Implementing a Normalizer Using Sized Heterogeneous Types

Normalization of λ-Terms by Structural Recursion

Andreas Abel
Mathematically Structured Functional Programming Kuressaare, Estonia, July 2, 2006

Outline

Contents

1 Introduction 1
2 The Meta-Language: $\mathrm{F}_{\omega} \widehat{ }$ 1
3 The Object Language: STL 3
4 De Bruijn Implementation 5
5 Conclusion 7

1 Introduction

Interpreters

- Turing-complete Language L : can implement its own interpreter.
- What meta-language $M L$ is required to interpret a total (=terminating) language L ?
- $M L$ should also be total.
- Here: $L=$ simply-typed λ-calculus
- $M L=\mathrm{F}_{\hat{\omega}}^{\widehat{ }}$, a functional programming language with sized types
- Termination can be ensured by the type-checker!

2 The Meta-Language: F_{ω}

The meta-language: $\mathrm{F}_{\hat{\omega}}^{\widehat{ }}$

- Pure functional language (no assignments, pointers, I/O)
- Higher-order functions
- Impredicative polymorphism
- Sized recursive types of higher-kind
- Recursion, restricted; termination guaranteed by type system
- Corecursion, restricted: productivity guaranteed by type system
- Mathematical structure: ordinals, transfinite induction

Sized types, semantically

- Recursive types defined from below by transfinite iteration.
- Example: List $A=\mu^{\omega} F$
- $F X=\{$ nil, cons a as $\mid a \in A, a s \in X\}$
- Transfinite Iteration:

$$
\begin{array}{ll}
\mu^{0} F & =\emptyset \\
\mu^{\alpha+1} F & =F\left(\mu^{\alpha} F\right) \\
\mu^{\lambda} F & =\bigcup_{\alpha<\lambda} \mu^{\alpha} F
\end{array}
$$

- F monotone: $\mu^{\alpha} F \subseteq \mu^{\beta} F$ for $\alpha \leq \beta$.
- Sized type: List $^{\alpha} A=\mu^{\alpha} F$.

Sized types, syntactically

- Data types are equipped with a size index (upper bound)
- E.g., List ${ }^{2} A$ denotes lists of length $<\imath$ with elements in A
- Constructors (polymorphic):

$$
\begin{aligned}
& \text { nil }: \forall i \forall A . \text { List }^{2+1} A \\
& \text { cons }: \forall i \forall A . A \rightarrow \text { List }^{2} \rightarrow \text { List }^{2+1} A
\end{aligned}
$$

- Size expressions must have the form $\imath+n$ (\imath size variable, n natural number) or ∞ (unbounded size).
- Subtyping: List $^{2} A \leq$ List $^{2+1} A \leq \cdots \leq$ List $^{\infty} A$.

Recursion over sized types, semantically

- Prove that $\operatorname{fix} s=s($ fix $s) \in A(\beta)$ by transfinite induction on β.

1. Base: fix $s \in A(0)$ (bottom-check)
2. Step: fix $s \in A(\alpha)$ implies fix $s \in A(\alpha+1)$
3. Limit: fix $s \in A(\lambda)$ if fix $s \in A(\alpha)$ for all $\alpha<\lambda$.

- Proof skeleton:

1. Base: holds e.g., for $A(\alpha)=$ List $^{\alpha} B \rightarrow C$.
2. Step: holds if $s \in A(\alpha) \rightarrow A(\alpha+1)$.
3. Limit: holds for upper-semicontinuous A [CSL 06].

Recursion over sized types, syntactically

- Recursion restricted to this pattern:

$$
\begin{aligned}
f: \forall \imath . A(\imath) \rightarrow C(\imath) & \\
f(x: A(\imath+1))= & (\ldots f(t: A(\imath)) \ldots \\
& \ldots g(f: A(\imath) \rightarrow C(\imath)) \ldots): C(\imath+1)
\end{aligned}
$$

- Termination of recursion ensured by types.
- Example:

$$
\begin{aligned}
& \text { filter }: \forall \imath \forall A .(A \rightarrow \text { Bool }) \rightarrow \operatorname{List}^{2} A \rightarrow \text { List }^{2} A \\
& \text { filter } p \text { nil }=\text { nil } \\
& \text { filter } p\left(\text { cons } a \text { as }: \operatorname{List}^{\imath+1} A\right)= \\
& \quad \text { if } p(a) \text { then cons } a\left(\text { filter } p\left(\text { as }: \operatorname{List}^{\imath} A\right)\right) \\
& \quad \text { else filter } p\left(\text { as }: \operatorname{List}^{\imath} A\right)
\end{aligned}
$$

3 The Object Language: STL

The Simply-Typed λ-Calculus

- An even purer functional language (no data types, no recursion, no polymorphism)
- Programs consist of functions and application.

$r, s, t::=$| x | |
| :--- | :--- |
| $\|$
 $\lambda x: a . t$
 $r s$
 | absiable |
| application of x in t | |

- Types:

$$
\begin{array}{ccll}
a, b, c & ::= & o & \text { base type } \\
& \mid & a \rightarrow b & \text { function type }
\end{array}
$$

Computation in STL

- Only reduction rule:

$$
(\lambda x: a . t) s \longrightarrow[s / x] t
$$

- Example:

$$
\begin{aligned}
& (\lambda x:((o \rightarrow o) \rightarrow(o \rightarrow o)) \cdot x(\lambda z: o . z))(\lambda y:(o \rightarrow o) \cdot y) \\
\longrightarrow & {[(\lambda y:(o \rightarrow o) \cdot y) / x](x(\lambda z: o . z)) } \\
= & (\lambda y:(o \rightarrow o) \cdot y)(\lambda z: o . z) \\
\longrightarrow & {[(\lambda z: o . z) / y] y=\lambda z: o . z }
\end{aligned}
$$

- Normal form $v::=\lambda x: a . v \mid x v_{1} \ldots v_{n}$.

A Big-Step Interpreter for STL

- For term $t, \llbracket t \rrbracket$ computes its normal form.

$$
\begin{array}{lll}
\llbracket x \rrbracket & =x & \\
\llbracket \lambda x: a . r \rrbracket & =\lambda x: a \cdot \llbracket r \rrbracket & \\
\llbracket r s \rrbracket & = & \llbracket \llbracket s \rrbracket / x] t \\
& \text { if } \llbracket r \rrbracket=\lambda x: a . t \\
& \llbracket r \rrbracket \llbracket s \rrbracket & \text { otherwise }
\end{array}
$$

- Substitution $\left[\llbracket s \rrbracket^{a} / x\right] t$ of one normal form s into another normal form t may trigger new reductions.

Hereditary Substitutions

- Normalizing substitution of normal forms: $\left[s^{a} / x\right] t$

$$
\begin{array}{rll}
{\left[s^{a} / x\right] x} & =s^{a} & \\
{\left[s^{a} / x\right] y} & =y & \text { if } x \neq y \\
{\left[s^{a} / x\right](\lambda y: b \cdot r)} & =\lambda y: b \cdot\left[s^{a} / x\right] r & \\
\text { where } y \text { fresh for } s, x \\
{\left[s^{a} / x\right](t u)} & =\left(\left[\hat{u}^{b} / y\right] r^{\prime}\right)^{c} & \\
& \text { if } \hat{t}=\left(\lambda y: b^{\prime} \cdot r^{\prime}\right)^{b \rightarrow c} \\
& \hat{t} \hat{u} & \\
\text { where } \hat{t}= & {\left[s^{a} / x\right] t} &
\end{array}
$$

- Invariant: $|b \rightarrow c| \leq|a|$ in line 4.

What is happening in hereditary substitutions?

- In $\left[s^{a} / x\right] t$, size of type $|a|$ is "fuel".
- As long as there is fuel, new her. substitutions can be performed.
- Each new substitution starts with less fuel.
- E.g. $\left[w^{a \rightarrow b \rightarrow c} / x\right]\left(x v_{1} v_{2}\right)$
- Possibly new subst. of v_{1} into w : fuel $=|a|$.
- Substitution of v_{2} into the result: fuel $=|b|$.
- $\left[s^{a} / x\right] t$ terminates by lexicographic order $(|a|,|t|)$.

What happens for ill-typed terms?

- $\left[s^{a} / x\right] t$ also terminates for ill-typed or non-normal s, t.
- But fuel might run out before normal form is reached.
- Result might be non-normal form.
- Example:

$$
\begin{aligned}
& \llbracket(\lambda x:(o \rightarrow o) . x x)(\lambda x: o . x x) \rrbracket \\
\longrightarrow & {\left[(\lambda x: o . x x)^{o \rightarrow o} / x\right](x x) } \\
\longrightarrow & (\lambda x: o . x x)^{o \rightarrow o}(\lambda x: o . x x)^{o \rightarrow o} \\
\longrightarrow & {\left[(\lambda x: o . x x)^{o} / x\right](x x) } \\
\longrightarrow & (\lambda x: o . x x)^{o}(\lambda x: o . x x)^{o}
\end{aligned}
$$

4 De Bruijn Implementation

Representation of STL in F_{ω}

- STL-types represented as a sized type.

$$
\begin{array}{ll}
\mathrm{o} & : \mathrm{Ty}^{\imath+1} \\
\text { arr } & : \\
\mathrm{Ty}^{\imath} \rightarrow \mathrm{Ty}^{\imath} \rightarrow \mathrm{Ty}^{\imath+1}
\end{array}
$$

- If a : Ty ${ }^{2}$ then $|a|<\imath$.
- STL-terms represented by nested data type $\mathrm{Tm}^{2} A$:

$$
\begin{aligned}
\text { var } & : A \rightarrow \operatorname{Tm}^{\imath+1} A \\
\text { app } & : \operatorname{Tm}^{\imath} A \rightarrow \operatorname{Tm}^{\imath} A \rightarrow \operatorname{Tm}^{\imath+1} A \\
\text { abs } & : \operatorname{Ty}^{\infty} \rightarrow \operatorname{Tm}^{2}(1+A) \rightarrow \operatorname{Tm}^{\imath+1} A
\end{aligned}
$$

- $\mathrm{Tm}^{2} A$ contains terms of height $<\imath$ with free variables in A.

Results of hereditary substitution

- Result of a hereditary substitution can either be a term with remaining fuel or a term with no fuel.

$$
\begin{aligned}
& \operatorname{Res}^{\imath} A=\operatorname{Tm}^{\infty} A \times\left(1+\mathrm{Ty}^{\imath}\right) \\
& \mathrm{ne}_{\text {Res }}: \operatorname{Tm}^{\infty} A \rightarrow \operatorname{Res}^{\imath} A \\
& \mathrm{nf}_{\text {Res }}: \operatorname{Tm}^{\infty} A \rightarrow \operatorname{Ty}^{\imath} \rightarrow \operatorname{Res}^{\imath} A
\end{aligned}
$$

- Extracting the term from a result:

$$
\mathrm{tm}: \operatorname{Res}^{2} A \rightarrow \operatorname{Tm}^{\infty} A
$$

Simultaneous hereditary substitutions

- For $\operatorname{Tm} A$, only simultaneous substitution

$$
\operatorname{Tm} A \rightarrow(A \rightarrow \operatorname{Tm} B) \rightarrow \operatorname{Tm} B
$$

is directly definable.

- Valuations for all variables:

$$
\begin{aligned}
& \mathrm{Val}^{2} A B=A \rightarrow \operatorname{Res}^{\imath} B \\
& \operatorname{sg}_{\text {Val }}: \operatorname{Tm}^{\infty} A \rightarrow \mathrm{Ty}^{2} \rightarrow \mathrm{Val}^{2}(1+A) A \\
& \operatorname{lift}_{\mathrm{Val}}: \mathrm{Val}^{2} A B \rightarrow \mathrm{Val}^{2}(1+A)(1+B)
\end{aligned}
$$

The F_{ω}-Code

$$
\begin{aligned}
& \text { subst : } \forall \imath . \operatorname{Ty}^{\imath} \rightarrow \forall A . \operatorname{Tm}^{\infty} A \rightarrow \operatorname{Tm}^{\infty}(1+A) \rightarrow \operatorname{Tm}^{\infty} A \\
& \text { subst } a s t=\mathrm{tm}\left(\text { simsubst } t\left(\mathrm{sg}_{\text {Val }} s a\right)\right) \\
& \text { where simsubst : } \forall \jmath . \forall A \forall B . \operatorname{Tm}^{j} A \rightarrow \mathrm{Val}^{\imath+1} A B \rightarrow \operatorname{Res}^{2+1} B \\
& \text { simsubst } t \rho=\text { match } t \text { with } \\
& \operatorname{var} x \quad \mapsto \quad \rho x \\
& \text { abs } b r \quad \mapsto \operatorname{abs}_{\hat{R e s}} b\left(\text { simsubstr } r\left(\text { lift }_{\text {Val }} \rho\right)\right) \\
& \operatorname{app} t u \mapsto \quad \text { let } \hat{t}=\text { simsubst } t \rho \\
& \hat{u}=\text { simsubst } u \rho \\
& \text { in match } \hat{t} \text { with } \\
& \mathrm{nf}_{\text {Res }}\left(\mathrm{abs} b^{\prime} r^{\prime}\right)(\operatorname{arr} b c) \\
& \mapsto \mathrm{nf}_{\text {Res }}\left(\text { subst } b(\operatorname{tm} \hat{u}) r^{\prime}\right) c \\
& -\mapsto \operatorname{app}_{\text {Res }} \hat{t} \hat{u}
\end{aligned}
$$

5 Conclusion

Conclusion

- A natural implementation of a normalizer
- Structurally recursive
- Termination statically ensured by the type system
- Host language: $\mathrm{F}_{\hat{\omega}}$ (but ML-Polymorphism sufficient)
- Slogan:

In each recursive program there is a structurally recursive one struggling to get out.-Conor McBride

