
Slide 1

Termination of Mutually Recursive Functions

Andreas Abel

POP Seminar, CMU Computer Science
May 26, 2000

1. Introduction

2. The foetus Project

3. Mutually Recursive Functions with One Argument

4. Mutually Recursive Functions with Several Arguments

Slide 2

Recursion over Inductive Types

• Functional programming languages and logical frameworks base upon
λ-calculus enriched with inductive types.
Examples: ML, LEGO

• Definition of functions/constants by recursion over inductive type possible.

• Standard means: recursor/elimination. Ensures totality.
Example:

half’ = RN (λxB . 0) (λxNλfB→N . RB (f true) (1 + (f false)))
half = λnN .half’n false

Drawback: Misses intuition, readability, usability.

1

Slide 3

Pattern Matching

• Alternative: “free recursive definitions”.
Example:

half 0 = 0
half 1 = 0
half n+2 = (half n)+1

But: syntax permits non-total functions =⇒ totality check required!

• LEGO allows to implement proofs by pattern matching, but fails to perform
totality check =⇒ invalid proofs possible!

Slide 4

The foetus Project

1996 Munich Type Theory Implementation (T. Altenkirch)

1998 Implementation of termination checker foetus for a sublanguage of MuTTI
(A. Abel)

1999 Reimplementation of termination checker into Agda (C. Coquand,
Chalmers, Sweden)

1999 Verification I: Wellfoundedness of domains [AA99]

2000 Verification II: Single Recursive Functions [Abe00]
Verification III: Mutually Recursive Functions (in progress)

2

Slide 5

Wellfoundedness and Accessibility

Let S be a set and < a relation on S. The accessible part Acc> ⊆ S is defined as
the smallest set closed under

w ∈ Acc> :⇐⇒ ∀v < w. v ∈ Acc>

Accessible part induction (wellfounded induction):

∀w ∈ S. (∀v < w. P (v))⇒ P (w)

∀w ∈ Acc>. P (w)

Wellfounded part WF ⊆ S:

w ∈WF> :⇐⇒6 ∃f : N→ S. f(0) = w ∧ ∀n ∈ N. f(n) > f(n+ 1)

Brouwer’s bar theorem (axiom of bar induction):

WF> ⊆ Acc>

(Classically provable.)

Slide 6

Single Recursive Function

• Assume a wellfounded domain (D, <), i.e., D = Acc>.

• Provided that:

1. all statements (except the recursive calls) in f terminate

2. in each recursive call the argument v is smaller than the function input w

we can define termination of function f at argument w ∈ D as:

∀v < w. f@v ⇓

f@w ⇓

• Goal: ∀w ∈ D. f@w ⇓

• Proof by wellfounded induction.

3

Slide 7

Mutually Recursive Functions with a Single Argument

• Let F be a finite set of function symbols.

g � f :⇐⇒ f −→ g “f calls g”

• Straightforward extension of predicate “terminates at”:

f@w ⇓ :⇐⇒ ∀g � f, v < w. g@v ⇓

F@w ⇓ :⇐⇒ ∀f ∈ F . f@w ⇓

• Goal: ∀w ∈ D. F@w ⇓

• Proof by wellfounded induction.

• But: criterion to strict!

Slide 8

Call Graphs

• Sufficient: In each call cycle

f −→ g −→ . . . −→ f

the argument is decreased once.

• Functions and calls can be organized in a labelled directed graph:

f
? // g

≤

h

<

``

• Indirect (combined) calls:

f
R−→ g

f
R−→+ g

f
R−→+ g g

S−→+ h

f
S?R−→+ h

? < ≤ ?

< < < ?

≤ < ≤ ?

? ? ? ?

4

Slide 9

Good Call Graphs

• Let C be a call graph.

C good :⇐⇒ ∀f ∈ F . ∀f R1−→ f1
R2−→ . . .

Rn−→ fn
Rn+1−→ f.

n+1∏
i=1

Ri = “<”

• Good call graphs have two properties:
Each cycle

f
~R−→ f

1. contains only calls that are at least preserving:

∀i. Ri ∈ {<,≤}

2. contains at least one decreasing call:

∃i. Ri = “<”

Slide 10

No Infinite Call Sequences

• Goal: All call sequences f(w) ; g(v) ; . . . terminate.

• Evaluation ordering � on F ×D must fulfill

(g, v)� (f, w) ⇐ f
?−→ g

∨ (f
≤−→ g ∧ v ≤ w)

∨ (f <−→ g ∧ v < w)

• Theorem: For good call graphs the most general ordering � is wellfounded:

WF� = F ×D

• Proof: Consider an infinite call sequence. Since F is finite, one particular
function symbol f must appear infinitly often. Goodness of the call graph
implies an infinite descend on the argument of f . Contradiction!

5

Slide 11

Classical Termination Proof

• New (weaker) termination predicate:

f@w ⇓ :⇐⇒ ∀(g, v)� (f, w). g@v ⇓

• Goal: ∀f ∈ F , w ∈ D. f@w ⇓ .

• Proof by wellfounded induction, making use of the bar theorem.

• Question 1: Can we proof termination constructively without bar
induction?

Slide 12

Alternative Goodness Characterization

• A call graph C is good if there is a bijective naming

f11, . . . , f1m1 , . . . , fn1 . . . fnmn

of the function symbols in F s.th.

f i1j1
?−→ f i2j2 ⇒ i1 > i2

f i1j1
≤−→ f i2j2 ⇒ i1 > i2 ∨ (i1 = i2 ∧ j1 > j2)

f i1j1
<−→ f i2j2 ⇒ i1 ≥ i2

• This characterization has been used, e.g., by Frank Pfenning and Carsten
Schürmann for termination checking in the Twelf system [PS98].

• Question 2: Are the two criteria equivalent?

6

Slide 13

Ordering on Function Symbols

• Define two relations ≺,� on F by

g ≺ f :⇐⇒ f −→ g ∧ g 6−→+ f

g � f :⇐⇒ f
≤−→ g

• Theorem: Both relations are wellfounded.

• Proof: In both cases the transitive closure is irreflexive. Since F is finite, this
entails wellfoundedness.

f ≺+ f ⇒ f −→+ f ∧ f 6−→+ f

f �+ f ⇒ f
≤−→+ f (contradicts goodness)

• The modified lexicographic product ≺ ⊗′ � is wellfounded, too, and can be
completed to a total ordering. Answer 2: yes!

g ≺⊗′� f :⇐⇒ g ≺ f ∨ (g � f ∧ g � f)

Slide 14

7

Slide 15

Wellfounded Evaluation Ordering

• Define relation � on F ×D:

(g, v)� (f, w) :⇐⇒ g ≺ f
∨ (g � f ∧ v < w

∨ (v ≤ w ∧ g � f))

• Theorem: � is a wellfounded evaluation ordering.

• Proof: Wellfounded: � is a modified lexicographic product of wellfounded
relations.
Evaluation ordering:

f
?−→ g ⇒ g ≺ f (Goodness property 1)

f
<−→ g ∧ v < w ⇒ g � f ∧ v < w

f
≤−→ g ∧ v ≤ w ⇒ g � f ∧ v ≤ w ∧ g � f

Slide 16
• Now we can proof ∀w ∈ D, f ∈ F . f@w ⇓ by wellfounded induction.

Answer 1: yes!

8

Slide 17

Towards Functions with Several Arguments

fun flat [] = []

| flat (l::ls) = aux l ls

and aux [] ls = flat ls

| aux (x::xs) ls = x :: aux xs ls;

flat

(
<

<

)

!!
(<) 77 aux

(
< ?

? ≤

)
ee

(? ≤)

aa

Slide 18

Call Graphs for Functions with Several Arguments

• Let F be a finite set of function symbols with arity mapping ar : F → N

• A call graph is a labelled directed multi-graph with edges

f
σ,a−→ g

s.th.
σ : ar(g)→ ar(f) permutation of arguments

a : ar(g)→ {<,≤, ?} size change information

• A call graph is good iff

∀f σ,a−→+ f. ∃k. σ = id � k ∧ lexk<(a)

where we refer to k as number of relevant arguments and

lexk<(a) :⇐⇒ ∃k′ < k. a(k′) = “<” ∧ ∀i < k′.a(i) = “≤”

lexk=(a) :⇐⇒ ∀i < k. a(i) = “≤”

lexk≤(a) :⇐⇒ lexk<(a) ∨ lexk=(a)

9

Slide 19

Complications

• Attributes “decreasing” (<) and “preserving” (≤) of a call are no longer
global. The call f −→ g is decreasing for f and preserving for g.

f
(

< ·
· ≤

) %%

(
· ≤
< ·

)

g

(
< ·
· ≤

)zz

(
· ≤
< ·

)
``

• Two call cycles may have a different number of relevant arguments. Here
k(g → f → g) = 1 and k(g → h→ g) = 2.

f

(
≤ ·
· ?

)
>> g

(
< ·
· ?

)

~~

(
< ·
· ≤

)

h

(
≤ ·
· ≤

)
``

Slide 20

Argument Trace

• Arguments are being permuted ⇒ we need an argument trace

τf→g : ar(g)→ ar(f) for all f, g ∈ F

• Requirements: For each cycle h −→∗ f σ,a−→ g −→∗ h with k relevant
arguments

τh→h = id � k (1)

τf→h = σ ◦ τg→h � k (2)

10

Slide 21

• Example: τg→f = id, not τg→f = (1 2).

f

 < · ·
· · <

· < ·

 ≤ · ·
· ≤ ·
· · ≤

-- g ≤ · ·

· < ·
· · ?

mm

Slide 22

Call Classification

• We classify the calls as decreasing resp. (strictly) preserving by
(R ∈ {<,=,≤}):

classhR(f
σ,a−→ g) :⇐⇒ ∀Z = h −→∗ f σ,a−→ g −→∗ h. lex

k(Z)
R (a ◦ τg→h)

• Property 1. In each cycle each call is preserving

∀Z = h −→∗ f σ,a−→ g −→∗ h. classh≤(f
σ,a−→ g)

• Classification of transitions:

f
<−→ g :⇐⇒ ∃h ≈ f. ∀f σ,a−→ g. classh<(f

σ,a−→ g)

f
≤−→ g :⇐⇒ ∀h ≈ f. ∃f σ,a−→ g. classh=(f

σ,a−→ g)

f
?−→ g :⇐⇒ g 6−→ f

h ≈ f is defined as h −→∗ f −→∗ h.

11

Slide 23

Evaluation Ordering

• We define g ≺ f as before and

g � f :⇐⇒ f
≤−→ g

• Theorem: Both relations are wellfounded.

• Define v <hf→g w as “v is smaller than w wrt. to h in a call from f to g”.
This relation is wellfounded.

• Theorem: The relation � defined by

(g, v)� (f, w) :⇐⇒ g ≺ f ∨ g ≈ f ∧ (∀h. v ≤hf→g w)

∧ ((∃h. v <hf→g w) ∨ g � f)

is a wellfounded evaluation ordering.

• Proof: � is a lexicographic product of three wellfounded relations. The
second of these is a multiset ordering of wellfounded relations indexed by h.

Slide 24

Further Extensions

Weaken the definition of good to allow:

• Multiset orderings.

• Cycles of higher order. Example:

zip [] l = l

| (x::xs) l = x :: zip l xs;

References

[AA99] Andreas Abel and Thorsten Altenkirch. A predicative analysis of structural

recursion. Submitted to the Journal of Functional Programming, December

1999.

[Abe00] Andreas Abel. Specification and verification of a formal system for structurally

recursive functions. Submitted to TYPES’99, January 2000.

12

Slide 25
[PS98] Frank Pfenning and Carsten Schürmann. Twelf user’s guide. Technical report,

Carnegie Mellon University, 1998.

13

