Type-Based Termination of Functional Programs

Andreas Abel

Department of Computer Science Ludwig-Maximilians-University Munich

Kolloquium Programmiersprachen und Grundlagen der Programmierung KPS'07 11 October 2007 Timmendorfer Strand, Germany

Termination

- Question: Will the run of a program eventually halt?
- Undecidable for Turing-complete programming languages (Halteproblem).
- No termination checker can give a definitive answer for all programs.
- Problem still interesting for:
 - optimization and program specialization
 - total correctness of programs
 - proof assistants like Agda, Coq, Epigram, LEGO

Type-based termination

- View data (natural numbers, lists, binary trees) as trees.
- Type of data is equipped with a size.
- Size = upper bound on height of tree.
- Size must decrease in each recursive call.
- Termination is ensured by type-checker.

Sized types in a nutshell

- Sizes are upper bounds.
- List^a denotes lists of length < a.
- $List^{\infty}$ denotes list of arbitrary (but finite) length.
- Sizes induce subtyping: $List^a \leq List^b$ if $a \leq b$.
- Size expressions *a*, *b*.

$$egin{array}{ccc} a & ::= & i & ext{variable} \ & | & a+1 & ext{successor} \ & | & \infty & \omega \end{array}$$

・日・ ・ ヨ ・ ・

Splitting: definition

split :
$$\forall A. \text{ List } A \rightarrow \text{List } A \times \text{List } A$$

split [] = ([] ,[])
split (y :: l) = let (xs, ys)=split l in
((y :: ys), xs)

イロト イヨト イヨト イヨ

Splitting: termination

split :
$$\forall i. \forall A. \operatorname{List}^{i} A \to \operatorname{List} A \times \operatorname{List} A$$

split [] = ([] ,[])
split $(y :: l^{i})^{i+1} = \operatorname{let} (xs, ys) = \operatorname{split} l^{i}$ in
 $((y :: ys), xs)$

- To compute split at stage i + 1, split is only used at stage i.
- Hence, split is terminating.

・ロト ・回ト ・ヨト ・

Splitting: bounded output

split :
$$\forall i. \forall A. \operatorname{List}^{i} A \to \operatorname{List}^{i} A \times \operatorname{List}^{i} A$$

split $[]^{i+1} = ([]^{i+1}, []^{i+1})$
split $(y :: l^{i})^{i+1} = \operatorname{let} (xs^{i}, ys^{i}) = \operatorname{split} l^{i}$ in
 $((y :: ys)^{i+1}, xs^{i \leq i+1})$

- We additionally can infer that split is non-size increasing.
- Using split, we can define merge sort...

• • • • • • • • • • • •

Merging: definition

merge produces a sorted list from two sorted input lists.

```
merge : List Int \rightarrow List Int \rightarrow List Int

merge [] l = l

merge (x :: xs) l = merge' l

where merge' : List Int \rightarrow List Int

merge' [] = x :: xs

merge' (y :: ys) = if x \leq y then

x :: merge xs (y :: ys)

else y :: merge' ys
```

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへの

Merging: termination

merge terminates by lexicographic ordering.

```
merge : \forall i. \operatorname{List}^{i} \operatorname{Int} \to \operatorname{List}^{\infty} \operatorname{Int} \to \operatorname{List}^{\infty} \operatorname{Int}

merge [] l = l

merge (x :: xs^{i})^{i+1} l = \operatorname{merge}' l

where merge' : \forall j. \operatorname{List}^{j} \operatorname{Int} \to \operatorname{List}^{\infty} \operatorname{Int}

merge' [] = x :: xs

merge' (y :: ys^{j})^{j+1} = \operatorname{if} x \leq y then

x :: \operatorname{merge} xs^{i} (y :: ys)^{j+1} \leq \infty

else y :: \operatorname{merge}' ys^{j}
```

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ●目 ● のへで

Merge sort: definition

msort : List $Int \rightarrow List$ Intmsort [] = [] msort (x :: I) = msort' x Imsort' : $Int \rightarrow List$ $Int \rightarrow List$ Intmsort' x [] = [x] msort' x (y :: I) = let (xs, ys) = split I in merge (msort' x xs) (msort' y ys)

Andreas Abel (LMU Munich)

KPS'07 10 / 21

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

Merge sort: termination

msort : List^{$$\infty$$} Int \rightarrow List ^{∞} Int
msort [] = []
msort (x :: l) = msort' x l
msort' : $\forall i$. Int \rightarrow Listⁱ Int \rightarrow List ^{∞} Int
msort' x []ⁱ⁺¹ = [x]
msort' x (y :: lⁱ) = let (xsⁱ, ysⁱ) = split lⁱ in
merge (msort' x xsⁱ)
(msort' y ysⁱ)

Andreas Abel (LMU Munich)

▲ E → E → への KPS'07 11 / 21

(日) (同) (三) (三)

Merge sort: abstract split

$$\begin{array}{ll} \operatorname{msort}' \ split \ x \ [] &= [x] \\ \operatorname{msort}' \ split \ x \ (y :: I \) &= \operatorname{let} \ (xs \ , ys \) = split \ I \ \operatorname{in} \\ & \operatorname{merge} \ (\operatorname{msort}' \ x \ xs \) \\ & (\operatorname{msort}' \ y \ ys \) \end{array}$$

- The variable *split* can only be instantiated with non size increasing functions
- This is naturally expressed with a rank-2 size polymorphic type

・ロト ・回ト ・ヨト ・

Merge sort: abstract split (II)

$$\begin{array}{l} \operatorname{msort}' : (\forall i. \forall A. \operatorname{List}^{i} A \to \operatorname{List}^{i} A \times \operatorname{List}^{i} A) \to \\ \forall i. \operatorname{Int} \to \operatorname{List}^{i} \operatorname{Int} \to \operatorname{List}^{\infty} \operatorname{Int} \\ \operatorname{msort}' split \; x \; []^{i+1} = [x] \\ \operatorname{msort}' split \; x \; (y :: l^{i}) = \operatorname{let} \; (xs^{i}, ys^{i}) = split \; l^{i} \text{ in} \\ \operatorname{merge} \; (\operatorname{msort}' \; x \; xs^{i}) \\ (\operatorname{msort}' \; y \; ys^{i}) \end{array}$$

• We drop the restriction of Hughes, Pareto, and Sabry and Barthe et al. that sizes should be inferable.

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- < ⊒ > - <

Formalization

- Sized inductive type $\mu^i X. A$.
- Equations and subtyping.

$$\mu^{a+1}X.A = [(\mu^{a}X.A)/X]A$$

$$\mu^{\infty}X.A = [(\mu^{\infty}X.A)/X]A$$

$$\mu^{a}X.A \leq \mu^{b}X.A \quad \text{for } a \leq b$$

• Example: lists.

$$\begin{array}{rcl} {\rm List}^{i}A & := & \mu^{i}X.\,1 + A \times X \\ {\rm nil} & : & \forall A \forall i.\, {\rm List}^{i+1}A \\ & := & {\rm inl}\langle\rangle \\ {\rm cons} & : & \forall A.\,A \to \forall i.\, {\rm List}^{i}A \to {\rm List}^{i+1}A \\ & := & \lambda a \lambda a s.\, {\rm inr}\langle a, a s \rangle \end{array}$$

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→

Recursion

• Recursion principle (semantically):

 $\frac{\operatorname{fix} f \in A^{\mathsf{0}} \qquad f \in A^{\alpha} \to A^{\alpha+1} \quad (\operatorname{fix} f \in \bigcap_{\alpha < \omega} A^{\alpha}) \to \operatorname{fix} f \in A^{\omega}}{\forall \beta \leq \omega. \operatorname{fix} f \in A^{\beta}}$

- Step: fix $f \in A^{\alpha}$ implies $f(\text{fix } f) = \text{fix } f \in A^{\alpha+1}$.
- Restrict admissible types A^{α} such that
 - fix $f \in A^0$ is trivial, e.g., $A^{\alpha} = (\mu^{\alpha} X.A) \to C$, $(\mu^0 X.A$ is empty)
 - $(\bigcap_{\alpha < \lambda} A^{\alpha}) \subseteq A^{\omega}.$
- Typing rule for recursion (e.g., $A^{i} = \text{List}^{i} \text{Int} \rightarrow \text{List}^{i} \text{Int}$):

$$\frac{f:\forall i. A^i \to A^{i+1}}{\mathsf{fix}\, f:A^a} A^i \text{ admissible}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Productivity

- Productivity is **dual** to termination.
- A productive process should continuously turn input into output.
- Examples: editor, operating system, stream.
- Important in embedded and functional reactive programming.

Infinite structures

- On infinite objects like streams, we are interested in the definedness rather than the size.
- s : Stream^a A means s is defined upto depth a.
- Objects which are defined upto depth ∞ are called productive.
- Stream^a $A = \nu^{a} X. A \times X$, then

(_,_)	:	$\forall i. A \rightarrow Stream^i A \rightarrow Stream^{i+1} A$
fst	:	$\forall i. Stream^{i+1} A ightarrow A$
snd	:	$\forall i. Stream^{i+1} A \to Stream^i A$

• Subtyping: Stream^{∞} $A \leq \dots$ Stream^{*i*+1} $A \leq$ Stream^{*i*}A

Corecursion example: sequence of natural numbers

• Map for streams in sugared recursion syntax:

map : $\forall X \forall Y. (X \to Y) \to \forall i. \text{Stream}^{i}(X) \to \text{Stream}^{i}(Y)$ map $f(x, xs^{i})^{i+1} = ((fx), \text{map } f(xs^{i})^{i+1})$

 Stream of natural numbers in orginal recursion syntax: from0 : ∀i. Streamⁱ(Int) from0 = fix^νλnats. (0, (map (+1) natsⁱ)ⁱ)ⁱ⁺¹

・ロト ・同ト ・ヨト ・ヨト - ヨ

Recent publications

- PhD thesis: Type Based Termination (July 2006): Treatment of higher kinded data types.
- MPC 2006: Termination of generic programs.
- CSL 2006: Characterization of admissible types.
- APLAS 2007: Mixed inductive/coinductive types.

Some related work

- Hughes, Pareto, Sabry (1996) Proving the correctness of reactive system using sized types.
- Barthe et al.: $\lambda^{(2004)}$, CIC⁽²⁰⁰⁶⁾.
- Blanqui, Riba: Calculus of Algebraic Constructions with Size Annotations (CACSA, 2004/5); size constraints (2006).

Conclusions

- Conceptually lean way of ensuring termination.
- Well-typedness ensures termination. Typing derivation is termination certificate.
- Scales to higher-order functions and abstract algorithms.
- Goal: extend soundness proof to dependent types.