Normalization by Evaluation for Martin-Löf Type Theory with Typed Equality Judgements

Andreas Abel ${ }^{1}$
Thierry Coquand ${ }^{2}$ Peter Dybjer ${ }^{2}$
${ }^{1}$ Ludwig-Maximilians-University Munich
${ }^{2}$ Chalmers University of Technology
Logic in Computer Science Wrocław, Poland 10 July 2007

My Talk

- Dependent type theory basis for theorem provers (functional programming languages) Agda, Coq, Epigram,...
- Intensional theory with predicative universes.
- Judgemental $\beta \eta$-equality.
- Deciding type equality with Normalization-By-Evaluation.
- Semantic proof of decidability of typing.

Dependent Types

- Dependent function space:

$$
\frac{r: \Pi x: A \cdot B[x] \quad s: A}{r s: B[s]}
$$

- Types contain terms, type equality non-trivial.
- Shape of types can depend on terms:

$$
\operatorname{Vec} A n=\underbrace{A \times \cdots \times A}_{n \text { factors }}
$$

- Type conversion rule:

$$
\frac{t: A}{t: B} A \cong B
$$

- Deciding type checking requires injectivity of Π

$$
\Pi x: A \cdot B \cong \Pi x: A^{\prime} . B^{\prime} \text { implies } A \cong A^{\prime} \text { and } B \cong B^{\prime}
$$

Untyped β-Equality

- One solution: $A \cong B$ iff A, B have common β-reduct.
- Confluence of β makes \cong transitive.
- Injectivity of Π trivial.
- But we want also η ! E.g.
- Theorem prover should not distinguish between $P(\lambda x . f x)$ and $P f$, - or between two inhabitants of a one-element type.
- The stronger the type equality, the more (sound) programs are accepted by the type checker.

Untyped $\beta \eta$-Equality

- Try: $A \cong B$ iff A, B have common $\beta \eta$-reduct.
- $\beta \eta$-reduction (with surjective pairing) only confluent on strongly normalizing terms
- Proof of s.n. requires model construction
- ... which requires invariance of interpretation under reduction
- ... which requires subject reduction
- ... which requires strengthening
- ... hard to prove for pure type systems (van Benthem 1993)
- Even for untyped β, model construction difficult: Miquel Werner 2002: The not so simple proof-irrelevant model of CC

Typed $\beta \eta$-Equality

- Introduce equality judgement $\vdash A=B$.
- Relies on term equality $\vdash t=t^{\prime}: C$.
- Simplifies model construction considerably.
- Now injectivity of Π is hard.
- Goguen 1994: Typed Operational Semantics for UTT.
- "Syntactical" model.
- Shows confluence, subject reduction, normalization in one go.
- Impressive, technically demanding work.
- This work: simpler argument, in the same spirit.
- Slogan: semantics proves properties of syntax. (Altenkirch 1994).

Deciding judgemental equality

Normalization function $\mathrm{nf}^{A}(t)$.

- Completeness:
$\vdash t=t^{\prime}: A$ implies $\mathrm{nf}^{A}(t)=\mathrm{nf}^{A}\left(t^{\prime}\right)$ (syntactical equal).
- Soundness:
$\vdash t: A$ implies $\vdash t=\mathrm{nf}^{A}(t): A$.

Syntax of Terms and Types

- Lambda-calculus with constants

$$
\begin{aligned}
r, s, t::= & c|x| \lambda x . t \mid r s \\
c & ::= \\
& \mathrm{N} \\
& \mathrm{z} \\
& \mathrm{~s} \\
& \text { rec } \\
& \text { Fun } \\
& \mathrm{U}
\end{aligned}
$$

- $\Pi x: A . B$ is written Fun $A(\lambda x . B)$.

Judgements

- Essential judgements

$$
\begin{array}{ll}
\Gamma \vdash A & A \text { is a well-formed type in } \Gamma \\
\Gamma \vdash t: A & \\
\Gamma \vdash \text { has type } A \text { in } \Gamma \\
\Gamma \vdash A=A^{\prime} & \\
\Gamma \text { and } A^{\prime} \text { are equal types in } \Gamma \\
\Gamma \vdash t=t^{\prime}: A & \\
t \text { and } t^{\prime} \text { are equal terms of type } A \text { in } \Gamma
\end{array}
$$

- Typing of functions:

$$
\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x \cdot t: \operatorname{Fun} A(\lambda x . B)} \quad \frac{\Gamma \vdash r: \operatorname{Fun} A(\lambda x . B) \quad \Gamma \vdash s: A}{\Gamma \vdash r s: B[s / x]}
$$

Rules for Judgmental Equality

- Equality axioms:

$$
\begin{gathered}
(\beta) \frac{\Gamma, x: A \vdash t: B \quad \Gamma \vdash s: A}{\Gamma \vdash(\lambda x \cdot t) s=t[s / x]: B[s / x]} \\
(\eta) \frac{\Gamma \vdash t: \operatorname{Fun} A(\lambda x \cdot B)}{\Gamma \vdash(\lambda x \cdot t x)=t: \operatorname{Fun} A(\lambda x \cdot B)} x \notin \mathrm{FV}(t)
\end{gathered}
$$

- Computation axioms for primitive recursion.
- Congruence rules.

Small and Large Types

- Small types (sets):

$$
\frac{\Gamma \vdash A: U \quad \Gamma, x: A \vdash B: U}{\Gamma \vdash \operatorname{Fun} A(\lambda x \cdot B): U}
$$

- U includes types defined by recursion like Vec $A n$.
- (Large) types:

$$
\frac{\Gamma \vdash A: U}{\Gamma \vdash A} \quad \overline{\Gamma \vdash U} \quad \frac{\Gamma \vdash A \quad \Gamma, x: A \vdash B}{\Gamma \vdash \operatorname{Fun} A(\lambda x . B)}
$$

λ-Model

- Consider a (total) combinatorial algebra D
- with constructors N, z, s, Fun, U.
- Evaluation $\llbracket t \rrbracket_{\rho}$: Standard.

$$
\begin{aligned}
\llbracket c \rrbracket_{\rho} & =c \quad(c \text { constant }) \\
\llbracket x \rrbracket_{\rho} & =\rho(x) \\
\llbracket r s \rrbracket_{\rho} & =\llbracket r \rrbracket_{\rho} \llbracket s \rrbracket_{\rho} \\
\llbracket \lambda x . t \rrbracket_{\rho} d & =\llbracket t \rrbracket_{\rho[x \mapsto d]}
\end{aligned}
$$

- Example: \llbracket Fun $A(\lambda x . B) \rrbracket=$ Fun $X F$ where $X=\llbracket A \rrbracket$ and $F d=\llbracket B \rrbracket_{[x \mapsto d]}$.
- We enrich D with term variables:
- Up $u \in \mathrm{D}$ for each neutral term $u::=x \vec{v}$ (generalized variable).

Reification (Printing)

- Reification $\downarrow^{X} d$ produces a η-long β-normal term.

$$
\begin{array}{ll}
\downarrow^{N} \mathrm{z} & =\mathrm{z} \\
\downarrow^{N}(\mathrm{sd}) & =\mathrm{s}\left(\downarrow^{\mathrm{N}} d\right) \\
\downarrow^{N}(U p u) & =u \\
\downarrow^{U p u^{\prime}}(\text { Up } u) & =u \\
\downarrow^{\text {Fun } X F_{f}} & =\lambda x \cdot \downarrow^{F\left(\uparrow^{X} x\right)}\left(f\left(\uparrow^{X} x\right)\right), \quad x \text { fresh }
\end{array}
$$

- Reflection $\uparrow^{X} u$ embeds a neutral term u into D, η-expanded.

$$
\begin{aligned}
\left(\uparrow^{F u n} X F u\right) d & =\uparrow^{F d}\left(u \downarrow^{X} d\right) \\
\uparrow^{X} u & =U p u
\end{aligned}
$$

- Normalization of closed terms $\vdash t: A$

$$
\mathrm{nf}^{A}(t)=\downarrow^{\llbracket A \rrbracket} \llbracket t \rrbracket .
$$

PER Model

- A PER is a symmetric and transitive relation on D.
- Small types: define a $\operatorname{PER} \mathcal{U}$ and a $\operatorname{PER}[X]$ for $X \in \mathcal{U}$.

$$
\begin{gathered}
\overline{\mathrm{N}=\mathrm{N} \in \mathcal{U}} \quad \overline{\mathrm{z}=\mathrm{z} \in[\mathrm{~N}]} \quad \frac{d=d^{\prime} \in[\mathrm{N}]}{\mathrm{s} d=\mathrm{s} d^{\prime} \in[\mathrm{N}]} \quad \frac{u \text { neutral }}{\mathrm{Up} u=\mathrm{Up} u \in[\mathrm{~N}]} \\
\frac{u \text { neutral }}{\mathrm{Up} u=\mathrm{Up} u \in \mathcal{U}} \quad \frac{u, u^{\prime} \text { neutral }}{\mathrm{Up} u^{\prime}=\mathrm{Up} u^{\prime} \in[\mathrm{Up} u]} \\
\frac{X=X^{\prime} \in \mathcal{U} \quad F d=F^{\prime} d^{\prime} \in \mathcal{U} \text { for all } d=d^{\prime} \in[X]}{\text { Fun } X F=\text { Fun } X^{\prime} F^{\prime} \in \mathcal{U}} \\
\frac{f d=f^{\prime} d^{\prime} \in[F d] \text { for all } d=d^{\prime} \in[X]}{f=f^{\prime} \in[\text { Fun } X F]}
\end{gathered}
$$

Modelling Large Types

- Large types: Define PER Type and extend [-] to Type.

$$
\begin{gathered}
\mathcal{U} \subseteq \text { Type } \\
\frac{X=X^{\prime} \in \text { Type } \quad F d=F^{\prime} d^{\prime} \in \mathcal{T} \text { ype for all } d=d^{\prime} \in[X]}{\text { Fun } X F=\text { Fun } X^{\prime} F^{\prime} \in \mathcal{T} y p e} \\
\frac{U=U \in \mathcal{T} y p e}{} \quad[\mathrm{U}]=\mathcal{U}
\end{gathered}
$$

- PERs contain only total elements of D.
- These can be printed (converted to terms).

Checking Semantic Equality

> Lemma
> Let $X=X^{\prime} \in$ Type.
> (1) $\uparrow^{X} u=\uparrow^{X^{\prime}} u \in[X]$.
> (2) If $d=d^{\prime} \in[X]$ then $\downarrow^{X} d={ }_{\alpha} \downarrow^{X^{\prime}} d^{\prime}$.

Proof.

Simultaneously by induction on $X=X^{\prime} \in \mathcal{T}$ ype .

Completeness of NbE

Theorem (Validity of judgements in PER model)
Let $\rho(x)=\rho^{\prime}(x) \in \llbracket \Gamma(x) \rrbracket_{\rho}$ for all x.

- If $\Gamma \vdash t: A$ then $\llbracket t \rrbracket_{\rho}=\llbracket t \rrbracket_{\rho^{\prime}} \in\left[\llbracket A \rrbracket_{\rho}\right]$.
- If $\Gamma \vdash t=t^{\prime}: A$ then $\llbracket t \rrbracket_{\rho}=\llbracket t^{\prime} \rrbracket_{\rho^{\prime}} \in\left[\llbracket A \rrbracket_{\rho}\right]$.

Corollary (Completeness of nf)
If $\vdash t=t^{\prime}: A$ then $\mathrm{nf}^{A}(t)={ }_{\alpha} \mathrm{nf}^{A}\left(t^{\prime}\right)$.
Soundness remains: If $\vdash t: A$ then $\vdash t=\mathrm{nf}^{A}(t): A$.

Kripke Logical Relation

Relate well-typed terms modulo equality to inhabitants of PERs.
Lemma (Into and out of the logical relation)
(1) If $\Gamma \vdash r=u: C$ then $\Gamma \vdash r: C ® \bigcap^{X} u \in[X]$.
(2) If $\Gamma \vdash r: C ® d \in[X]$ then $\Gamma \vdash r=\downarrow^{X} d: C$.

Definition

$$
\begin{aligned}
& \Gamma \vdash r: C ® d \in[X]: \Longleftrightarrow \Gamma \vdash r=\downarrow^{X} d: C \quad \text { for } X \text { base type, } \\
& \Gamma \vdash r: C ® f \in[F \text { un } X F]: \Longleftrightarrow \\
& \quad \Gamma \vdash C=\text { Fun } A(\lambda x . B) \text { for some } A, B \text { and } \\
& \quad \text { for all } \Delta \geq \Gamma \text { and } \Delta \vdash s: A ® d \in[X], \\
& \quad \Delta \vdash r s: B[s / x] \text { ® } f d \in[F d] .
\end{aligned}
$$

Soundness of NbE

- Prove the fundamental theorem.
- Corollary: $\vdash t: A$ implies $\vdash t: A ® \llbracket t \rrbracket \in[\llbracket A \rrbracket]$.
- Escaping the log.rel.: $\vdash t=\downarrow^{\llbracket A \rrbracket} \llbracket t \rrbracket: A$.
- Hence, nf is also sound.
- Decidability of judgemental equality entails injectivity of Π.

Conclusion

- Semantic metatheory of Martin-Löf Type Theory.
- Inference rules directly justified by PER model.
- No need to prove strengthening, subject reduction, confluence, normalization.
- Future work:
- Extend to Σ-types, singleton-types, proof-irrelevance.
- Adopt to syntax of categories-with-families (de Bruijn indices and explicit substitutions).

Related Work

- Martin-Löf 1975: NbE for Type Theory (weak conversion)
- Martin-Löf 2004: Talk on NbE (philosophical justification)
- Danvy et al: Type-directed partial evaluation
- Altenkirch Hofmann Streicher 1996: NbE for λ-free System F
- Berger Eberl Schwichtenberg 2003: Term rewriting for NbE
- Aehlig Joachimski 2004: Untyped NbE, operationally
- Filinski Rohde 2004: Untyped NbE, denotationally
- Danielsson 2006: strongly typed NbE for LF
- Altenkirch Chapman 2007: Tait in one big step

Special thanks to Klaus Aehlig.

