Weak Normalization for the Simply-Typed Lambda-Calculus in Twelf

A Case Study on Higher-Order Abstract Syntax

Andreas Abel

Slide 1

LFM'04, IJCAR Cork, Ireland July 5, 2004

Work supported by: GKLI (DFG), TYPES & APPSEM-II (EU), CoVer (SSF)

Twelf

- Logical framework based on the Edinburgh LF (dependently-typed λ -calculus)
- Propositions-as-types, derivations-as-objects
- Higher-order abstract syntax (HOAS)
- No internal recursion or induction
- Slide 2
- Higher-order logic programming
- Applications:
 - Prototyping of logics and programming languages
 - Verification of syntactic properties (e.g., Church-Rosser, subject reduction, cut elimination)
 - Type-checking dependent types (Appel, Foundational PCC; Stump, SVC)

Twelf Syntax

• Kinds, types and terms.

\mathbb{K}	::= 	type {Ⅻ:᠕}账	kind of types dependent function kind
A	::= 	$ \mathbb{F} \mathbb{M}_1 \dots \mathbb{M}_n \\ \{\mathbb{X}: \mathbb{A}\} \mathbb{A} \\ \mathbb{A} \to \mathbb{A} $	base type (user-def.) dependent function type non-dependent function type
M	::= 	C X [X:A]M MM	term constant (user-def.) term variable term abstraction term application

• Terms considered up to $\beta\eta$ -equality

• No user-def. reduction rules: all functions parametrics

Representation of Syntactic Objects in Twelf

• Representation of simple types $A, B, C ::= * | A \rightarrow B$.

Slide 4

ty

*

=>

```
: type.
: ty.
: ty -> ty -> ty.
```

• Representation of λ -terms $r, s, t, u ::= x \mid \lambda x.t \mid rs$.

tm	:	type.
lam	:	(tm -> tm) -> tm.
app	:	tm -> tm -> tm.

• HOAS = represent object variables by framework variables.

twice = lam [f:tm] lam [x:tm] app f (app f x).

Slide 5

Representation of Judgements without Hypotheses

• Weak head reduction $t \longrightarrow_{\mathsf{w}} t'$.

$$\frac{1}{(\lambda x.t) \, s \longrightarrow_{\mathsf{W}} [s/x]t} \text{ beta } \qquad \frac{r \longrightarrow_{\mathsf{W}} r'}{r \, s \longrightarrow_{\mathsf{W}} r' \, s} \text{ appl}$$

Slide 6

• Representation in Twelf.

--->w : tm -> tm -> type. beta : app (lam T) S -->w T S. appl : R -->w R' -> app R S -->w app R' S.

• Substitution in object theory is application of the framework.

Representation of Judgements with Hypotheses

• Type assignment, natural-deduction style.

$$\begin{array}{c} x:A\\ \vdots\\ t:B\\ \overline{\lambda x.t:A \to B} \end{array} \quad \begin{array}{c} r:A \to B \quad s:A\\ rs:B \end{array} \text{ of_app} \end{array}$$

Slide 7

• Typing assumption is represented as hypothetical judgement.

of : tm -> ty -> type. of_lam : ({x:tm} of x A -> of (T x) B) -> of (lam [x:tm] T x) (A => B). of_app : of R (A => B) -> of S A -> of (app R S) B.

Weak Head Reduction is Closed under Substitution

- Lemma: If $t \xrightarrow{\mathbb{D}}_{\mathsf{w}} t'$ then $[u/y]t \xrightarrow{\mathbb{D}'}_{\mathsf{w}} [u/y]t'$.
- Proof: By induction on the derivation D of $t \longrightarrow_{w} t'$.
 - Case $(\lambda x.t) s \xrightarrow{\text{beta}} (s/x)t$. W.l.o.g. $x \neq y$ and x not free in u. Then,

$$\begin{split} [u/y]((\lambda x.t)\,s) &= & (\lambda x.[u/y]t) \ [u/y]s \\ & \stackrel{\texttt{beta}}{\longrightarrow}_{\mathsf{W}} & \quad [[u/y]s/x][u/y]t &= \quad [u/y][s/x]t. \end{split}$$

- Case $r \stackrel{\text{appl D}}{\longrightarrow}_{w} r' s$ with $r \stackrel{\text{D}}{\longrightarrow}_{w} r'$. By ind. hyp., $[u/y]r \stackrel{\text{D'}}{\longrightarrow}_{w} [u/y]r'$. Hence,

Representation of Theorems and Proofs

• A theorem is represented as a functional relation.

Slide 9

• Its proof is represented as a logic program which implements the relation.

- Function must be total to represent a valid proof.
- This requires *termination* and *coverage* of all possible inputs.

A Formalized Proof of Weak Normalization for the STL

- Structure of a normalization proof:
 - 1. Define a relation $t \Downarrow A$ which is closed under application.
 - 2. Show: If t : A then $t \Downarrow A$.
 - 3. Show: If $t \Downarrow A$ then t is normalizing.

Slide 11

- Tait and crowd: $t \Downarrow A$ is a *logical relation* (semantical).
- Joachimski and Matthes (2004): $t \Downarrow A$ is a finitary inductive definition.
- Forerunners: Goguen (1995), van Raamsdonk and Severi (1995).

Inductive Characterization of Weakly Normalizing Terms

- "De-vectorized" version of Joachimski and Matthes (2004)
- $\Gamma \vdash t \Downarrow A$: t is weakly normalizing of type A.
- $\Gamma \vdash t \downarrow^x A$: t is wn and neutral of type A.

Slide 12

• Rules:

$$\frac{(x:A) \in \Gamma}{\Gamma \vdash x \downarrow^x A} \qquad \frac{\Gamma \vdash r \downarrow^x A \to B \qquad \Gamma \vdash s \Downarrow A}{\Gamma \vdash r s \downarrow^x B} \text{ wne_app}$$
$$\frac{\frac{\Gamma \vdash r \downarrow^x A}{\Gamma \vdash r \Downarrow A} \text{ wn_ne}}{\Gamma \vdash r \Downarrow A}$$

$$\frac{\Gamma, x : A \vdash t \Downarrow B}{\Gamma \vdash \lambda x . t \Downarrow A \to B} \text{ wn_lam } \qquad \frac{r \longrightarrow_{\mathsf{w}} r' \quad \Gamma \vdash r' \Downarrow A}{\Gamma \vdash r \Downarrow A} \text{ wn_exp}$$

Difficult: Closure under Application

- Lemma: Let $\mathcal{D} :: \Gamma \vdash s \Downarrow A$.
 - 1. If $\mathcal{E} :: \Gamma \vdash r \Downarrow A \to C$ then $\Gamma \vdash r s \Downarrow C$.
 - 2. If $\mathcal{E} :: \Gamma, x : A \vdash t \Downarrow C$, then $\Gamma \vdash [s/x]t \Downarrow C$.
 - 3. If $\mathcal{E} :: \Gamma, x : A \vdash t \downarrow^x C$, then $\Gamma \vdash [s/x]t \Downarrow C$

and C is a subexpression of A.

- 4. If $\mathcal{E} :: \Gamma, x : A \vdash t \downarrow^y C$ with $x \neq y$, then $\Gamma \vdash [s/x]t \downarrow^y C$.
- Proof: Simultaneously by main induction on type A (for part 3) and side induction on the derivation \mathcal{E} .
- Similar to Girard, Lafont and Taylor (1989): Lexicographic induction on highest degree (=type) of a redex and the number of redexes of highest degree.

Closure under Application and Substitution in Twelf

- Representation of lemma as 4 type families.
- "C is a subexpression of A" expressed by %reduces C <= A.
- Mutual lexicographic termination order.

Slide 14

- Simple induction: $t \Downarrow A$ for every typed term t : A.
- Lemma (Soundness): If $t \Downarrow A$ then $t \longrightarrow^* v$ for some v.
- Requires characterization of valued and properties of reduction.
- Technical, but well understood. $\hfill \Box$

Slide 15

Tait-Style Proofs in Twelf?

• Heart of Tait's proof is the rule:

$$\frac{\forall s. \ s \Downarrow A \ \Rightarrow \ r \, s \Downarrow B}{r \Downarrow A \rightarrow B}$$

• Literal encoding in Twelf. . .

Slide 16

({S:tm} wn S A \rightarrow wn (app R S) B) \rightarrow wn R (A => B).

• ... means something else:

if for a fresh term S for which we assume wn S A it holds that wn (app R S) B, then wn R (A => B).

• Problem: Tait's infinitary premise is not expressible.

Strong Normalization in Twelf?

- Classical definition of *strongly normalizing*: no infinite reduction sequences.
- No good in a constructive setting.
- Inductive definition of *strongly normalizing*: wellfounded part of reduction relation.

$$\frac{\forall t'. \ t \longrightarrow t' \Rightarrow \operatorname{sn} t'}{\operatorname{sn} t},$$

• Suffers likewise from an infinitary premise.

Conclusion

- Normalization for a proof-theoretically weak object theory directly implementable in Twelf.
- Limits for normalization proofs: expressiveness of Twelf, termination checker.

Slide 18

- $\bullet\,$ Conjecture 1: Infinitary premises not expressible in Twelf.
- Conjecture 2: Strong normalization not expressible in Twelf.
- Conjecture 3: Proof-theoretical strength of Twelf bounded by arithmetic.

Related Work

- Altenkirch (1993): SN for System F in LEGO.
- Filinski in 1990s: Feasibility of logical relations in Twelf. Not published.
- Berghofer and Nipkow: Joachimski and Matthes' proof in Isabelle. Submitted.

Slide 19

• Watkins and Crary: Normalization for Concurrent LF in Twelf.