R})$, but *not* $\lambda x. z x \sim (z \mathsf{L}, z \mathsf{R})$
- Solution: "Transitivization" $\stackrel{+}{\sim}$ through additional rules

$$\frac{t \downarrow \stackrel{+}{\sim} n \, x \quad n \, \mathsf{L} \stackrel{+}{\sim} r \quad n \, \mathsf{R} \stackrel{+}{\sim} s}{\lambda x t \stackrel{+}{\sim} (r,s)}$$

Slide 16

- If t, t' are of the same type, $t \stackrel{+}{\sim} t'$ does not use extra rules.
- $\bullet\,$ Equality is transitive for expressions of the same type

$$\begin{split} \Gamma \vdash t &= t' : A \\ & & \downarrow \\ \text{Soundness of judgement} \\ (t\rho_0, t'\rho_0) \in [A\rho_0] \\ & & \downarrow \\ IA\rho_0] \subseteq \mathcal{S} \\ & & \overline{t} \stackrel{+}{\sim} \overline{t'} \\ & & \downarrow \\ &$$

Proof Economics

	Injectivity	required
	Inversion of typing	required
	Standardization	required
Slide 18	Subject reduction	not required
	Confluence (Church-Rosser)	not required
	Normalization	not required
	Certificate	good economics!

Related Work

- Vaux (2004): PER model for MLF with intersection
- Aspinall/Hofmann (TAPL II), Goguen (2005): completeness of algorithmic equality using standard meta theory
- Coquand, Pollack, and Takeyama (2003): extension of MLF by records with manifest fields

Slide 19

- Harper and Pfenning (2005): algorithmic equality for ELF directed by simple types (obtained by erasure)
- Schürmann and Sarnat (2004): extension to Σ -types
- Adams (2001): Luo's LF with Σ -kinds and type-directed equality

Future Work

- Logical framework with proof-irrelevant propositions
- Type-directed equality *without* erasure
- An open problem?!

Slide 20

Thanks to Frank Pfenning, Carsten Schürmann, and Lionel Vaux