Normalization by Evaluation for System F

Andreas Abel

Department of Computer Science Ludwig-Maximilians-University Munich

ProgLog Seminar, Chalmers, Göteborg 3 September 2008

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Introduction

- NbE is a principled approach to full normalization
- and to deciding $\beta\eta$ -equality.
- Previous work with Klaus Aehlig, Thierry Coquand, Peter Dybjer: NbE for predicative dependent type theories.
- Goal: tackle impredicativity.
- Altenkirch, Hofmann, and Streicher described NbE for System F using heavy category-theoretic machinery.
- This work: conventional, set-theoretic development.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

2 Weak beta-eta-Normalization

3 Normalization by Evaluation

Church-Style System F

Terms and Typing

$$\overline{\Gamma \vdash x : \Gamma(x)}$$

 $\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x: A, t: A \rightarrow B} \qquad \frac{\Gamma \vdash r: A \rightarrow B \qquad \Gamma \vdash s: A}{\Gamma \vdash rs: B}$

 $\frac{\Gamma \vdash t : A}{\Gamma \vdash \Lambda Xt : \forall XA} X \notin \mathsf{FV}(\Gamma) \qquad \frac{\Gamma \vdash t : \forall XA}{\Gamma \vdash t B : A[B/X]}$

• We write $\Gamma' \leq \Gamma$ if Γ' extends Γ . E.g., $\Gamma, x : A \leq \Gamma$.

Equational Theory of System F

• Untyped equality is induced by the rewrite rules:

$$\begin{array}{lll} (\lambda x : A. t) s & \longrightarrow_{\beta\eta} & t[s/x] \\ \lambda x : A. t x & \longrightarrow_{\beta\eta} & t & \text{if } x \notin \mathsf{FV}(t) \\ (\Lambda Xt) A & \longrightarrow_{\beta\eta} & t[A/X] \\ \Lambda X. t X & \longrightarrow_{\beta\eta} & t & \text{if } X \notin \mathsf{FV}(t) \end{array}$$

Long normal forms

• Two mutual judgements:

 $\begin{array}{ll} \Gamma \vdash t \Uparrow A & t \text{ is a long normal form of type } A \\ \Gamma \vdash t \Downarrow A & t \text{ is a neutral long normal form of type } A \end{array}$

Rules:

 $\frac{\Gamma \vdash r \Downarrow A \to B \quad \Gamma \vdash s \Uparrow A}{\Gamma \vdash r s \Downarrow B} \quad \frac{\Gamma \vdash r \Downarrow \forall XA}{\Gamma \vdash rB \Downarrow A[B/X]}$ $\frac{\Gamma \vdash r \Downarrow X}{\Gamma \vdash rA X} \quad \frac{\Gamma, x : A \vdash t \Uparrow B}{\Gamma \vdash \lambda x : A : t \Uparrow A \to B} \quad \frac{\Gamma \vdash t \Uparrow A}{\Gamma \vdash \Lambda Xt \Uparrow \forall XA} X \notin \mathsf{FV}(\Gamma)$

イロト 不得 トイヨト イヨト ヨー ろくの

Kripke relations

- Consider a set D with application $_\cdot_: D \times (D \cup Ty) \rightarrow D$.
- Consider another such applicative structure D'.
- We interpret types as relations $\mathcal{A} \subseteq Cxt \times D \times D'$.
- We write $\Gamma \vdash d \sim d' \in \mathcal{A}$ for $(\Gamma, d, d') \in \mathcal{A}$.
- \mathcal{A} is *Kripke* if $\Gamma' \leq \Gamma \vdash d \sim d' \in \mathcal{A}$ implies $\Gamma \vdash d \sim d' \in \mathcal{A}$.
- \mathcal{A} is a *Kripke PER* if $\Gamma \vdash _ \sim _ \in \mathcal{A}$ is symmetric and transitive.

< 口 > < 同 > < 回 > < 回 > < 回 > <

A specific Kripke PER

Let D = D' = Tm/=_{βη}. Let *r* denote the βη-equivalence class of *r*.
For each type *A*, define two Kripke PERs A ⊂ *A*.

 $\Gamma \vdash d \sim d' \in \overline{A} \iff \text{ exists } r \text{ with } d = d' = \overline{r} \text{ and } \Gamma \vdash r \Uparrow A,$ $\Gamma \vdash d \sim d' \in \underline{A} \iff \text{ exists } r \text{ with } d = d' = \overline{r} \text{ and } \Gamma \vdash r \Downarrow A.$

- We have weak $\beta\eta$ -normalization if $\Gamma \vdash t : A$ implies $\Gamma \vdash \overline{t} \sim \overline{t} \in \overline{A}$.
- Proof outline: Define type interpretation <u>A</u> ⊆ [[A]] ⊆ A and prove the fundamental theorem Γ ⊢ [[t]] ~ [[t]] ∈ [[A]].

Interpretation space

• Constructions on Kripke relations:

 $\begin{array}{lll} \mathcal{A} \to \mathcal{B} &=& \{(\Gamma, f, f') \mid \text{ for all } d, d', \Gamma' \leq \Gamma, \Gamma' \vdash d \sim d' \in \mathcal{A} \\ & \text{ holds } \Gamma' \vdash f \cdot d \sim f' \cdot d' \in \mathcal{B} \} \\ \end{array} \\ \mathcal{A}.\mathcal{B} &=& \{(\Gamma, d, d') \mid \Gamma \vdash d \cdot A \sim d' \cdot A \in \mathcal{B} \} \end{array}$

• <u>A</u>, A form an *interpretation space* fulfilling the conditions

$\underline{A \rightarrow B}$	\subseteq	$\overline{A} \rightarrow \underline{B}$	
$\underline{A} \to \overline{B}$	\subseteq	$\overline{A \to B}$	
<u>∀YA</u>	\subseteq	<i>B</i> . <u><i>A</i>[<i>B</i>/<i>Y</i>]</u>	for any B
$X.\overline{A[X/Y]}$	\subseteq	∀YA	for a new X

• We write $A \Vdash A$ (pronounced A realizes A) if $\underline{A} \subseteq A \subseteq \overline{A}$.

Type interpretation

• We interpret quantification by an intersection which is indexed only by the *realizable* semantic types.

$$\begin{split} \llbracket X \rrbracket_{\rho} &= \rho(X) \\ \llbracket A \to B \rrbracket_{\rho} &= \llbracket A \rrbracket_{\rho} \to \llbracket B \rrbracket_{\rho} \\ \llbracket \forall XA \rrbracket_{\rho} &= \bigcap_{B \vdash \mathcal{B}} B \cdot \llbracket A \rrbracket_{\rho [X \mapsto \mathcal{B}]} \end{split}$$

- Types realize their interpretation: If $\sigma(X) \Vdash \rho(X)$ for all X, then $A\sigma \Vdash \llbracket A \rrbracket_{\rho}$.
- Proof: Induction on *A*, using the closure conditions of the interpretation space.

Syntactical combinatory algebras

• We assume an evaluation function $(-)_{\eta} \in Tm \rightarrow D$, satisfying

$$\begin{array}{rcl} (|x|)_{\eta} &=& \eta(x) \\ (|r|s|)_{\eta} &=& (|r|)_{\eta} \cdot (|s|)_{\eta} \\ (|r|A|)_{\eta} &=& (|r|)_{\eta} \cdot A\eta \\ (|\lambda x : A. t|)_{\eta} \cdot d &=& (|t|)_{\eta[x \mapsto d]} \\ (|\lambda Xt|)_{\eta} \cdot A &=& (|t|)_{\eta[x \mapsto d]} \\ (|t[s/x]])_{\eta} &=& (|t|)_{\eta[x \mapsto (|s|)_{\eta}]} \\ (|t[A/x]])_{\eta} &=& (|t|)_{\eta[x \mapsto A\eta]} \\ (|t|)_{\eta} &=& (|t|)_{\eta'} & \text{if } \eta(x) = \eta'(x) \text{ for all } x \in \mathsf{FV}(t) \end{array}$$

• The last three equations do not hold for all applicative structures, e.g., not for explicit substitution calculi with trivial equality.

Andreas Abel (LMU Munich)

Fundamental theorem

Theorem (Validity of typing)

Let $\eta \Vdash \rho$ and both $\eta \upharpoonright \mathsf{TyVar} = \eta' \upharpoonright \mathsf{TyVar}$ and $\Delta \vdash \eta \sim \eta' \in \llbracket \Gamma \rrbracket_{\rho}$. If $\Gamma \vdash t : A$ then $\Delta \vdash (t)_{\eta} \sim (t)_{\eta'} \in \llbracket A \rrbracket_{\rho}$.

Corollary (Weak $\beta\eta$ -normalization of System F) If $\Gamma \vdash t$: A then t β -reduces η -expands to a long normal form t'.

Proof.

Clearly, $A \Vdash \llbracket A \rrbracket$. By the theorem, $\Gamma \vdash (t) \sim (t) \in \llbracket A \rrbracket$, meaning $t =_{\beta\eta} t'$ with $\Gamma \vdash t' \Uparrow A$. We conclude by Church-Rosser for β -reduction η -expansion.

NbE for System F

• The typed equational theory of System F is induced by

$$\frac{\Gamma, x : A \vdash t : B \qquad \Gamma \vdash s : A}{\Gamma \vdash (\lambda x : A, t) s = t[s/x] : B}$$

$$\frac{\Gamma \vdash t : A \rightarrow B}{\Gamma \vdash \lambda x : A, t x = t : A \rightarrow B} x \notin FV(t)$$

$$\frac{\Gamma \vdash t : A \qquad X \notin FV(\Gamma)}{\Gamma \vdash (\Lambda Xt) B = t[B/X] : A[B/X]}$$

$$\frac{\Gamma \vdash t : \forall XA}{\Gamma \vdash \Lambda X, t X = t : \forall XA} X \notin FV(t)$$

Task: find function nf(Γ⊢t:A) which is
complete, i. e., Γ⊢t = t' : A implies nf(Γ⊢t:A) ≡ nf(Γ⊢t':A), and
sound, i. e., if Γ⊢t : A then Γ⊢t =_{βη} nf(Γ⊢t:A) : A.

Evaluation

• As combinatory algebra, use Scott domain

 $\mathsf{D} = (\mathsf{Var} \times (\mathsf{D} \cup \mathsf{Ty})^{<\omega}) \oplus [\mathsf{D} \to \mathsf{D}] \oplus (\mathsf{Ty} \to \mathsf{D}).$

Three types of values:

- 1 neutral objects e ::= x | e d | e A.
- 2 continuous functions $f \in [D \rightarrow D]$
- **3** functions $F \in Ty \rightarrow D$ from types to values
- Application of values defined obviously.
- Evaluation of abstractions is defined by

Contextual reification

• We can read back values as terms; this is called reification.

$$\label{eq:relation} \begin{split} \Gamma &\vdash d \searrow t \Uparrow A \qquad d \text{ reifies to } t \text{ at type } A, \\ \Gamma &\vdash d \searrow t \Downarrow A \qquad d \text{ reifies to } t, \text{ inferring type } A. \end{split}$$

Rules:

$$\frac{\Gamma \vdash e \searrow r \Downarrow A \to B \qquad \Gamma \vdash d \searrow s \Uparrow A}{\Gamma \vdash e d \searrow r s \Downarrow B}$$

$$\frac{\Gamma \vdash e \bigotimes r \Downarrow \forall XA}{\Gamma \vdash e B \searrow r B \Downarrow A[B/X]} \qquad \frac{\Gamma \vdash e \searrow r \Downarrow X}{\Gamma \vdash e \searrow r \Uparrow X}$$

$$\frac{\Gamma, x : A \vdash f \cdot x \searrow t \Uparrow B}{\Gamma \vdash f \searrow \lambda x : A \cdot t \Uparrow A \to B} \qquad \frac{\Gamma \vdash F \cdot X \searrow t \Uparrow A}{\Gamma \vdash F \searrow \Lambda X t \Uparrow \forall XA}$$

Completeness of NbE

- nf(Γ ⊢ t: A) returns the reification of the evaluation of t, i. e., the t' such that Γ ⊢ (t) \sqrt{t' ↑ A.
- Let an interpretation space be defined by

 $\begin{array}{ll} \Gamma \vdash d \sim d' \in \overline{A} & \Longleftrightarrow & \text{exists } t \text{ with } \Gamma \vdash d, d' \searrow t \Uparrow A, \\ \Gamma \vdash d \sim d' \in \underline{A} & \Longleftrightarrow & \text{exists } t \text{ with } \Gamma \vdash d, d' \searrow t \Downarrow A. \end{array}$

Theorem (Completeness of NbE)

If $\Gamma \vdash t = t' : A$ then $\Gamma \vdash (t) \searrow r \uparrow A$ and $\Gamma \vdash (t') \searrow r \uparrow A$ for some long normal form r.

Soundness of NbE

Soundness wrt. untyped equality is obtained via setting

 $\begin{array}{ll} \Gamma \vdash d \sim \overline{t} \in \overline{A} & \Longleftrightarrow & \text{exists } t' \text{ with } \Gamma \vdash d \searrow t' \Uparrow A \text{ and } t =_{\beta\eta} t', \\ \Gamma \vdash d \sim \overline{t} \in \underline{A} & \Longleftrightarrow & \text{exists } t' \text{ with } \Gamma \vdash d \searrow t' \Downarrow A \text{ and } t =_{\beta\eta} t'. \end{array}$

- The fundamental theorem implies: If $\Gamma \vdash t : A$ then $\Gamma \vdash (|t|)_{\eta_{id}} \searrow t' \Uparrow A$ and $t =_{\beta \eta} t'$.
- What about soundness wrt. judgmental equality?
- Welltyped terms modulo judgmental equality are not a combinatory algebra D.
- Hence, we need a new version of the fundamental theorem.

イロト 不得 トイヨト イヨト ヨー ろくの

Kripke logical relations

- Kripke logical relations between syntax and semantics S ⊆ Cxt × Tm × Ty × D satisfy for all (Γ, t, A, d) ∈ S:
 Γ ⊢ t : A,
 Γ' ≤ Γ implies (Γ', t, A, d) ∈ S, and
 Γ ⊢ t = t' : A implies (Γ, t', A, d) ∈ S.
- Redo the whole development: semantic function space, interpretation space, realizability, semantic quantification, fundamental theorem.

Conclusions

- NbE for System F with conventional means.
- Follows the structure of a weak normalization proof.
- Further work:
 - Find an abstraction of semantics that works for both completeness and soundness of NbE.
 - Scale to F^{ω} .
 - Scale to the Calculus of Constructions.
- Acknowledgments: This work was carried out during a visit to Frédéric Blanqui and Cody Roux at LORIA, Nancy, France, financed by the *Bayrisch-Französisches Hochschulzentrum*.

Bibliography

Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by evaluation for Martin-Löf Type Theory with typed equality judgements.

In Logic in Computer Science (LICS 2007).

- Andreas Abel, Thierry Coquand, and Peter Dybjer. Verifying a semantic βη-conversion test for Martin-Löf type theory. In Mathematics of Program Construction, MPC'08.
- Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Reduction-free normalisation for a polymorphic system. In Logic in Computer Science (LICS'96).
- Ulrich Berger and Helmut Schwichtenberg.
 An inverse to the evaluation functional for typed λ-calculus.
 In Logic in Computer Science (LICS'91).

Andreas Abel (LMU Munich)

Normalization by Evaluation for System F

ProgLog'08 20 / 20