
Normalization by Evaluation for System F

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich

National Institute for Informatics
Tokyo, Japan

5 December 2008

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 1 / 20

What is this for?

Theorem provers based on Curry-Howard: Coq, Agda, ...
Need to compare objects for equality.
E.g. f ,g : N→ N. Need a proof of P(f), have one of P(g).
Extensional equality is undecidable.
Approximation: intensional equality.
Compute normal forms for f ,g and compare.
The more the better: β-, βη-, βηπ-, . . . -normal form.
NB: Coq distinguishes between P(f) and P(λx . f x).
Normalization-by-evaluation excellent when η is involved.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 2 / 20

What is Normalization By Evaluation?

Semantics (Values)

reify ↘

##GGGGGGGGGGGGGGGGGGGGGGG

Syntax (Terms)

eval L M

;;wwwwwwwwwwwwwwwwwwwwwwww
⊃ Normal Forms

You have: an interpreter (L M).
You buy: my reifyer (↘).
You get for free: a full normalizer!

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 3 / 20

What is Normalization By Evaluation?

Semantics (Values)

reify ↘

##GGGGGGGGGGGGGGGGGGGGGGG

Syntax (Terms)

eval L M

;;wwwwwwwwwwwwwwwwwwwwwwww
⊃ Normal Forms

You have: an interpreter (L M).
You buy: my reifyer (↘).
You get for free: a full normalizer!

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 3 / 20

What is Normalization By Evaluation?

Semantics (Values)

reify ↘

##GGGGGGGGGGGGGGGGGGGGGGG

Syntax (Terms)

eval L M

;;wwwwwwwwwwwwwwwwwwwwwwww
⊃ Normal Forms

You have: an interpreter (L M).
You buy: my reifyer (↘).
You get for free: a full normalizer!

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 3 / 20

What is Normalization By Evaluation?

Semantics (Values)

reify ↘

##GGGGGGGGGGGGGGGGGGGGGGG

Syntax (Terms)

eval L M

;;wwwwwwwwwwwwwwwwwwwwwwww
⊃ Normal Forms

You have: an interpreter (L M).
You buy: my reifyer (↘).
You get for free: a full normalizer!

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 3 / 20

How to Reify a Function

Functions are thought of as black boxes.
How to print the code of a function?
Apply it to a fresh variable!

reify (f) = λx . reify(f (x))

reify (x ~d) = x reify(~d)

Computation needs to be extended to handle variables
(unknowns).

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 4 / 20

Choices of Semantics

1 β-normal forms (Agda 2, Ulf Norell)
2 Weak head normal forms (Constructive Engine, Randy Pollack)
3 Explicit substitutions (Twelf, Pfenning et.al.)
4 Closures (your favorite pure functional language, Epigram 2)
5 Virtual machine code (Coq: ZINC machine, Leroy/Gregoire)
6 Native machine code (Cayenne: i386, Dirk Kleeblatt)

These are all (partial) applicative structures.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 5 / 20

Applicative Structures

An applicative structure consists of:
A set D.
Application operation · : D× D→ D.
Interpretation LtMη ∈ D for term t and environment η, satisfying:

LxMη = η(x)
Lr sMη = LrMη · LsMη

LλxtMη · d = LtMη[x 7→d]

Simple examples:
1 D = (Tm/=β) terms modulo β-equality.
2 D ∼= [D→ D] reflexive (Scott) domain.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 6 / 20

An Interpreter in Haskell

Abs :: (D -> D) -> D
app :: D -> (D -> D)

data Tm where
TmVar :: Name -> Tm
TmAbs :: Name -> Tm -> Tm
TmApp :: Tm -> Tm -> Tm

lookup :: Env -> Name -> D
ext :: Env -> Name -> D -> Env

eval :: Tm -> Env -> D
eval(TmVar x) eta = lookup eta x
eval(TmAbs x t)eta = Abs (\ d -> eval t (ext eta x d))
eval(TmApp r s)eta = app (eval r eta) (eval s eta)

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 7 / 20

Applicative Structures with Variables

Enrich D with all neutral objects x d1 . . . dn, where x a variable and
d1, . . . ,dn ∈ D.
Application satisfies:

(x ~d) · d = x ~d d

Leroy/Gregoire call neutral objects accumulators.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 8 / 20

Value Domain with Variables

data D where
Abs :: (D -> D) -> D
Neu :: Ne -> D

type Name = String
data Ne where
Var :: Name -> Ne
App :: Ne -> D -> Ne

app :: D -> D -> D
app (Abs f) d = f d
app (Neu n) d = Neu (App n d)

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 9 / 20

Reification (Simply-Typed)

Given a type and a value of this type, produce a term.
Context Γ records types of free variables.
Inductively defined relation Γ ` d ↘ v ⇑ A.
“In context Γ, value d reifies to term v at type A.”

Γ, x :A ` d · x ↘ v ⇑ B
Γ ` d ↘ λxv ⇑ A→ B

Γ ` di ↘ vi ⇑ Ai for all i

Γ ` x ~d ↘ x ~v ⇑ ∗
Γ(x) = ~A→ ∗

Inputs: Γ,d ,A
Output: v (β-normal η-long).

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 10 / 20

Reification (Step by Step)

Reifying neutral values step by step:

Γ ` e↘ u ⇓ A e reifies to u, inferring type A.

Inputs: Γ, e (neutral value).
Outputs: u (neutral β-normal η-long), A.
Rules:

Γ ` x ↘ x ⇓ Γ(x)

Γ ` e↘ u ⇓ A→ B Γ ` d ↘ v ⇑ A
Γ ` e d ↘ u v ⇓ B

Γ ` e↘ u ⇓ ∗
Γ ` e↘ u ⇑ ∗

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 11 / 20

Type-Directed Reification in Haskell

reify :: Cxt -> Ty -> D -> Tm
reify’ :: Cxt -> Ne -> (Tm, Ty)

reify gamma (Arr a b) f = TmAbs x
(reify gamma’ b (app f (Neu (Var x))))
where x = freshName gamma

gamma’ = push gamma x a
reify gamma (Base _) (Neu n) = fst (reify’ gamma n)

reify’ gamma (Var x) = (TmVar x, lookup gamma x)
reify’ gamma (App n d) = (TmApp r s, b)
where (r, Arr a b) = reify’ gamma n

s = reify gamma a d

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 12 / 20

Normalization by Evaluation

Compose evaluation with reification:

nbeA(t) = the v with ` LtMρid ↘ v ⇑ A

Completeness: NbE returns identical normal forms for all
βη-equal terms of the same type.

If Γ ` t = t ′ : A then Γ ` LtMρid ↘ v ⇑ A and
Γ ` Lt ′Mρid ↘ v ⇑ A.

Soundness: NbE does not identify too many terms. The returned
normal form is βη-equal to the original term.

If Γ ` t : A then Γ ` LtMρid ↘ v ⇑ A and Γ ` t = v : A.

Both proven by Kripke logical relations.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 13 / 20

A Logical Relation for Soundness

A Kripke logical relation A ∈ KA of type A is a map from contexts Γ
to relations between values and terms of type A:

(Γ ∈ Cxt)→ P(D× TmA
Γ)

Monotonicity: extending Γ increases the relation.
For each type A, define KLRs A,A by

AΓ = {(d , t) | Γ ` d ↘ v ⇑ A and Γ ` t = v : A for some v}
AΓ = {(e, t) | Γ ` e↘ v ⇓ A and Γ ` t = v : A for some v}

Soundness: If Γ ` t : A then (LtMρid , t) ∈ AΓ.
Define KLR [[A]] ⊆ A and show (LtMρid , t) ∈ [[A]]Γ (fundamental
theorem).

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 14 / 20

Interpretation Space

Function space: given A ∈ KA and B ∈ KB, define

(A ⇒ B)Γ = {(f , r) ∈ D× TmA→B
Γ | (f · d , r s) ∈ BΓ′

if Γ′ extends Γ and (d , s) ∈ AΓ′}

A,A form an interpretation space, i. e.:

∗ ⊆ ∗
A⇒ B ⊆ A→ B

A→ B ⊆ A⇒ B

We say A A (A realizes A) if A ⊆ A ⊆ A.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 15 / 20

Type interpretation

Define [[A]] by induction on A.

[[∗]] = ∗
[[A→ B]] = [[A]]⇒ [[B]]

Theorem: A [[A]].
Now, the fundamental theorem implies soundness of NbE.
Completeness by a similar logical relation.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 16 / 20

What Have We Got?

Abstractions in our proof:
1 Applicative structures abstract over values and β.

2 Fundamental theorem in a general form.

3 Interpretation spaces abstract over “good” semantical types. (New!)

Other instances for A, A yield traditional weak β(η)-normalization.

Readily adapts to System F.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 17 / 20

Scaling to System F

Extending the notion of interpretation space:

(
⋂

B A[B/Y]) ⊆ ∀YA

∀YA ⊆
⋂

B A[B/Y]

Extending type interpretation:

[[X]]ρ = ρ(X)

[[A→ B]]ρ = [[A]]ρ → [[B]]ρ
[[∀XA]]ρ =

⋂
BB[[A]]ρ[X 7→B]

Extending applicative structures, reification... (unproblematic).

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 18 / 20

Related Work

Altenkirch, Hofmann, and Streicher (1997) describe another
version of NbE for System F.
Each type is interpreted by a syntactical type A, a semantical type
A, and a normalization function nfA for terms of type A.
Construction carried out in category theory.
Other work on NbE: Schwichtenberg, Berger, Danvy, Filinski,
Dybjer, Scott, Aehlig, Joachimski, Coquand, and many more.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 19 / 20

Conclusions

This work: NbE for System F with conventional means.
Follows the structure of a weak normalization proof.
Variation of Girard’s scheme.
Future work: scale to the Calculus of Constructions.

Acknowledgments: This work was carried out during a
visit to Frédéric Blanqui and Cody Roux at LORIA, Nancy,
France, financed by the Bayerisch-Französisches
Hochschulzentrum.

I thank the National Institute of Informatics and Makoto
Tatsuta for the invitation.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F NII, 2008 20 / 20

