Normalization in Lambda-Calculus

Andreas Abel

Department of Computer Science Ludwig-Maximilians-University Munich

Mini-Course McGill University, Montreal, Canada 4 and 6 December 2012

1 / 1

Untyped Lambda-Calculus

Λ-terms and contexts:

$$r, s, t, u, v ::= x \mid \lambda x t \mid t u$$
 $C ::= [] \mid \lambda x C \mid C u \mid t C$

• β -Contraction:

$$(\lambda xt) u \mapsto t[u/x]$$

• Full β -reduction: allow reduction in each subterm.

$$\frac{t\mapsto t'}{C[t]\longrightarrow C[t']}$$

Multi-step reduction:

 \longrightarrow^+ transitive closure of \longrightarrow reflexive-transitive closure of \longrightarrow

Normalization

Definition (Normal)

t is normal if it has no reduct, $t \leftrightarrow$.

Definition (Weak normalization)

t is weakly normalizing (has a normal form) if $t \longrightarrow^* v \not\longrightarrow$.

Definition (Strong normalization, classically)

t is strongly normalizing if there exists no infinite reduction sequence $t \longrightarrow t_1 \longrightarrow t_2 \longrightarrow \dots$

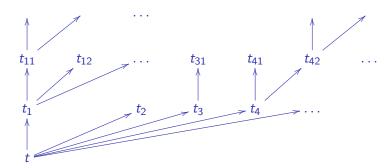
t is strongly normalizing if all of its reducts are strongly normalizing.

$$\frac{\{t'\mid t\longrightarrow t'\}\subseteq \mathsf{sn}}{t\in \mathsf{sn}}$$

Strong normalization, constructively

$$\frac{(t\longrightarrow _)\subseteq \mathsf{sn}}{t\in \mathsf{sn}}$$

Intuitively: Each path in the reduction tree of t is finite.



We say: the reduction tree is well-founded.

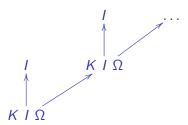
Leaves are normal forms.

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽Q⊙

4 / 1

Examples

- Ex: Any strongly normalizing ∧-term is weakly normalizing.
- Let $\Omega = (\lambda x. xx)(\lambda x. xx)$, $K = \lambda x\lambda y. x$, $I = \lambda x. x$.
- $\bullet \ \Omega \longrightarrow \Omega \longrightarrow \Omega \longrightarrow \ldots$
- Ω admits an infinite reduction sequence $(\Omega \notin sn)$.
- $\Omega \longrightarrow t$ iff $t = \Omega$.
- Ω diverges/has no normal form.
- $K \mid \Omega$ is weakly, but not strongly normalizing.



Proving properties of sn

Theorem (Subterm)

Any subterm of a strongly normalizing term is strongly normalizing itself.

- (Does not hold for weak normalization, see $K \mid \Omega$.)
- Classical proof: Let $t = C[s] \in sn$. Assume there is an infinite reduction sequence $s \longrightarrow s_1 \longrightarrow s_2 \longrightarrow \ldots$. Then, there is also an infinite sequence $C[s] \longrightarrow C[s_1] \longrightarrow \ldots$. Contradiction. So, $s \in sn$.
- Constructive proof: Consider the reduction tree T of t = C[s]. We construct the reduction tree S of s by deleting all nodes (with subtrees) of T which are not of the form C[s']. Since T was well-founded, so is S.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 釣९♂

6 / 1

Noetherian/wellfounded induction

Inductive definition of sn:

$$\frac{\forall t'.\ t \longrightarrow t' \implies t' \in \mathsf{sn}}{t \in \mathsf{sn}}$$

Definition (Noetherian/wellfounded induction)

To prove $\forall t \in \text{sn. } P(t)$, we have the induction hypothesis

$$\forall t'. \ t \longrightarrow t' \implies P(t').$$

Meaning: to prove P(t) we can use P(t') for all reducts t' of t.

Intuition: if there are no infinite reduction sequences, we can view reducts as smaller.

Andreas Abel (LMU) Normalization McGill 7 / 1

Proving properties of sn by wellfounded induction

Theorem (Subterm)

Any subterm of a strongly normalizing term is strongly normalizing itself. $C[s] \in sn \implies s \in sn$.

• Proof: By well-founded induction on $t \in \mathsf{sn}$, we show $P(t) := (\forall u. \ t = C[u] \implies u \in \mathsf{sn})$. Assume t = C[s]. To show $s \in \mathsf{sn}$ it is sufficient to show $s' \in \mathsf{sn}$ for an arbitrary s' with $s \longrightarrow s'$. Since $t = C[s] \longrightarrow C[s']$ we have by induction hypothesis P(C[s']). Choosing u = s', with C[s'] = C[s'], we get $s' \in \mathsf{sn}$.

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Inductive Characterization of Normal Forms

Neutral (atomic) terms by rules:

$$\frac{r \Downarrow s \Uparrow}{r s \Downarrow}$$

Normal terms by rules:

$$\frac{r \Downarrow}{r \Uparrow} \qquad \frac{t \Uparrow}{\lambda x t \Uparrow}$$

- Normal: $t \uparrow \text{ iff } t \not\longrightarrow$.
- Neutral: $t \Downarrow \text{iff } t \not\longrightarrow \text{and } t \text{ not a lambda-abstraction.}$

Closure Properties of sn

- If $t[s/x] \in \text{sn}$, then $t \in \text{sn}$.
- Neutral terms (implications, written as rules):

$$\frac{r \in \mathsf{sn}}{x \in \mathsf{sn}} \qquad \frac{r \in \mathsf{sn}}{r \in \mathsf{sn}} \qquad \frac{s \in \mathsf{sn}}{s \in \mathsf{sn}}$$

λs and weak head redexes:

$$\frac{t \in \mathsf{sn}}{\lambda x t \in \mathsf{sn}} \qquad \frac{s \in \mathsf{sn} \qquad s_1, ..., s_n \in \mathsf{sn} \qquad t[s/x] \, s_1 \dots s_n \in \mathsf{sn}}{(\lambda x t) \, s \, s_1 \dots s_n \in \mathsf{sn}}$$

Eliminating the ellipsis ...:

$$\frac{u \in \operatorname{sn}}{(\lambda x t) u \longrightarrow_{\operatorname{sn}} t[u/x]} \quad \frac{t \longrightarrow_{\operatorname{sn}} t'}{t u \longrightarrow_{\operatorname{sn}} t' u} \quad \frac{r \longrightarrow_{\operatorname{sn}} r' \qquad r' \in \operatorname{sn}}{r \in \operatorname{sn}}$$

Closure under Strong Head Expansion

Theorem

If $r \longrightarrow_{sn} r'$ and $r' \in sn$ then $r \in sn$ and r not a λ .

Proof.

By induction on $r \longrightarrow_{sn} r'$.

$$\frac{u\in\operatorname{sn}}{(\lambda xt)u\longrightarrow_{\operatorname{sn}}t[u/x]}$$

Have $t[u/x] \in \text{sn.}$ Side induction on (1) $t \in \text{sn and}$ (2) $u \in \text{sn.}$ Show $(\lambda xt)u \longrightarrow s$ implies $s \in \text{sn.}$ Case $s = (\lambda xt')u$ covered by (1), $(\lambda xt)u'$ by (2), t[u/x] by assumption.

$$\frac{t \longrightarrow_{\mathsf{sn}} t'}{t \ u \longrightarrow_{\mathsf{sn}} t' \ u}$$

By ind. hyp., $t \in \operatorname{sn}$ and t not a λ . Side induction on (1) $t \in \operatorname{sn}$ and (2) $u \in \operatorname{sn}$. Show $t u \longrightarrow s$ implies $s \in \operatorname{sn}$. Cases (1) s = t'' u and (2) s = t u' covered accordingly.

Inductive Characterization of Strongly Normalizing Terms

Strongly normalizing neutral terms:

$$\frac{r \in \mathsf{SNe} \qquad s \in \mathsf{SN}}{r \, s \in \mathsf{SNe}}$$

Strongly normalizing terms:

$$\frac{r \in \mathsf{SNe}}{r \in \mathsf{SN}} \qquad \frac{t \in \mathsf{SN}}{\lambda x t \in \mathsf{SN}} \qquad \frac{t \longrightarrow_{\mathsf{SN}} t' \qquad t' \in \mathsf{SN}}{t \in \mathsf{SN}}$$

Strong head reduction:

$$\frac{u \in \mathsf{SN}}{(\lambda x t) u \longrightarrow_{\mathsf{SN}} t[u/x]} \qquad \frac{t \longrightarrow_{\mathsf{SN}} t'}{t \ u \longrightarrow_{\mathsf{SN}} t' \ u}$$

Soundness of SN

Theorem (Soundness of SN)

- If $t \in SN$ then $t \in sn$.
- 2 If $t \in SNe$ then $t \in sn$ and $t = x \vec{s}$.
- 3 If $t \longrightarrow_{SN} t'$ then $t \longrightarrow_{SN} t'$.

Proof.

By induction on the derivation, using the closure properties of sn.

Completeness of SN

Theorem (Completeness of SN)

- If $t = x \vec{s} \in \text{sn } then x \vec{s} \in SNe$.
- 2 If $t = (\lambda x r) s \vec{s} \in \text{sn then } t \longrightarrow_{SN} r[s/x] \vec{s}$.
- **3** If $t \in \text{sn } then \ t \in \text{SN}$.

Proof.

By lexicographic induction on the height of the reduction tree of t and the height of t. \Box

Simply-Typed Lambda-Calculus

• Type assignment to untyped terms:

$$\frac{(x:A) \in \Gamma}{\Gamma \vdash x:A} \qquad \frac{\Gamma \vdash r:A \to B \qquad \Gamma \vdash s:A}{\Gamma \vdash rs:B} \qquad \frac{\Gamma, x:A \vdash t:B}{\Gamma \vdash \lambda xt:A \to B}$$

- Application difficult: $r, s \in SN \implies rs \in SN$.
- Proof of strong normalization, outline:



Typed SN

Typed version of SNe.

$$\frac{(x:A) \in \Gamma}{\Gamma \vdash x \Downarrow A} \qquad \frac{\Gamma \vdash r \Downarrow A \to B \qquad \Gamma \vdash s \Uparrow A}{\Gamma \vdash r s \Downarrow B}$$

Typed version of SN.

$$\frac{\Gamma \vdash t \Downarrow C}{\Gamma \vdash t \Uparrow C} \quad \frac{\Gamma, x : A \vdash t \Uparrow B}{\Gamma \vdash \lambda x t \Uparrow A \to B} \quad \frac{\Gamma \vdash r \longrightarrow r' \Uparrow C}{\Gamma \vdash r \Uparrow C}$$

• Typed version of \longrightarrow_{SN} .

$$\frac{\Gamma, x : A \vdash t : B \qquad \Gamma \vdash s \uparrow A}{\Gamma \vdash (\lambda x t) s \longrightarrow t[s/x] \uparrow B} \qquad \frac{\Gamma \vdash r \longrightarrow r' \uparrow A \longrightarrow B \qquad \Gamma \vdash s : A}{\Gamma \vdash r s \longrightarrow r' s \uparrow B}$$

Closure of typed SN under application

Theorem

If
$$\Gamma \vdash r \uparrow A \rightarrow B$$
 and $\Gamma \vdash s \uparrow A$ then $\Gamma \vdash r s \uparrow B$.

Interesting case:

$$\frac{\Gamma, x : A \vdash t \uparrow B}{\Gamma \vdash \lambda x t \uparrow A \to B} \qquad \Gamma \vdash s \uparrow A$$

- To show $\Gamma \vdash (\lambda x t) s \uparrow B$ we need $\Gamma \vdash t[s/x] \uparrow B$.
- Follows from closure under substitution.
- Substitution could be tricky if t = x u: then t[s/x] = su.
- Need again application thm., but type of u is smaller then type A of x.

McGill

Typed SN is closed under substitution

Lemma (Substitution)

Let $\Gamma \vdash s \uparrow A$.

- If $\Gamma, x: A, \Gamma' \vdash r \Downarrow C$ then either $\Gamma, \Gamma' \vdash r[s/x] \Downarrow C$ or $\Gamma, \Gamma' \vdash r[s/x] \Uparrow C$ and C is smaller than A.
- **2** If $\Gamma, x: A, \Gamma' \vdash r \uparrow C$ then $\Gamma, \Gamma' \vdash r[s/x] \uparrow C$.
- If $\Gamma, x: A, \Gamma' \vdash r \longrightarrow r' \Uparrow C$ then $\Gamma, \Gamma' \vdash r[s/x] \longrightarrow r'[s/x] \Uparrow C$.

Proof.

Simultaneously by main induction on A and side induction on the derivation.

Strong normalization for simple types

Theorem

If $\Gamma \vdash t : C$ then $t \in SN$.

Proof.

Prove $\Gamma \vdash t \uparrow C$ by induction on the type derivation, using closure under application. Then, erase to $t \in SN$.

Further details and Twelf formalization: [Abel, LFM 2004]. Related: hereditary substitutions [Watkins et al., 2002].

Andreas Abel (LMU)

Intersection Types

$$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash t : B}{\Gamma \vdash t : A \cap B} \qquad \frac{\Gamma \vdash r : A \cap B}{\Gamma \vdash r : A} \qquad \frac{\Gamma \vdash r : A \cap B}{\Gamma \vdash r : B}$$

- STL with intersection types is strongly normalizing.
- Any strongly normalizing term can be typed with intersections.

$$t \in SN \iff \exists \Gamma, A. \ \Gamma \vdash t : A$$

• Example: $\lambda x. xx : (A \cap (A \rightarrow B)) \rightarrow B$.

20 / 1

SN for intersection types

Add rules for ∩-elimination to ↓:

$$\frac{\Gamma \vdash r \Downarrow A \cap B}{\Gamma \vdash r \Downarrow A} \qquad \frac{\Gamma \vdash r \Downarrow A \cap B}{\Gamma \vdash r \Downarrow B}$$

Add rules for ∩-introduction to ↑:

$$\frac{\Gamma \vdash t \Uparrow A \qquad \Gamma \vdash t \Uparrow B}{\Gamma \vdash t \Uparrow A \cap B}$$

Lemma (Closure under ∩-elimination)

If $\Gamma \vdash t \uparrow A \cap B$ then $\Gamma \vdash t \uparrow A$ and $\Gamma \vdash t \uparrow B$ [Abel, HOR 2007].

Completeness of Intersection Types for SN

Lemma (Anti-substitution)

Let $\Gamma \vdash s : A_0$. If $\Gamma \vdash t[s/x] : C$ then $\Gamma, x : A \vdash t : C$ and $\Gamma \vdash s : A$ for some A.

For instance $y: \mathbb{N} \to A \vdash y \ 0: A$ and $y: B \vdash y[y \ 0/x]: B$. Have $y: B \cap (\mathbb{N} \to A) \vdash y \ 0: A$ and $y: B \cap (\mathbb{N} \to A), x: A \vdash y: B$. Thus, $y: B \cap (\mathbb{N} \to A) \vdash (\lambda xy)(y \ 0): B$ (subject expansion).

Theorem

- **1** If $r \in \mathsf{SNe}$ then $\Gamma \vdash r : X$ for some Γ and type variable X.
- **2** If $t \in SN$ then $\Gamma \vdash t : A$ for some Γ , A.
- **3** If $t \longrightarrow_{SN} t'$ and $\Gamma' \vdash t' : C$ then $\Gamma \vdash t : C$ for some Γ .

