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Background

Dependently typed languages allow specification, implementation,
and verification in the same language.

Strong data invariants.
Pre- and post-conditions.
Soundness.

Programs (e.g., add) can occur in types of other programs (e.g.,
append).
append : (n m : Nat) -> Vec n -> Vec m -> Vec (add n m)

Type equality can be established
automatically, e.g., Vec (add 0 m) = Vec m (by computation), or
by proof, e.g., Vec (add n m) = Vec (add m n).

Goal: establish more equalities automatically.
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Building η into Definitional Equality

Coq’s definitional equality is β (+ δ + ι).

The stronger definitional equality, the fewer the user has to revert
to equality proofs.

Why not η? (f = λx . f x if x new)

Validates, for instance, f = comp f id.

But η complicates the meta theory.

Twelf, Epigram, and Agda check for βη-convertibility.

Twelf’s type-directed conversion check has been verified by Harper
& Pfenning (2005).

This work: towards verification of Epigram and Agda’s equality
check.
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Language

Core type theory:
Dependent function types Fun AλxB (= (x : A) -> B) with η.
Predicative universes Set0,Set1, . . . .
Natural numbers.

We handle large eliminations (types defined by cases and
recursion), in contrast to Harper & Pfenning (2005).
Scales to Σ types with surjective pairing.
Goal: handle all types with at most one constructor (Π, Σ, 1, 0,
singleton types).
Not a goal?: handle enumeration types (2, disjoint sums, . . . ).
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Syntax of Terms and Types

Lambda-calculus with constants

r , s, t ::= c | x | λx .t | r s

c ::= N type of natural numbers
z zero
s successor
rec primitive recursion
Fun function space constructor
Seti universe of sets of level i

Πx :A.B (Agda: (x : A) -> B) is written Fun A (λx .B).
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Judgements

Essential judgements

Γ ` t : A t has type A in Γ
Γ ` t = t ′ : A t and t ′ are equal expressions of type A in Γ

Typing of functions:

Γ, x :A ` t : B

Γ ` λx .t : Fun A (λx .B)

Γ ` r : Fun A (λx .B) Γ ` s : A

Γ ` r s : B[s/x ]
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Set formation rules

Small types (sets):

Γ ` N : Set0

Γ ` A : Seti Γ, x :A ` B : Seti
Γ ` Fun A (λx .B) : Seti

Set0 includes types defined by recursion like Vec A n.
(Large) types:

Γ ` A : Seti
Γ ` A : Seti+1 Γ ` Seti : Seti+1

E.g., Fun Set0 (λA.A→ (N→ A)) : Set1.
In Agda: (A : Set) -> A -> N -> A : Set1.
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Equality

Conversion rule:

Γ ` t : A Γ ` A = A′ : Seti
Γ ` t : A′

Type checking requires checking type equality!
Equality axioms:

(β)
Γ, x :A ` t : B Γ ` s : A

Γ ` (λx .t) s = t[s/x ] : B[s/x ]

(η)
Γ ` t : Fun A (λx .B)

Γ ` (λx . t x) = t : Fun A (λx .B)
x 6∈ FV(t)

Add computation axioms for primitive recursion.
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The Type Checking Task

Input a sequence of typed definitions in β-normal form

x0 : A0 = t0
...

xn−1 : An−1 = tn−1

Check the sequence in order
1 check that Ai is well-formed
2 evaluate Ai to Xi in current environment
3 check that ti is of type Xi

4 evaluate ti to di in current environment
5 add binding xi : Xi = di to environment

Type conversion: need to check type values X , X ′ for equality
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Values

In implementation of type theory, values could be:
1 Normal forms (Agda 2)
2 Weak head normal forms (Constructive Engine, Pollack)
3 Explicit substitutions (Twelf)
4 Closures (Epigram 2)
5 Virtual machine code (Coq, Grégoire & Leroy (2002))
6 Compiled code (Cayenne, Dirk Kleeblatt)

Need symbolic execution at compile time.
Abstract over implementation via applicative structures.
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Applicative Structure

Domain D of values with 2 operations:
1 Application · : D× D→ D
2 Evaluation : Exp× (Var→ D)→ D.

Laws:
cρ = c e.g. Fun,Seti
xρ = ρ(x)

(r s)ρ = rρ · sρ
(λxt)ρ · d = t(ρ, x =d)

Variables x1, x2 ∈ D aka de Bruijn levels, generic values Coquand
(1996).
Neutral objects xi · d1 · . . . · dk are eliminations of variables aka
atomic objects / accumulators.
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Checking Type Equality

Comparing type values

∆ ` X = X ′ ⇑ Set i X and X ′ are equal types at level i
∆ ` e = e ′ ⇓ X neutral e and e ′ are equal, inferring type X
∆ ` d = d ′ ⇑ X d and d ′ are equal, checked at type X

Roots:
1 Setting of Coquand (1996)
2 Type-directed η-equality of Harper & Pfenning (2005), extended to

dependent types
3 Implementations: Agdalight, Epigram 2
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Algorithmic Equality

Type mode ∆ ` X = X ′ ⇑ Set i (inputs: ∆,X ,X ′, output: i or
fail).

∆ ` Seti = Seti ⇑ Set i + 1

∆ ` X = X ′ ⇑ Set i ∆, x∆ :X ` F · x∆ = F ′ · x∆ ⇑ Set j

∆ ` Fun X F = Fun X ′ F ′ ⇑ Set max(i , j)

∆ ` E = E ′ ⇓ Seti
∆ ` E = E ′ ⇑ Set i

Arbitrary choice: asymmetric.

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 13 / 27



Algorithmic Equality

Inference mode ∆ ` e = e ′ ⇓ X (inputs: ∆,e,e ′, output: X or fail).

∆ ` x = x ⇓ ∆(x)

∆ ` e = e ′ ⇓ Fun X F ∆ ` d = d ′ ⇑ X

∆ ` e d = e ′ d ′ ⇓ F · d

Checking mode ∆ ` d = d ′ ⇑ X (inputs: ∆, d , d ′,X , output: succeed or
fail).

∆ ` e = e ′ ⇓ E1 ∆ ` E1 = E2 ⇓ Seti
∆ ` e = e ′ ⇑ E2

∆, x∆ :X ` f · x∆ = f ′ · x∆ ⇑ F · x∆

∆ ` f = f ′ ⇑ Fun X F

∆ ` X = X ′ ⇑ Set i

∆ ` X = X ′ ⇑ Setj
i ≤ j
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Verification of Algorithmic Equality

Completeness: Any two judgmentally equal expressions are
recognized equal by the algorithm.
` t = t ′ : A implies ` tρid = t ′ρid ⇑ Aρid.

Soundness: Any two well-typed expressions recognized as equal are
also judgmentally equal.
` t, t ′ : A and ` tρid = t ′ρid ⇑ Aρid imply ` t = t ′ : A.

Termination: the equality algorithm terminates on all well-typed
expressions.
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Towards a Kripke model

Completeness of algorithmic equality usually established via
Kripke logical relation (semantic equality)

∆ ` d = d ′ : X

At base type X this could be defined as ∆ ` d = d ′ ⇑ X .
Should model declarative judgements.
Problem: transitivity of algorithmic equality non-trivial because of
asymmetries.
Solution: two objects at base type shall be equal if they reify to
the same term.
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Contextual reification

Reification converts values to η-long β-normal forms.
Reification of neutral objects x ~d involves reification of arguments
di at their types.
Thus, must be parameterized by context ∆ and type X .
Structure similar to algorithmic equality.

∆ ` X ↘ A ⇑ Set i
∆ ` e ↘ u ⇓ X
∆ ` d ↘ t ⇑ X

Reification of functions (η-expansion):

∆, x :X ` f · x ↘ t ⇑ F · x
∆ ` f ↘ λxt ⇑ Fun X F
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Completeness

Objects that reify to the same term are algorithmically equal.

Lemma
If ∆ ` d ↘ t ⇑ X and ∆′ ` d ′ ↘ t ⇑ X ′ then ∆ ` d = d ′ ⇑ X .

Kripke logical relation between objects in a semantic typing
environment.

for base types: ∆ ` d : X s ∆′ ` d ′ : X ′ iff ∆ ` d ↘ t ⇑ X and
∆′ ` d ′ ↘ t ⇑ X ′ for some t,
for function types: ∆ ` f : Fun X F s ∆′ ` f ′ : Fun X ′ F ′ iff
∆̂ ` d : X s ∆̂′ ` d ′ : X ′ implies
∆̂ ` f · d : F · d s ∆̂′ ` f ′ · d ′ : F ′ · d ′.

Symmetric and transitive by construction.
Semantic equality ∆ ` d = d ′ : X iff ∆ ` d : X s ∆ ` d ′ : X .
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Validity

Define ∆ ` ρ = ρ′ : Γ iff ∆ ` ρ(x) = ρ′(x) : Γ(x) for all x .

Theorem (Fundamental theorem)

If Γ ` t = t ′ : A and ∆ ` ρ = ρ′ : Γ then ∆ ` tρ = t ′ρ′ : Aρ.

Implies completeness of algorithmic equality.
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Soundness

Easy for algorithmic equality defined on terms.
Uses substitution principle for declarative judgements.
Substitution principle fails for algorithmic equality.

∆, x∆ :X ` f · x∆ = f ′ · x∆ ⇑ F · x∆

∆ ` f = f ′ ⇑ Fun X F

But it should hold for all values that come from syntax.
Need to strengthen our notion of semantic equality by
incorporating substitutions (Coquand et al., 2005).
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Strong Semantic Equality

Equip D with reevaluation dρ ∈ D.
Define strong semantic equality by

Θ |= d = d ′ : X ⇐⇒ ∀∆ ` ρ = ρ′ : Θ. ∆ ` dρ = d ′ρ′ : Xρ

Algorithmic equality is sound for strong semantic equality.
Strong semantic equality models declarative judgements.
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Logical Relation between Syntax and Semantics

Theorem (Soundness)

If Γ ` t, t ′ : A and Γρid ` tρid = t ′ρid ⇑ Aρid then Γ ` t = t ′ : A.

Proof.
Define a Kripke logical relation Γ ` t : A R© ∆ ` d : X between syntax
and semantics.
For base types X , it holds if ∆ ` d ↘ t ′ ⇑ X and Γ ` t = t ′ : A.
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Conclusions

Verified βη-conversion test which scales to universes and large
eliminations.

Necessary tools came from Normalization-by-Evaluation.

From the distance: algorithm is β-evaluation followed by
η-expansion.

Future work: scale to singleton types.
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Strong Validity

Define ∆ |= ρ = ρ′ : Γ iff ∆ |= ρ(x) = ρ′(x) : Γ(x) for all x .

Theorem (Fundamental theorem)

If Γ ` t = t ′ : A and ∆ |= ρ = ρ′ : Γ then ∆ |= tρ = t ′ρ′ : Aρ.

Implies completeness of algorithmic equality.
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Example: A Regular Expression Matcher in Agda
(N.A.Danielsson)

data RegExp : Set where
0 : RegExp -- Matches nothing.
eps : RegExp -- Matches the empty string.
+ : RegExp -> RegExp -> RegExp -- Choice.

data in : [ carrier ] -> RegExp -> Set where
matches-eps : [] in eps
matches-+l : forall {xs re re’}

-> xs in re -> xs in (re + re’)
matches-+r : forall {xs re re’}

-> xs in re’ -> xs in (re + re’)
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Example: A Regular Expression Matcher in Agda
(N.A.Danielsson)

matches : (xs : [ carrier ]) -> (re : RegExp) ->
Maybe (xs in re)

matches [] eps = just matches-eps
matches xs (re + re’) with matches xs re
... | just p = just (matches-+l p)
... | nothing with matches xs re’
... | just p = just (matches-+r) p)
... | nothing = nothing
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