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Recursion over Inductive Types

• Functional programming languages and logical frameworks base upon
λ-calculus enriched with inductive types.
Examples: ML, LEGO

• Definition of functions/constants by recursion over inductive type possible.

• Standard means: recursor/elimination. Ensures totality.
Example:

half’ = RN (λxB . 0) (λxNλfB→N . RB (f true) (1 + (f false)))
half = λnN .half’n false

Drawback: Misses intuition, readability, usability.
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Pattern Matching

• Alternative: “free recursive definitions”.
Example:

half 0 = 0
half 1 = 0
half n+2 = (half n)+1

But: syntax permits non-total functions =⇒ totality check required!

• LEGO allows to implement proofs by pattern matching, but fails to perform
totality check =⇒ invalid proofs possible!
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The foetus Project

1996 Munich Type Theory Implementation (T. Altenkirch)

1998 Implementation of termination checker foetus for a sublanguage of MuTTI
(A. Abel)

1999 Reimplementation of termination checker into Agda (C. Coquand,
Chalmers, Sweden)

1999 Verification I: Wellfoundedness of domains [AA99]

2000 Verification II: Single Recursive Functions [Abe00]
Verification III: Mutually Recursive Functions (in progress)
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Wellfoundedness and Accessibility

Let S be a set and < a relation on S. The accessible part Acc> ⊆ S is defined as
the smallest set closed under

w ∈ Acc> :⇐⇒ ∀v < w. v ∈ Acc>

Accessible part induction (wellfounded induction):

∀w ∈ S. (∀v < w. P (v))⇒ P (w)

∀w ∈ Acc>. P (w)

Wellfounded part WF ⊆ S:

w ∈WF> :⇐⇒6 ∃f : N→ S. f(0) = w ∧ ∀n ∈ N. f(n) > f(n+ 1)

Brouwer’s bar theorem (axiom of bar induction):

WF> ⊆ Acc>

(Classically provable.)
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Single Recursive Function

• Assume a wellfounded domain (D, <), i.e., D = Acc>.

• Provided that:

1. all statements (except the recursive calls) in f terminate

2. in each recursive call the argument v is smaller than the function input w

we can define termination of function f at argument w ∈ D as:

∀v < w. f@v ⇓

f@w ⇓

• Goal: ∀w ∈ D. f@w ⇓

• Proof by wellfounded induction.
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Mutually Recursive Functions with a Single Argument

• Let F be a finite set of function symbols.

g � f :⇐⇒ f −→ g “f calls g”

• Straightforward extension of predicate “terminates at”:

f@w ⇓ :⇐⇒ ∀g � f, v < w. g@v ⇓

F@w ⇓ :⇐⇒ ∀f ∈ F . f@w ⇓

• Goal: ∀w ∈ D. F@w ⇓

• Proof by wellfounded induction.

• But: criterion to strict!
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Call Graphs

• Sufficient: In each call cycle

f −→ g −→ . . . −→ f

the argument is decreased once.

• Functions and calls can be organized in a labelled directed graph:

f
? // g

≤

  
h

<

``

• Indirect (combined) calls:

f
R−→ g

f
R−→+ g

f
R−→+ g g

S−→+ h

f
S?R−→+ h

? < ≤ ?

< < < ?

≤ < ≤ ?

? ? ? ?
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Good Call Graphs

• Let C be a call graph.

C good :⇐⇒ ∀f ∈ F . ∀f R1−→ f1
R2−→ . . .

Rn−→ fn
Rn+1−→ f.

n+1∏
i=1

Ri = “<”

• Good call graphs have two properties:
Each cycle

f
~R−→ f

1. contains only calls that are at least preserving:

∀i. Ri ∈ {<,≤}

2. contains at least one decreasing call:

∃i. Ri = “<”
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No Infinite Call Sequences

• Goal: All call sequences f(w) ; g(v) ; . . . terminate.

• Evaluation ordering � on F ×D must fulfill

(g, v)� (f, w) ⇐ f
?−→ g

∨ (f
≤−→ g ∧ v ≤ w)

∨ (f <−→ g ∧ v < w)

• Theorem: For good call graphs the most general ordering � is wellfounded:

WF� = F ×D

• Proof: Consider an infinite call sequence. Since F is finite, one particular
function symbol f must appear infinitly often. Goodness of the call graph
implies an infinite descend on the argument of f . Contradiction!
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Classical Termination Proof

• New (weaker) termination predicate:

f@w ⇓ :⇐⇒ ∀(g, v)� (f, w). g@v ⇓

• Goal: ∀f ∈ F , w ∈ D. f@w ⇓ .

• Proof by wellfounded induction, making use of the bar theorem.

• Question 1: Can we proof termination constructively without bar
induction?
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Alternative Goodness Characterization

• A call graph C is good if there is a bijective naming

f11, . . . , f1m1 , . . . , fn1 . . . fnmn

of the function symbols in F s.th.

f i1j1
?−→ f i2j2 ⇒ i1 > i2

f i1j1
≤−→ f i2j2 ⇒ i1 > i2 ∨ (i1 = i2 ∧ j1 > j2)

f i1j1
<−→ f i2j2 ⇒ i1 ≥ i2

• This characterization has been used, e.g., by Frank Pfenning and Carsten
Schürmann for termination checking in the Twelf system [PS98].

• Question 2: Are the two criteria equivalent?
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Ordering on Function Symbols

• Define two relations ≺,� on F by

g ≺ f :⇐⇒ f −→ g ∧ g 6−→+ f

g � f :⇐⇒ f
≤−→ g

• Theorem: Both relations are wellfounded.

• Proof: In both cases the transitive closure is irreflexive. Since F is finite, this
entails wellfoundedness.

f ≺+ f ⇒ f −→+ f ∧ f 6−→+ f

f �+ f ⇒ f
≤−→+ f (contradicts goodness)

• The modified lexicographic product ≺ ⊗′ � is wellfounded, too, and can be
completed to a total ordering. Answer 2: yes!

g ≺⊗′� f :⇐⇒ g ≺ f ∨ (g � f ∧ g � f)
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Wellfounded Evaluation Ordering

• Define relation � on F ×D:

(g, v)� (f, w) :⇐⇒ g ≺ f
∨ (g � f ∧ v < w

∨ (v ≤ w ∧ g � f))

• Theorem: � is a wellfounded evaluation ordering.

• Proof: Wellfounded: � is a modified lexicographic product of wellfounded
relations.
Evaluation ordering:

f
?−→ g ⇒ g ≺ f (Goodness property 1)

f
<−→ g ∧ v < w ⇒ g � f ∧ v < w

f
≤−→ g ∧ v ≤ w ⇒ g � f ∧ v ≤ w ∧ g � f
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• Now we can proof ∀w ∈ D, f ∈ F . f@w ⇓ by wellfounded induction.

Answer 1: yes!
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Towards Functions with Several Arguments

fun flat [] = []

| flat (l::ls) = aux l ls

and aux [] ls = flat ls

| aux (x::xs) ls = x :: aux xs ls;

flat

(
<

<

)

!!
( < ) 77 aux

(
< ?

? ≤

)
ee

( ? ≤ )

aa
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Call Graphs for Functions with Several Arguments

• Let F be a finite set of function symbols with arity mapping ar : F → N

• A call graph is a labelled directed multi-graph with edges

f
σ,a−→ g

s.th.
σ : ar(g)→ ar(f) permutation of arguments

a : ar(g)→ {<,≤, ?} size change information

• A call graph is good iff

∀f σ,a−→+ f. ∃k. σ = id � k ∧ lexk<(a)

where we refer to k as number of relevant arguments and

lexk<(a) :⇐⇒ ∃k′ < k. a(k′) = “<” ∧ ∀i < k′.a(i) = “≤”

lexk=(a) :⇐⇒ ∀i < k. a(i) = “≤”

lexk≤(a) :⇐⇒ lexk<(a) ∨ lexk=(a)
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Complications

• Attributes “decreasing” (<) and “preserving” (≤) of a call are no longer
global. The call f −→ g is decreasing for f and preserving for g.

f
(

< ·
· ≤

) %%

(
· ≤
< ·

)

  
g

(
< ·
· ≤

)zz

(
· ≤
< ·

)
``

• Two call cycles may have a different number of relevant arguments. Here
k(g → f → g) = 1 and k(g → h→ g) = 2.

f

(
≤ ·
· ?

)
>> g

(
< ·
· ?

)

~~

(
< ·
· ≤

)

  
h

(
≤ ·
· ≤

)
``
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Argument Trace

• Arguments are being permuted ⇒ we need an argument trace

τf→g : ar(g)→ ar(f) for all f, g ∈ F

• Requirements: For each cycle h −→∗ f σ,a−→ g −→∗ h with k relevant
arguments

τh→h = id � k (1)

τf→h = σ ◦ τg→h � k (2)
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• Example: τg→f = id, not τg→f = (1 2).

f

 < · ·
· · <

· < ·

  ≤ · ·
· ≤ ·
· · ≤


-- g ≤ · ·

· < ·
· · ?


mm
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Call Classification

• We classify the calls as decreasing resp. (strictly) preserving by
(R ∈ {<,=,≤}):

classhR(f
σ,a−→ g) :⇐⇒ ∀Z = h −→∗ f σ,a−→ g −→∗ h. lex

k(Z)
R (a ◦ τg→h)

• Property 1. In each cycle each call is preserving

∀Z = h −→∗ f σ,a−→ g −→∗ h. classh≤(f
σ,a−→ g)

• Classification of transitions:

f
<−→ g :⇐⇒ ∃h ≈ f. ∀f σ,a−→ g. classh<(f

σ,a−→ g)

f
≤−→ g :⇐⇒ ∀h ≈ f. ∃f σ,a−→ g. classh=(f

σ,a−→ g)

f
?−→ g :⇐⇒ g 6−→ f

h ≈ f is defined as h −→∗ f −→∗ h.
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Evaluation Ordering

• We define g ≺ f as before and

g � f :⇐⇒ f
≤−→ g

• Theorem: Both relations are wellfounded.

• Define v <hf→g w as “v is smaller than w wrt. to h in a call from f to g”.
This relation is wellfounded.

• Theorem: The relation � defined by

(g, v)� (f, w) :⇐⇒ g ≺ f ∨ g ≈ f ∧ (∀h. v ≤hf→g w)

∧ ((∃h. v <hf→g w) ∨ g � f)

is a wellfounded evaluation ordering.

• Proof: � is a lexicographic product of three wellfounded relations. The
second of these is a multiset ordering of wellfounded relations indexed by h.
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Further Extensions

Weaken the definition of good to allow:

• Multiset orderings.

• Cycles of higher order. Example:

zip [] l = l

| (x::xs) l = x :: zip l xs;
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