Verifying a Semantic $\beta \eta$-Conversion Test for Martin-Löf Type Theory

Andreas Abel ${ }^{1}$
Thierry Coquand ${ }^{2}$ Peter Dybjer ${ }^{2}$
${ }^{1}$ Ludwig-Maximilians-University Munich
${ }^{2}$ Chalmers University of Technology

Mathematics of Program Construction Marseille, France

18 July 2008

Background

- Dependently typed languages allow specification, implementation, and verification in the same language.
- Strong data invariants.
- Pre- and post-conditions.
- Soundness.
- Programs (e.g., add) can occur in types of other programs (e.g., append).
append : (n m : Nat) -> Vec n -> Vec m $->$ Vec (add n m)
- Type equality can be established
- automatically, e.g., Vec (add 0 m) = Vec m (by computation), or
- by proof, e.g., Vec (add n m) = Vec (add m n).
- Goal: establish more equalities automatically.

Building η into Definitional Equality

- Coq's definitional equality is $\beta(+\delta+\iota)$.
- The stronger definitional equality, the fewer the user has to revert to equality proofs.
- Why not η ? $(f=\lambda x . f x$ if x new $)$
- Validates, for instance, $f=\operatorname{comp} f$ id.
- But η complicates the meta theory.
- Twelf, Epigram, and Agda check for $\beta \eta$-convertibility.
- Twelf's type-directed conversion check has been verified by Harper \& Pfenning (2005).
- This work: towards verification of Epigram and Agda's equality check.

Language

- Core type theory:
- Dependent function types Fun $A \lambda \times B(=(\mathrm{x}: \mathrm{A})->\mathrm{B})$ with η.
- Predicative universes $\operatorname{Set}_{0}, \operatorname{Set}_{1}, \ldots$.
- Natural numbers.
- We handle large eliminations (types defined by cases and recursion), in contrast to Harper \& Pfenning (2005).
- Scales to Σ types with surjective pairing.
- Goal: handle all types with at most one constructor ($\Pi, \Sigma, 1,0$, singleton types).
- Not a goal?: handle enumeration types (2, disjoint sums, ...).

Syntax of Terms and Types

- Lambda-calculus with constants

$$
\begin{aligned}
r, s, t::= & c|x| \lambda x . t \mid r s \\
c & ::= \\
& \mathrm{N} \\
& \mathrm{z} \\
& \mathrm{~s} \\
& \text { rec } \\
& \text { Fun }^{\prime} \\
& \text { Set }_{i}
\end{aligned}
$$

- $\Pi x: A . B$ (Agda: (x : A) $->B$) is written Fun $A(\lambda x \cdot B)$.

Judgements

- Essential judgements

$$
\begin{array}{ll}
\Gamma \vdash t: A & t \text { has type } A \text { in } \Gamma \\
\Gamma \vdash t=t^{\prime}: A & t \text { and } t^{\prime} \text { are equal expressions of type } A \text { in } \Gamma
\end{array}
$$

- Typing of functions:

$$
\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x \cdot t: \operatorname{Fun} A(\lambda x \cdot B)} \quad \frac{\Gamma \vdash r: \operatorname{Fun} A(\lambda x \cdot B) \quad \Gamma \vdash s: A}{\Gamma \vdash r s: B[s / x]}
$$

Set formation rules

- Small types (sets):

$$
\overline{\Gamma \vdash \mathrm{N}: \operatorname{Set}_{0}} \quad \frac{\Gamma \vdash A: \operatorname{Set}_{i} \quad \Gamma, x: A \vdash B: \operatorname{Set}_{i}}{\Gamma \vdash \operatorname{Fun} A(\lambda x \cdot B): \operatorname{Set}_{i}}
$$

- Set $_{0}$ includes types defined by recursion like $\operatorname{Vec} A n$.
- (Large) types:

$$
\frac{\Gamma \vdash A: \operatorname{Set}_{i}}{\Gamma \vdash A: \operatorname{Set}_{i+1}} \quad \overline{\Gamma \vdash \operatorname{Set}_{i}: \operatorname{Set}_{i+1}}
$$

- E.g., Fun $\operatorname{Set}_{0}(\lambda A . A \rightarrow(N \rightarrow A)): \operatorname{Set}_{1}$. In Agda: (A : Set) \rightarrow A $\rightarrow \mathrm{N} \rightarrow \mathrm{A}$: Set1.

Equality

- Conversion rule:

$$
\frac{\Gamma \vdash t: A \quad \Gamma \vdash A=A^{\prime}: \operatorname{Set}_{i}}{\Gamma \vdash t: A^{\prime}}
$$

- Type checking requires checking type equality!
- Equality axioms:

$$
\begin{gathered}
(\beta) \frac{\Gamma, x: A \vdash t: B \quad \Gamma \vdash s: A}{\Gamma \vdash(\lambda x \cdot t) s=t[s / x]: B[s / x]} \\
(\eta) \frac{\Gamma \vdash t: \operatorname{Fun} A(\lambda x \cdot B)}{\Gamma \vdash(\lambda x \cdot t x)=t: \operatorname{Fun} A(\lambda x \cdot B)} x \notin \mathrm{FV}(t)
\end{gathered}
$$

- Add computation axioms for primitive recursion.

The Type Checking Task

- Input a sequence of typed definitions in β-normal form

$$
\begin{array}{cccc}
x_{0} & : & A_{0} & =t_{0} \\
& & \vdots & \\
x_{n-1} & : & A_{n-1} & =t_{n-1}
\end{array}
$$

- Check the sequence in order
(1) check that A_{i} is well-formed
(2) evaluate A_{i} to X_{i} in current environment
(3) check that t_{i} is of type X_{i}
(1) evaluate t_{i} to d_{i} in current environment
(0) add binding $x_{i}: X_{i}=d_{i}$ to environment
- Type conversion: need to check type values X, X^{\prime} for equality

Values

- In implementation of type theory, values could be:
(1) Normal forms (Agda 2)
(2) Weak head normal forms (Constructive Engine, Pollack)
(3) Explicit substitutions (Twelf)
(1) Closures (Epigram 2)
(- Virtual machine code (Coq, Grégoire \& Leroy (2002))
(Compiled code (Cayenne, Dirk Kleeblatt)
- Need symbolic execution at compile time.
- Abstract over implementation via applicative structures.

Applicative Structure

- Domain D of values with 2 operations:
(1) Application ${ }^{-} \cdot: \mathrm{D} \times \mathrm{D} \rightarrow \mathrm{D}$
(2) Evaluation $-\mathrm{E}: \operatorname{Exp} \times(\operatorname{Var} \rightarrow \mathrm{D}) \rightarrow \mathrm{D}$.
- Laws:

$$
\begin{aligned}
c \rho & =c \\
x \rho & =\rho(x) \\
(r s) \rho & =r \rho \cdot s \rho \\
(\lambda x t) \rho \cdot d & =t(\rho, x=d)
\end{aligned}
$$

- Variables $x_{1}, x_{2} \in D$ aka de Bruijn levels, generic values Coquand (1996).
- Neutral objects $x_{i} \cdot d_{1} \cdot \ldots \cdot d_{k}$ are eliminations of variables aka atomic objects / accumulators.

Checking Type Equality

- Comparing type values
$\Delta \vdash X=X^{\prime} \Uparrow$ Set $\rightsquigarrow i \quad X$ and X^{\prime} are equal types at level i
$\Delta \vdash e=e^{\prime} \Downarrow X \quad$ neutral e and e^{\prime} are equal, inferring type X
$\Delta \vdash d=d^{\prime} \Uparrow X \quad d$ and d^{\prime} are equal, checked at type X
- Roots:
(1) Setting of Coquand (1996)
(2) Type-directed η-equality of Harper \& Pfenning (2005), extended to dependent types
(3) Implementations: Agdalight, Epigram 2

Algorithmic Equality

- Type mode $\Delta \vdash X=X^{\prime} \Uparrow$ Set $\rightsquigarrow i$ (inputs: Δ, X, X^{\prime}, output: i or fail).

$$
\begin{gathered}
\frac{\Delta \vdash \operatorname{Set}_{i}=\operatorname{Set}_{i} \Uparrow \operatorname{Set} \rightsquigarrow i+1}{\Delta \vdash X=X^{\prime} \Uparrow \operatorname{Set} \rightsquigarrow i \quad \Delta, x_{\Delta}: X \vdash F \cdot \mathrm{x}_{\Delta}=F^{\prime} \cdot \mathrm{x}_{\Delta} \Uparrow \operatorname{Set} \rightsquigarrow j} \\
\Delta \vdash \operatorname{Fun} X F={\operatorname{Fun} X^{\prime} F^{\prime} \Uparrow \operatorname{Set} \rightsquigarrow \max (i, j)}_{\Delta \operatorname{Si}^{2}}^{\Delta \vdash E=E^{\prime} \Uparrow \operatorname{Set} \rightsquigarrow i}
\end{gathered}
$$

- Arbitrary choice: asymmetric.

Algorithmic Equality

Inference mode $\Delta \vdash e=e^{\prime} \Downarrow X$ (inputs: Δ, e, e^{\prime}, output: X or fail).

$$
\Delta \vdash e=e^{\prime} \Downarrow \text { Fun } X F \quad \Delta \vdash d=d^{\prime} \Uparrow X
$$

$$
\overline{\Delta \vdash x=x \Downarrow \Delta(x)} \quad \Delta \vdash e d=e^{\prime} d^{\prime} \Downarrow F \cdot d
$$

Checking mode $\Delta \vdash d=d^{\prime} \Uparrow X$ (inputs: Δ, d, d^{\prime}, X, output: succeed or fail).

$$
\frac{\Delta \vdash e=e^{\prime} \Downarrow E_{1} \quad \Delta \vdash E_{1}=E_{2} \Downarrow \text { Set }_{i}}{\Delta \vdash e=e^{\prime} \Uparrow E_{2}}
$$

$$
\frac{\Delta, \mathrm{x}_{\Delta}: X \vdash f \cdot \mathrm{x}_{\Delta}=f^{\prime} \cdot \mathrm{x}_{\Delta} \Uparrow F \cdot \mathrm{x}_{\Delta}}{\Delta \vdash f=f^{\prime} \Uparrow \operatorname{Fun} X F} \quad \frac{\Delta \vdash X=X^{\prime} \Uparrow \text { Set } \rightsquigarrow i}{\Delta \vdash X=X^{\prime} \Uparrow \operatorname{Set}_{j}} i \leq j
$$

Verification of Algorithmic Equality

- Completeness: Any two judgmentally equal expressions are recognized equal by the algorithm.

$$
\vdash t=t^{\prime}: A \text { implies } \vdash t \rho_{\mathrm{id}}=t^{\prime} \rho_{\mathrm{id}} \Uparrow A \rho_{\mathrm{id}} .
$$

- Soundness: Any two well-typed expressions recognized as equal are also judgmentally equal.

$$
\vdash t, t^{\prime}: A \text { and } \vdash t \rho_{\mathrm{id}}=t^{\prime} \rho_{\mathrm{id}} \Uparrow A \rho_{\mathrm{id}} \text { imply } \vdash t=t^{\prime}: A .
$$

- Termination: the equality algorithm terminates on all well-typed expressions.

Towards a Kripke model

- Completeness of algorithmic equality usually established via Kripke logical relation (semantic equality)

$$
\Delta \vdash d=d^{\prime}: X
$$

- At base type X this could be defined as $\Delta \vdash d=d^{\prime} \Uparrow X$.
- Should model declarative judgements.
- Problem: transitivity of algorithmic equality non-trivial because of asymmetries.
- Solution: two objects at base type shall be equal if they reify to the same term.

Contextual reification

- Reification converts values to η-long β-normal forms.
- Reification of neutral objects $x \vec{d}$ involves reification of arguments d_{i} at their types.
- Thus, must be parameterized by context Δ and type X.
- Structure similar to algorithmic equality.

$$
\begin{aligned}
& \Delta \vdash X \searrow A \Uparrow \text { Set } \rightsquigarrow i \\
& \Delta \vdash e \searrow u \Downarrow X \\
& \Delta \vdash d \searrow t \Uparrow X
\end{aligned}
$$

- Reification of functions (η-expansion):

$$
\frac{\Delta, x: X \vdash f \cdot x \searrow t \Uparrow F \cdot x}{\Delta \vdash f \searrow \lambda x t \Uparrow \operatorname{Fun} X F}
$$

Completeness

- Objects that reify to the same term are algorithmically equal.

Lemma

If $\Delta \vdash d \searrow t \Uparrow X$ and $\Delta^{\prime} \vdash d^{\prime} \searrow t \Uparrow X^{\prime}$ then $\Delta \vdash d=d^{\prime} \Uparrow X$.

- Kripke logical relation between objects in a semantic typing environment.
- for base types: $\Delta \vdash d: X$ © $\Delta^{\prime} \vdash d^{\prime}: X^{\prime}$ iff $\Delta \vdash d \searrow t \Uparrow X$ and $\Delta^{\prime} \vdash d^{\prime} \searrow t \Uparrow X^{\prime}$ for some t,
- for function types: $\Delta \vdash f$: Fun $X F$ © $\Delta^{\prime} \vdash f^{\prime}$: Fun $X^{\prime} F^{\prime}$ iff $\hat{\Delta} \vdash d: X(S) \hat{\Delta}^{\prime} \vdash d^{\prime}: X^{\prime}$ implies $\hat{\Delta} \vdash f \cdot d: F \cdot d$ S $\hat{\Delta}^{\prime} \vdash f^{\prime} \cdot d^{\prime}: F^{\prime} \cdot d^{\prime}$.
- Symmetric and transitive by construction.
- Semantic equality $\Delta \vdash d=d^{\prime}: X$ iff $\Delta \vdash d: X$ © $\Delta \vdash d^{\prime}: X$.

Validity

- Define $\Delta \vdash \rho=\rho^{\prime}: \Gamma$ iff $\Delta \vdash \rho(x)=\rho^{\prime}(x): \Gamma(x)$ for all x.

Theorem (Fundamental theorem)
If $\Gamma \vdash t=t^{\prime}: A$ and $\Delta \vdash \rho=\rho^{\prime}: \Gamma$ then $\Delta \vdash t \rho=t^{\prime} \rho^{\prime}: A \rho$.

- Implies completeness of algorithmic equality.

Soundness

- Easy for algorithmic equality defined on terms.
- Uses substitution principle for declarative judgements.
- Substitution principle fails for algorithmic equality.

$$
\frac{\Delta, x_{\Delta}: X \vdash f \cdot x_{\Delta}=f^{\prime} \cdot x_{\Delta} \Uparrow F \cdot x_{\Delta}}{\Delta \vdash f=f^{\prime} \Uparrow \operatorname{Fun} X F}
$$

- But it should hold for all values that come from syntax.
- Need to strengthen our notion of semantic equality by incorporating substitutions (Coquand et al., 2005).

Strong Semantic Equality

- Equip D with reevaluation $d \rho \in \mathrm{D}$.
- Define strong semantic equality by

$$
\Theta \models d=d^{\prime}: X \Longleftrightarrow \forall \Delta \vdash \rho=\rho^{\prime}: \Theta . \Delta \vdash d \rho=d^{\prime} \rho^{\prime}: X \rho
$$

- Algorithmic equality is sound for strong semantic equality.
- Strong semantic equality models declarative judgements.

Logical Relation between Syntax and Semantics

Theorem (Soundness)

If $\Gamma \vdash t, t^{\prime}: A$ and $\Gamma \rho_{\mathrm{id}} \vdash t \rho_{\mathrm{id}}=t^{\prime} \rho_{\mathrm{id}} \Uparrow A \rho_{\mathrm{id}}$ then $\Gamma \vdash t=t^{\prime}: A$.

Proof.

Define a Kripke logical relation $\Gamma \vdash t: A ® \Delta \vdash d: X$ between syntax and semantics.
For base types X, it holds if $\Delta \vdash d \searrow t^{\prime} \Uparrow X$ and $\Gamma \vdash t=t^{\prime}: A$.

Conclusions

- Verified $\beta \eta$-conversion test which scales to universes and large eliminations.
- Necessary tools came from Normalization-by-Evaluation.
- From the distance: algorithm is β-evaluation followed by η-expansion.
- Future work: scale to singleton types.

Related Work

- Martin-Löf 1975: NbE for Type Theory (weak conversion)
- Martin-Löf 2004: Talk on NbE (philosophical justification)
- Altenkirch Hofmann Streicher 1996: NbE for λ-free System F
- Gregoire Leroy 2002: β-normalization by compilation for CIC
- Coquand Pollack Takeyama 2003: LF with singleton types
- Danielsson 2006: strongly typed NbE for LF
- Altenkirch Chapman 2007: big step normalization

Strong Validity

- Define $\Delta \models \rho=\rho^{\prime}: \Gamma$ iff $\Delta \models \rho(x)=\rho^{\prime}(x): \Gamma(x)$ for all x.

Theorem (Fundamental theorem)
If $\Gamma \vdash t=t^{\prime}: A$ and $\Delta \models \rho=\rho^{\prime}: \Gamma$ then $\Delta \models t \rho=t^{\prime} \rho^{\prime}: A \rho$.

- Implies completeness of algorithmic equality.

Example: A Regular Expression Matcher in Agda (N.A.Danielsson)

```
data RegExp : Set where
    0 : RegExp -- Matches nothing.
    eps : RegExp -- Matches the empty string.
    + : RegExp -> RegExp -> RegExp -- Choice.
data in : [ carrier ] -> RegExp -> Set where
    matches-eps : [] in eps
    matches-+l : forall {xs re re'}
        -> xs in re -> xs in (re + re')
    matches-+r : forall {xs re re'}
    -> xs in re' -> xs in (re + re')
```


Example: A Regular Expression Matcher in Agda (N.A.Danielsson)

```
matches : (xs : [ carrier ]) -> (re : RegExp) ->
    Maybe (xs in re)
matches [] eps = just matches-eps
matches xs (re + re') with matches xs re
... | just p = just (matches-+l p)
... | nothing with matches xs re'
... | just p = just (matches-+r) p)
... | nothing = nothing
```

T. Coquand (1996). 'An Algorithm for Type-Checking Dependent Types'. In Mathematics of Program Construction. Selected Papers from the Third International Conference on the Mathematics of Program Construction (July 17-21, 1995, Kloster Irsee, Germany), vol. 26 of Science of Computer Programming, pp. 167-177. Elsevier Science.
T. Coquand, et al. (2005). 'A Logical Framework with Dependently Typed Records'. Fundamenta Informaticae 65(1-2):113-134.
B. Grégoire \& X. Leroy (2002). 'A compiled implementation of strong reduction'. In Proceedings of the seventh ACM SIGPLAN International Conference on Functional Programming (ICFP '02), Pittsburgh, Pennsylvania, USA, October 4-6, 2002, vol. 37 of SIGPLAN Notices, pp. 235-246. ACM Press.
R. Harper \& F. Pfenning (2005). 'On Equivalence and Canonical Forms in the LF Type Theory'. ACM Transactions on Computational Logic 6(1):61-101.

