
Verifying a Semantic βη-Conversion Test
for Martin-Löf Type Theory

Andreas Abel1

Thierry Coquand2 Peter Dybjer2

1Ludwig-Maximilians-University Munich
2Chalmers University of Technology

Mathematics of Program Construction
Marseille, France

18 July 2008

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 1 / 27

Background

Dependently typed languages allow specification, implementation,
and verification in the same language.

Strong data invariants.
Pre- and post-conditions.
Soundness.

Programs (e.g., add) can occur in types of other programs (e.g.,
append).
append : (n m : Nat) -> Vec n -> Vec m -> Vec (add n m)

Type equality can be established
automatically, e.g., Vec (add 0 m) = Vec m (by computation), or
by proof, e.g., Vec (add n m) = Vec (add m n).

Goal: establish more equalities automatically.

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 2 / 27

Building η into Definitional Equality

Coq’s definitional equality is β (+ δ + ι).

The stronger definitional equality, the fewer the user has to revert
to equality proofs.

Why not η? (f = λx . f x if x new)

Validates, for instance, f = comp f id.

But η complicates the meta theory.

Twelf, Epigram, and Agda check for βη-convertibility.

Twelf’s type-directed conversion check has been verified by Harper
& Pfenning (2005).

This work: towards verification of Epigram and Agda’s equality
check.

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 3 / 27

Language

Core type theory:
Dependent function types Fun AλxB (= (x : A) -> B) with η.
Predicative universes Set0,Set1,
Natural numbers.

We handle large eliminations (types defined by cases and
recursion), in contrast to Harper & Pfenning (2005).
Scales to Σ types with surjective pairing.
Goal: handle all types with at most one constructor (Π, Σ, 1, 0,
singleton types).
Not a goal?: handle enumeration types (2, disjoint sums, . . .).

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 4 / 27

Syntax of Terms and Types

Lambda-calculus with constants

r , s, t ::= c | x | λx .t | r s

c ::= N type of natural numbers
z zero
s successor
rec primitive recursion
Fun function space constructor
Seti universe of sets of level i

Πx :A.B (Agda: (x : A) -> B) is written Fun A (λx .B).

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 5 / 27

Judgements

Essential judgements

Γ ` t : A t has type A in Γ
Γ ` t = t ′ : A t and t ′ are equal expressions of type A in Γ

Typing of functions:

Γ, x :A ` t : B

Γ ` λx .t : Fun A (λx .B)

Γ ` r : Fun A (λx .B) Γ ` s : A

Γ ` r s : B[s/x]

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 6 / 27

Set formation rules

Small types (sets):

Γ ` N : Set0

Γ ` A : Seti Γ, x :A ` B : Seti
Γ ` Fun A (λx .B) : Seti

Set0 includes types defined by recursion like Vec A n.
(Large) types:

Γ ` A : Seti
Γ ` A : Seti+1 Γ ` Seti : Seti+1

E.g., Fun Set0 (λA.A→ (N→ A)) : Set1.
In Agda: (A : Set) -> A -> N -> A : Set1.

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 7 / 27

Equality

Conversion rule:

Γ ` t : A Γ ` A = A′ : Seti
Γ ` t : A′

Type checking requires checking type equality!
Equality axioms:

(β)
Γ, x :A ` t : B Γ ` s : A

Γ ` (λx .t) s = t[s/x] : B[s/x]

(η)
Γ ` t : Fun A (λx .B)

Γ ` (λx . t x) = t : Fun A (λx .B)
x 6∈ FV(t)

Add computation axioms for primitive recursion.
Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 8 / 27

The Type Checking Task

Input a sequence of typed definitions in β-normal form

x0 : A0 = t0
...

xn−1 : An−1 = tn−1

Check the sequence in order
1 check that Ai is well-formed
2 evaluate Ai to Xi in current environment
3 check that ti is of type Xi

4 evaluate ti to di in current environment
5 add binding xi : Xi = di to environment

Type conversion: need to check type values X , X ′ for equality

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 9 / 27

Values

In implementation of type theory, values could be:
1 Normal forms (Agda 2)
2 Weak head normal forms (Constructive Engine, Pollack)
3 Explicit substitutions (Twelf)
4 Closures (Epigram 2)
5 Virtual machine code (Coq, Grégoire & Leroy (2002))
6 Compiled code (Cayenne, Dirk Kleeblatt)

Need symbolic execution at compile time.
Abstract over implementation via applicative structures.

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 10 / 27

Applicative Structure

Domain D of values with 2 operations:
1 Application · : D× D→ D
2 Evaluation : Exp× (Var→ D)→ D.

Laws:
cρ = c e.g. Fun,Seti
xρ = ρ(x)

(r s)ρ = rρ · sρ
(λxt)ρ · d = t(ρ, x =d)

Variables x1, x2 ∈ D aka de Bruijn levels, generic values Coquand
(1996).
Neutral objects xi · d1 · . . . · dk are eliminations of variables aka
atomic objects / accumulators.

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 11 / 27

Checking Type Equality

Comparing type values

∆ ` X = X ′ ⇑ Set i X and X ′ are equal types at level i
∆ ` e = e ′ ⇓ X neutral e and e ′ are equal, inferring type X
∆ ` d = d ′ ⇑ X d and d ′ are equal, checked at type X

Roots:
1 Setting of Coquand (1996)
2 Type-directed η-equality of Harper & Pfenning (2005), extended to

dependent types
3 Implementations: Agdalight, Epigram 2

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 12 / 27

Algorithmic Equality

Type mode ∆ ` X = X ′ ⇑ Set i (inputs: ∆,X ,X ′, output: i or
fail).

∆ ` Seti = Seti ⇑ Set i + 1

∆ ` X = X ′ ⇑ Set i ∆, x∆ :X ` F · x∆ = F ′ · x∆ ⇑ Set j

∆ ` Fun X F = Fun X ′ F ′ ⇑ Set max(i , j)

∆ ` E = E ′ ⇓ Seti
∆ ` E = E ′ ⇑ Set i

Arbitrary choice: asymmetric.

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 13 / 27

Algorithmic Equality

Inference mode ∆ ` e = e ′ ⇓ X (inputs: ∆,e,e ′, output: X or fail).

∆ ` x = x ⇓ ∆(x)

∆ ` e = e ′ ⇓ Fun X F ∆ ` d = d ′ ⇑ X

∆ ` e d = e ′ d ′ ⇓ F · d

Checking mode ∆ ` d = d ′ ⇑ X (inputs: ∆, d , d ′,X , output: succeed or
fail).

∆ ` e = e ′ ⇓ E1 ∆ ` E1 = E2 ⇓ Seti
∆ ` e = e ′ ⇑ E2

∆, x∆ :X ` f · x∆ = f ′ · x∆ ⇑ F · x∆

∆ ` f = f ′ ⇑ Fun X F

∆ ` X = X ′ ⇑ Set i

∆ ` X = X ′ ⇑ Setj
i ≤ j

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 14 / 27

Verification of Algorithmic Equality

Completeness: Any two judgmentally equal expressions are
recognized equal by the algorithm.
` t = t ′ : A implies ` tρid = t ′ρid ⇑ Aρid.

Soundness: Any two well-typed expressions recognized as equal are
also judgmentally equal.
` t, t ′ : A and ` tρid = t ′ρid ⇑ Aρid imply ` t = t ′ : A.

Termination: the equality algorithm terminates on all well-typed
expressions.

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 15 / 27

Towards a Kripke model

Completeness of algorithmic equality usually established via
Kripke logical relation (semantic equality)

∆ ` d = d ′ : X

At base type X this could be defined as ∆ ` d = d ′ ⇑ X .
Should model declarative judgements.
Problem: transitivity of algorithmic equality non-trivial because of
asymmetries.
Solution: two objects at base type shall be equal if they reify to
the same term.

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 16 / 27

Contextual reification

Reification converts values to η-long β-normal forms.
Reification of neutral objects x ~d involves reification of arguments
di at their types.
Thus, must be parameterized by context ∆ and type X .
Structure similar to algorithmic equality.

∆ ` X ↘ A ⇑ Set i
∆ ` e ↘ u ⇓ X
∆ ` d ↘ t ⇑ X

Reification of functions (η-expansion):

∆, x :X ` f · x ↘ t ⇑ F · x
∆ ` f ↘ λxt ⇑ Fun X F

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 17 / 27

Completeness

Objects that reify to the same term are algorithmically equal.

Lemma
If ∆ ` d ↘ t ⇑ X and ∆′ ` d ′ ↘ t ⇑ X ′ then ∆ ` d = d ′ ⇑ X .

Kripke logical relation between objects in a semantic typing
environment.

for base types: ∆ ` d : X s ∆′ ` d ′ : X ′ iff ∆ ` d ↘ t ⇑ X and
∆′ ` d ′ ↘ t ⇑ X ′ for some t,
for function types: ∆ ` f : Fun X F s ∆′ ` f ′ : Fun X ′ F ′ iff
∆̂ ` d : X s ∆̂′ ` d ′ : X ′ implies
∆̂ ` f · d : F · d s ∆̂′ ` f ′ · d ′ : F ′ · d ′.

Symmetric and transitive by construction.
Semantic equality ∆ ` d = d ′ : X iff ∆ ` d : X s ∆ ` d ′ : X .

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 18 / 27

Validity

Define ∆ ` ρ = ρ′ : Γ iff ∆ ` ρ(x) = ρ′(x) : Γ(x) for all x .

Theorem (Fundamental theorem)

If Γ ` t = t ′ : A and ∆ ` ρ = ρ′ : Γ then ∆ ` tρ = t ′ρ′ : Aρ.

Implies completeness of algorithmic equality.

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 19 / 27

Soundness

Easy for algorithmic equality defined on terms.
Uses substitution principle for declarative judgements.
Substitution principle fails for algorithmic equality.

∆, x∆ :X ` f · x∆ = f ′ · x∆ ⇑ F · x∆

∆ ` f = f ′ ⇑ Fun X F

But it should hold for all values that come from syntax.
Need to strengthen our notion of semantic equality by
incorporating substitutions (Coquand et al., 2005).

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 20 / 27

Strong Semantic Equality

Equip D with reevaluation dρ ∈ D.
Define strong semantic equality by

Θ |= d = d ′ : X ⇐⇒ ∀∆ ` ρ = ρ′ : Θ. ∆ ` dρ = d ′ρ′ : Xρ

Algorithmic equality is sound for strong semantic equality.
Strong semantic equality models declarative judgements.

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 21 / 27

Logical Relation between Syntax and Semantics

Theorem (Soundness)

If Γ ` t, t ′ : A and Γρid ` tρid = t ′ρid ⇑ Aρid then Γ ` t = t ′ : A.

Proof.
Define a Kripke logical relation Γ ` t : A R© ∆ ` d : X between syntax
and semantics.
For base types X , it holds if ∆ ` d ↘ t ′ ⇑ X and Γ ` t = t ′ : A.

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 22 / 27

Conclusions

Verified βη-conversion test which scales to universes and large
eliminations.

Necessary tools came from Normalization-by-Evaluation.

From the distance: algorithm is β-evaluation followed by
η-expansion.

Future work: scale to singleton types.

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 23 / 27

Related Work

Martin-Löf 1975: NbE for Type Theory (weak conversion)
Martin-Löf 2004: Talk on NbE (philosophical justification)
Altenkirch Hofmann Streicher 1996: NbE for λ-free System F
Gregoire Leroy 2002: β-normalization by compilation for CIC
Coquand Pollack Takeyama 2003: LF with singleton types
Danielsson 2006: strongly typed NbE for LF
Altenkirch Chapman 2007: big step normalization

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 24 / 27

Strong Validity

Define ∆ |= ρ = ρ′ : Γ iff ∆ |= ρ(x) = ρ′(x) : Γ(x) for all x .

Theorem (Fundamental theorem)

If Γ ` t = t ′ : A and ∆ |= ρ = ρ′ : Γ then ∆ |= tρ = t ′ρ′ : Aρ.

Implies completeness of algorithmic equality.

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 25 / 27

Example: A Regular Expression Matcher in Agda
(N.A.Danielsson)

data RegExp : Set where
0 : RegExp -- Matches nothing.
eps : RegExp -- Matches the empty string.
+ : RegExp -> RegExp -> RegExp -- Choice.

data in : [carrier] -> RegExp -> Set where
matches-eps : [] in eps
matches-+l : forall {xs re re’}

-> xs in re -> xs in (re + re’)
matches-+r : forall {xs re re’}

-> xs in re’ -> xs in (re + re’)

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 26 / 27

Example: A Regular Expression Matcher in Agda
(N.A.Danielsson)

matches : (xs : [carrier]) -> (re : RegExp) ->
Maybe (xs in re)

matches [] eps = just matches-eps
matches xs (re + re’) with matches xs re
... | just p = just (matches-+l p)
... | nothing with matches xs re’
... | just p = just (matches-+r) p)
... | nothing = nothing

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 27 / 27

T. Coquand (1996). ‘An Algorithm for Type-Checking Dependent
Types’. In Mathematics of Program Construction. Selected Papers
from the Third International Conference on the Mathematics of
Program Construction (July 17–21, 1995, Kloster Irsee, Germany),
vol. 26 of Science of Computer Programming, pp. 167–177. Elsevier
Science.

T. Coquand, et al. (2005). ‘A Logical Framework with Dependently
Typed Records’. Fundamenta Informaticae 65(1-2):113–134.

B. Grégoire & X. Leroy (2002). ‘A compiled implementation of strong
reduction’. In Proceedings of the seventh ACM SIGPLAN
International Conference on Functional Programming (ICFP ’02),
Pittsburgh, Pennsylvania, USA, October 4-6, 2002, vol. 37 of
SIGPLAN Notices, pp. 235–246. ACM Press.

R. Harper & F. Pfenning (2005). ‘On Equivalence and Canonical
Forms in the LF Type Theory’. ACM Transactions on
Computational Logic 6(1):61–101.

Abel Coquand Dybjer (LMU, CTH) Semantic βη-Conversion DTP’08 27 / 27

	References

