
Normalization by Evaluation for
Martin-Löf Type Theory

with Typed Equality Judgements

Andreas Abel1

Thierry Coquand2 Peter Dybjer2

1Ludwig-Maximilians-University Munich
2Chalmers University of Technology

Logic in Computer Science
Wroc law, Poland

10 July 2007

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 1 / 21

Introduction

My Talk

Dependent type theory basis for theorem provers (functional
programming languages) Agda, Coq, Epigram, . . .

Intensional theory with predicative universes.

Judgemental βη-equality.

Deciding type equality with Normalization-By-Evaluation.

Semantic proof of decidability of typing.

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 2 / 21

Introduction

Dependent Types

Dependent function space:
r : Πx :A.B[x] s : A

r s : B[s]

Types contain terms, type equality non-trivial.
Shape of types can depend on terms:

Vec An = A× · · · × A︸ ︷︷ ︸
n factors

Type conversion rule:
t : A

t : B
A ∼= B

Deciding type checking requires injectivity of Π

Πx :A.B ∼= Πx :A′.B ′ implies A ∼= A′ and B ∼= B ′

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 3 / 21

Introduction

Untyped β-Equality

One solution: A ∼= B iff A, B have common β-reduct.

Confluence of β makes ∼= transitive.

Injectivity of Π trivial.

But we want also η! E.g.
Theorem prover should not distinguish between P (λx . f x) and P f ,
or between two inhabitants of a one-element type.

The stronger the type equality, the more (sound) programs are
accepted by the type checker.

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 4 / 21

Introduction

Untyped βη-Equality

Try: A ∼= B iff A, B have common βη-reduct.

βη-reduction (with surjective pairing) only confluent on strongly
normalizing terms

Proof of s.n. requires model construction

. . . which requires invariance of interpretation under reduction

. . . which requires subject reduction

. . . which requires strengthening

. . . hard to prove for pure type systems (van Benthem 1993)

Even for untyped β, model construction difficult: Miquel Werner
2002: The not so simple proof-irrelevant model of CC

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 5 / 21

Introduction

Typed βη-Equality

Introduce equality judgement ` A = B.

Relies on term equality ` t = t ′ : C .

Simplifies model construction considerably.

Now injectivity of Π is hard.

Goguen 1994: Typed Operational Semantics for UTT.
“Syntactical” model.
Shows confluence, subject reduction, normalization in one go.
Impressive, technically demanding work.

This work: simpler argument, in the same spirit.

Slogan: semantics proves properties of syntax. (Altenkirch 1994).

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 6 / 21

Introduction

Deciding judgemental equality

Normalization function nfA(t).

Completeness:
` t = t ′ : A implies nfA(t) = nfA(t ′) (syntactical equal).

Soundness:
` t : A implies ` t = nfA(t) : A.

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 7 / 21

Syntax

Syntax of Terms and Types

Lambda-calculus with constants

r , s, t ::= c | x | λx .t | r s

c ::= N type of natural numbers
z zero
s successor
rec primitive recursion
Fun function space constructor
U universe of small types

Πx :A.B is written Fun A (λx .B).

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 8 / 21

Syntax

Judgements

Essential judgements

Γ ` A A is a well-formed type in Γ
Γ ` t : A t has type A in Γ
Γ ` A = A′ A and A′ are equal types in Γ
Γ ` t = t ′ : A t and t ′ are equal terms of type A in Γ

Typing of functions:

Γ,x :A ` t : B

Γ ` λx .t : FunA (λx .B)

Γ ` r : FunA (λx .B) Γ ` s : A

Γ ` r s : B[s/x]

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 9 / 21

Syntax

Rules for Judgmental Equality

Equality axioms:

(β)
Γ,x :A ` t : B Γ ` s : A

Γ ` (λx .t) s = t[s/x] : B[s/x]

(η)
Γ ` t : FunA (λx .B)

Γ ` (λx . t x) = t : FunA (λx .B)
x 6∈ FV(t)

Computation axioms for primitive recursion.
Congruence rules.

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 10 / 21

Syntax

Small and Large Types

Small types (sets):

Γ ` N : U

Γ ` A : U Γ,x :A ` B : U

Γ ` Fun A (λx .B) : U

U includes types defined by recursion like Vec An.
(Large) types:

Γ ` A : U

Γ ` A Γ ` U

Γ ` A Γ,x :A ` B

Γ ` Fun A (λx .B)

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 11 / 21

Semantics

λ-Model

Consider a (total) combinatorial algebra D

with constructors N, z, s,Fun,U.
Evaluation [[t]]ρ: Standard.

[[c]]ρ = c (c constant)
[[x]]ρ = ρ(x)

[[r s]]ρ = [[r]]ρ [[s]]ρ
[[λx .t]]ρ d = [[t]]ρ[x 7→d]

Example: [[FunA (λx .B)]] = Fun X F where X = [[A]] and
F d = [[B]][x 7→d].
We enrich D with term variables:
Up u ∈ D for each neutral term u ::= x ~v (generalized variable).

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 12 / 21

Semantics

Reification (Printing)

Reification ↓Xd produces a η-long β-normal term.

↓Nz = z
↓N(s d) = s (↓Nd)
↓N(Up u) = u

↓Up u′
(Up u) = u

↓FunX F f = λx . ↓F (↑X x)(f (↑X x)), x fresh

Reflection ↑Xu embeds a neutral term u into D, η-expanded.

(↑FunX F u) d = ↑F d(u ↓Xd)
↑X u = Up u

Normalization of closed terms ` t : A

nfA(t) = ↓[[A]][[t]].

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 13 / 21

Semantics

PER Model

A PER is a symmetric and transitive relation on D.
Small types: define a PER U and a PER [X] for X ∈ U .

N = N ∈ U z = z ∈ [N]

d = d ′ ∈ [N]

s d = s d ′ ∈ [N]

u neutral
Up u = Up u ∈ [N]

u neutral
Up u = Up u ∈ U

u, u′ neutral
Up u′ = Up u′ ∈ [Up u]

X = X ′ ∈ U F d = F ′ d ′ ∈ U for all d = d ′ ∈ [X]

Fun X F = FunX ′ F ′ ∈ U

f d = f ′ d ′ ∈ [F d] for all d = d ′ ∈ [X]

f = f ′ ∈ [Fun X F]

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 14 / 21

Semantics

Modelling Large Types

Large types: Define PER Type and extend [] to Type.

U ⊆ Type

X = X ′ ∈ Type F d = F ′ d ′ ∈ Type for all d = d ′ ∈ [X]

Fun X F = FunX ′ F ′ ∈ Type

U = U ∈ Type
[U] = U

PERs contain only total elements of D.
These can be printed (converted to terms).

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 15 / 21

Semantics

Checking Semantic Equality

Lemma
Let X = X ′ ∈ Type.

1 ↑Xu = ↑X ′
u ∈ [X].

2 If d = d ′ ∈ [X] then ↓Xd =α ↓X ′
d ′.

Proof.
Simultaneously by induction on X = X ′ ∈ Type.

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 16 / 21

Semantics

Completeness of NbE

Theorem (Validity of judgements in PER model)

Let ρ(x) = ρ′(x) ∈ [[Γ(x)]]ρ for all x.
If Γ ` t : A then [[t]]ρ = [[t]]ρ′ ∈ [[[A]]ρ].
If Γ ` t = t ′ : A then [[t]]ρ = [[t ′]]ρ′ ∈ [[[A]]ρ].

Corollary (Completeness of nf)

If ` t = t ′ : A then nfA(t) =α nfA(t ′).

Soundness remains: If ` t : A then ` t = nfA(t) : A.

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 17 / 21

Logical Relations

Kripke Logical Relation

Relate well-typed terms modulo equality to inhabitants of PERs.

Lemma (Into and out of the logical relation)

1 If Γ ` r = u : C then Γ ` r : C R© ↑Xu ∈ [X].
2 If Γ ` r : C R© d ∈ [X] then Γ ` r = ↓Xd : C .

Definition

Γ ` r : C R© d ∈ [X] :⇐⇒ Γ ` r = ↓Xd : C for X base type,

Γ ` r : C R© f ∈ [Fun X F] :⇐⇒
Γ ` C = FunA (λx .B) for some A,B and
for all ∆ ≥ Γ and ∆ ` s : A R© d ∈ [X],

∆ ` r s : B[s/x] R© f d ∈ [F d].

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 18 / 21

Logical Relations

Soundness of NbE

Prove the fundamental theorem.

Corollary: ` t : A implies ` t : A R© [[t]] ∈ [[[A]]].

Escaping the log.rel.: ` t = ↓[[A]][[t]] : A.

Hence, nf is also sound.

Decidability of judgemental equality entails injectivity of Π.

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 19 / 21

Logical Relations

Conclusion

Semantic metatheory of Martin-Löf Type Theory.

Inference rules directly justified by PER model.

No need to prove strengthening, subject reduction, confluence,
normalization.

Future work:
Extend to Σ-types, singleton-types, proof-irrelevance.
Adopt to syntax of categories-with-families (de Bruijn indices and
explicit substitutions).

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 20 / 21

Logical Relations

Related Work

Martin-Löf 1975: NbE for Type Theory (weak conversion)
Martin-Löf 2004: Talk on NbE (philosophical justification)
Danvy et al: Type-directed partial evaluation
Altenkirch Hofmann Streicher 1996: NbE for λ-free System F
Berger Eberl Schwichtenberg 2003: Term rewriting for NbE
Aehlig Joachimski 2004: Untyped NbE, operationally
Filinski Rohde 2004: Untyped NbE, denotationally
Danielsson 2006: strongly typed NbE for LF
Altenkirch Chapman 2007: Tait in one big step

Special thanks to Klaus Aehlig.

Abel Coquand Dybjer (LMU, CTH) NbE for Type Theory LICS’07 21 / 21

	Introduction
	Syntax
	Semantics
	Logical Relations

