
Type-Based Termination of Functional Programs

Andreas Abel

Department of Computer Science

Ludwig-Maximilians-University Munich

Kolloquium Programmiersprachen und
Grundlagen der Programmierung

KPS'07
11 October 2007

Timmendorfer Strand, Germany

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 1 / 21

Introduction

Termination

Question: Will the run of a program eventually halt?

Undecidable for Turing-complete programming languages
(Halteproblem).

No termination checker can give a de�nitive answer for all
programs.

Problem still interesting for:

optimization and program specialization
total correctness of programs
proof assistants like Agda, Coq, Epigram, LEGO

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 2 / 21

Introduction

Type-based termination

View data (natural numbers, lists, binary trees) as trees.

Type of data is equipped with a size.

Size = upper bound on height of tree.

Size must decrease in each recursive call.

Termination is ensured by type-checker.

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 3 / 21

Introduction

Sized types in a nutshell

Sizes are upper bounds.

Lista denotes lists of length < a.

List∞ denotes list of arbitrary (but �nite) length.

Sizes induce subtyping: Lista ≤ Listb if a ≤ b.

Size expressions a, b.

a ::= i variable
| a + 1 successor
| ∞ ω

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 4 / 21

Example: Termination of MergeSort

Splitting: de�nition

split : ∀A. List A → List A× List A

split [] = ([] , [])
split (y :: l) = let (xs , ys)=split l in

((y :: ys) , xs)

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 5 / 21

Example: Termination of MergeSort

Splitting: termination

split : ∀i .∀A. ListiA → List A× List A

split [] = ([] , [])
split (y :: l i)i+1 = let (xs , ys)=split l i in

((y :: ys) , xs)

To compute split at stage i + 1, split is only used at stage i .

Hence, split is terminating.

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 6 / 21

Example: Termination of MergeSort

Splitting: bounded output

split : ∀i .∀A. ListiA → ListiA× ListiA

split []i+1 = ([]i+1, []i+1)
split (y :: l i)i+1 = let (xs i , ys i)=split l i in

((y :: ys)i+1, xs i≤i+1)

We additionally can infer that split is non-size increasing.

Using split, we can de�ne merge sort. . .

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 7 / 21

Example: Termination of MergeSort

Merging: de�nition

merge produces a sorted list from two sorted input lists.

merge : List Int→ List Int→ List Int

merge [] l = l

merge (x :: xs) l = merge′ l

where merge′ : List Int→ List Int

merge′ [] = x :: xs
merge′ (y :: ys) = if x ≤ y then

x :: merge xs (y :: ys)
else y :: merge′ ys

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 8 / 21

Example: Termination of MergeSort

Merging: termination

merge terminates by lexicographic ordering.

merge : ∀i . Listi Int→ List∞ Int→ List∞ Int

merge [] l = l

merge (x :: xs i)i+1 l = merge′ l

where merge′ : ∀j . Listj Int→ List∞ Int

merge′ [] = x :: xs
merge′ (y :: ys j)j+1 = if x ≤ y then

x :: merge xs i (y :: ys)j+1≤∞

else y :: merge′ ys j

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 9 / 21

Example: Termination of MergeSort

Merge sort: de�nition

msort : List Int→ List Int

msort [] = []
msort (x :: l) = msort′ x l

msort′ : Int→ List Int→ List Int

msort′ x [] = [x]
msort′ x (y :: l) = let (xs , ys)=split l in

merge (msort′ x xs)
(msort′ y ys)

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 10 / 21

Example: Termination of MergeSort

Merge sort: termination

msort : List∞ Int→ List∞ Int

msort [] = []
msort (x :: l) = msort′ x l

msort′ : ∀i . Int→ Listi Int→ List∞ Int

msort′ x []i+1 = [x]
msort′ x (y :: l i) = let (xs i , ys i)=split l i in

merge (msort′ x xs i)
(msort′ y ys i)

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 11 / 21

Example: Termination of MergeSort

Merge sort: abstract split

msort′ split x [] = [x]
msort′ split x (y :: l) = let (xs , ys)=split l in

merge (msort′ x xs)
(msort′ y ys)

The variable split can only be instantiated with non size increasing
functions

This is naturally expressed with a rank-2 size polymorphic type

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 12 / 21

Example: Termination of MergeSort

Merge sort: abstract split (II)

msort′ : (∀i .∀A. ListiA → ListiA× ListiA) →
∀i . Int→ Listi Int→ List∞ Int

msort′ split x []i+1 = [x]
msort′ split x (y :: l i) = let (xs i , ys i)=split l i in

merge (msort′ x xs i)
(msort′ y ys i)

We drop the restriction of Hughes, Pareto, and Sabry and Barthe
et al. that sizes should be inferable.

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 13 / 21

Formalization

Formalization

Sized inductive type µiX .A.

Equations and subtyping.

µa+1X .A = [(µaX .A)/X]A
µ∞X .A = [(µ∞X .A)/X]A
µaX .A ≤ µbX .A for a ≤ b

Example: lists.

ListiA := µiX . 1 + A× X

nil : ∀A∀i . Listi+1A

:= inl〈〉
cons : ∀A.A → ∀i . ListiA → Listi+1A

:= λaλas. inr〈a, as〉

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 14 / 21

Formalization

Recursion

Recursion principle (semantically):

�x f ∈ A0 f ∈ Aα → Aα+1 (�x f ∈
⋂

α<ω Aα) → �x f ∈ Aω

∀β ≤ ω. �x f ∈ Aβ

Step: �x f ∈ Aα implies f (�x f) = �x f ∈ Aα+1.

Restrict admissible types Aα such that

�x f ∈ A0 is trivial, e.g., Aα = (µαX .A) → C , (µ0X .A is empty)
(
⋂

α<λ A
α) ⊆ Aω.

Typing rule for recursion (e.g., Ai = Listi Int→ Listi Int):

f : ∀i .Ai → Ai+1

�x f : Aa
Ai admissible

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 15 / 21

Productivity

Productivity

Productivity is dual to termination.

A productive process should continuously turn input into output.

Examples: editor, operating system, stream.

Important in embedded and functional reactive programming.

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 16 / 21

Productivity

In�nite structures

On in�nite objects like streams, we are interested in the
de�nedness rather than the size.

s : StreamaA means s is de�ned upto depth a.

Objects which are de�ned upto depth ∞ are called productive.

StreamaA = νaX .A× X , then

(_,_) : ∀i .A → StreamiA → Streami+1A

fst : ∀i . Streami+1A → A

snd : ∀i . Streami+1A → StreamiA

Subtyping: Stream∞A ≤ . . . Streami+1A ≤ StreamiA

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 17 / 21

Productivity

Corecursion example: sequence of natural numbers

Map for streams in sugared recursion syntax:

map : ∀X∀Y . (X → Y) → ∀i . Streami (X) → Streami (Y)

map f (x , xs i)i+1 = ((f x), map f xs i)i+1

Stream of natural numbers in orginal recursion syntax:

from0 : ∀i . Streami (Int)

from0 = �xνλnats. (0, (map (+1) nats i)i)i+1

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 18 / 21

Conclusions and Further Work

Recent publications

PhD thesis: Type Based Termination (July 2006): Treatment of
higher kinded data types.

MPC 2006: Termination of generic programs.

CSL 2006: Characterization of admissible types.

APLAS 2007: Mixed inductive/coinductive types.

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 19 / 21

Conclusions and Further Work

Some related work

Hughes, Pareto, Sabry (1996)
Proving the correctness of reactive system using sized types.

Barthe et al.: λ̂ (2004), CICˆ(2006).

Blanqui, Riba: Calculus of Algebraic Constructions with Size
Annotations (CACSA, 2004/5); size constraints (2006).

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 20 / 21

Conclusions and Further Work

Conclusions

Conceptually lean way of ensuring termination.

Well-typedness ensures termination.
Typing derivation is termination certi�cate.

Scales to higher-order functions and abstract algorithms.

Goal: extend soundness proof to dependent types.

Andreas Abel (LMU Munich) Type-Based Termination KPS'07 21 / 21

	Introduction
	Example: Termination of MergeSort
	Formalization
	Productivity
	Conclusions and Further Work

