Type-Based Termination and Productivity Checking

Andreas Abel
Dept. of Comp. Sci., Chalmers

Slide 1

Work supported by: GKLI (DFG), TYPES, APPSEM-II and CoVer (SSF)

Short CV

1999 Diploma from this university
Major in computer science, minor in mathematics
Diplomathesis: termination checker foetus for structural recursion
Slide 2
1999-2003 Ph.D. student at this chair in the PhD program Logic in Computer Science:

2000/01 Visit to Frank Pfenning at Carnegie-Mellon, Pittsburgh, USA: Development of a tutorial proof checker (Tutch) for constructive logics

2004-today Postdoc at Chalmers, Göteborg, Sweden Verifying Haskell programs using First-Order Logic and Type Theory

Oct 2005(?!) Ph.D. from this university A Polymorphic
Slide 3 Lambda-Calculus with Sized Higher-Order Types

Talk outline

1. Introduction to termination
2. Inductive types and a recursion principle
3. $\mathrm{F}_{\hat{\omega}}-$ a type system for termination

Slide 4
4. Examples: the type system at work
5. Productivity via coinduction
6. Achieved results and future work

- Question: Will the run of a program eventually halt?
- Undecidable for Turing-complete programming languages (Halteproblem).
- No termination checker can give a definitive answer for all programs.
- Problem still interesting for:
- optimization and program specialization
- total correctness of programs
- theorem proving

Termination for theorem proving

- Inductive theorem provers: e.g., Agda, Coq, LEGO, Twelf.
- Some proofs are tree-shaped deriviations, e.g., proof that $[a, 0]=[b, 0]$.

Slide 6

$$
\begin{array}{cc}
a=b & \frac{0=0}{(0::[])=(0::[])} \\
\hline a::(0::[])=b::(0::[])
\end{array}
$$

- Some proofs are recursive programs, manipulating derivations.
- E.g., proof of $\left(l_{1}=l_{2}\right) \rightarrow\left(l_{2}=l_{3}\right) \rightarrow\left(l_{1}=l_{3}\right)$.
- Only terminating programs denote valid proofs.
- E.g., program trans $d_{1} d_{2}=\operatorname{trans} d_{1} d_{2}$ has to be rejected.

Termination of Functions Over Inductive Types

- For termination, only structure of trees is interesting.
- Structure of these trees can be represented by inductive types.
- More inductive types:
- lists

Slide 7

- binary trees
- natural numbers
- tree ordinals

Inductive types

- Semantical perspective: types are value sets.
- Example: integer lists
- [] is an int. list
- if x is an int. and $x s$ an int. list, then $x:: x s$ is an int. list

Slide 8 - Least solution of type equation

$$
\text { List Int }=\{[]\} \cup\{x:: x s \mid x \in \operatorname{Int} \text { and } x s \in \text { List Int }\}
$$

- Abstracting away the names

List Int $=1+\operatorname{Int} \times$ List Int

- Definable as least fixed-point $\mu^{\infty} F$ of some type operator F

$$
\text { List Int }:=\mu^{\infty}(\lambda X .1+\operatorname{lnt} \times X)
$$

Iterating to the least fixed point

$$
\begin{array}{ll}
& \mu^{\infty} F \\
& \mu^{\omega} F \\
\mu^{2} F & \\
\mu^{1} F & \\
\mu^{\omega+1} F &
\end{array}
$$

Slide 9

Iterating to the least fixed point

- The least fixed point is reachable from below by ordinal iteration:

$$
\begin{aligned}
\mu^{0} F & =\emptyset \\
\mu^{\alpha+1} F & =F\left(\mu^{\alpha} F\right) \\
\mu^{\lambda} F & =\bigcup_{\alpha<\lambda} \mu^{\alpha} F
\end{aligned}
$$

Slide 10

- E.g., List ${ }^{\alpha} \operatorname{Int}:=\mu^{\alpha}(\lambda X .1+\operatorname{Int} \times X)$ contains integer lists of length $<\alpha$.
- List ${ }^{\omega}$ Int is already the least fixed point.
- List constructors definable:
[] \in List $^{\alpha+1}$ Int
$(::) \quad \in \operatorname{Int} \rightarrow$ List ${ }^{\alpha}$ Int \rightarrow List $^{\alpha+1}$ Int
- E.g., we want to define list summation sum \in List $^{\omega}$ Int \rightarrow Int.
- Recursive program:

$$
\begin{array}{ll}
\operatorname{sum}[] & =0 \\
\operatorname{sum} & (x:: x s)
\end{array}=x+\operatorname{sum} x s
$$

Slide 11

- Via fixed-point combinator $\operatorname{fix} f=f($ fix $f)$.

$$
\begin{aligned}
& \text { sum }=\text { fix } \underbrace{\begin{array}{lll}
(\lambda \text { sum. } \lambda l \text {. match } l \text { with } \\
\text { nil } & \mapsto & 0 \\
(x:: x s) & \mapsto & x+\text { sum } x s)
\end{array}}_{f}
\end{aligned}
$$

- How to prove that sum is well defined, i.e., terminating?

A recursion principle from transfinite induction

- Rule for transfinite induction:

$$
\frac{P(0) \quad P(\alpha) \rightarrow P(\alpha+1) \quad(\forall \alpha<\lambda . P(\alpha)) \rightarrow P(\lambda)}{P(\beta)}
$$

- Use transfinite induction to define a recursive program:

Slide 12

$$
\frac{\operatorname{fix} f \in A^{0} \quad f \in A^{\alpha} \rightarrow A^{\alpha+1} \quad\left(\forall \alpha<\lambda . \operatorname{fix} f \in A^{\alpha}\right) \rightarrow \operatorname{fix} f \in A^{\lambda}}{\operatorname{fix} f \in A^{\beta}}
$$

- For sum \in List $^{\omega}$ Int \rightarrow Int, instantiate $A^{\alpha}=$ List $^{\alpha}$ Int \rightarrow Int and $\beta=\omega$.
- Recursion principle:

$$
\frac{\operatorname{fix} f \in A^{0} \quad f \in A^{\alpha} \rightarrow A^{\alpha+1} \quad\left(\operatorname{fix} f \in \bigcap_{\alpha<\lambda} A^{\alpha}\right) \rightarrow \operatorname{fix} f \in A^{\lambda}}{\operatorname{fix} f \in A^{\beta}}
$$

- Restrict admissible types A^{α} such that
$-\operatorname{fix} f \in A^{0}$ is trivial, e.g., $A^{\alpha}=\mu^{\alpha} F \rightarrow C$,
$-\left(\bigcap_{\alpha<\lambda} A^{\alpha}\right) \subseteq A^{\lambda}$.
- Specialized rule

$$
\frac{\forall \alpha . f \in A^{\alpha} \rightarrow A^{\alpha+1}}{\text { fix } f \in A^{\beta}} A^{\alpha} \text { admissible }
$$

From semantics to syntax

- Recapitulation of semantic types we used:

$$
\begin{aligned}
& \forall \frac{\forall \alpha . f \in A^{\alpha} \rightarrow A^{\alpha+1}}{\text { fix } f \in A^{\beta}} A^{\alpha} \text { admissible } \\
& \text { sum } \in \text { List }^{\omega} \text { Int } \rightarrow \text { Int } \\
& \text { nil } \in \operatorname{List}^{\alpha+1} \text { Int } \\
& (::) \in \operatorname{Int} \rightarrow \text { List }^{\alpha} \text { Int } \rightarrow \text { List }^{\alpha+1} \text { Int }
\end{aligned}
$$

- We only talk about ordinal variables (α, β), successor, and closure ordinal (in this case, ω)!
- We can turn these semantic rules into syntax without an ordinal notation system (e.g., Cantor normal form).

$\mathrm{F}_{\widehat{\omega}}$: a type system for termination

- A language with three levels:
- Terms (programs) which have types.
- Type constructors: a language to construct types.
- Kinds, the "types" of type constructor.

Slide 15 - Kinds:

$\kappa::=$	$*$		types A, B
	\mid ord		ordinals a, b
	$\kappa_{1} \xrightarrow{p} \kappa_{2}$		p-variant type constructors F, G

- Constructors can be covariant $(p=+)$, contravariant $(p=-)$, and non-varaint ($p=0$, "don't know").
$\mathrm{F}_{\hat{\omega}}$: constructors
- Types and type constructors:

$$
\begin{array}{ll}
F, G & ::=X|\lambda X . F| F G|\rightarrow| \forall_{\kappa} \mid \mu^{a} \\
a, b & ::=\quad i|a+1| \infty
\end{array}
$$

Slide 16

- Defined types:

$$
\begin{aligned}
\forall X: \kappa . A & =\forall_{\kappa}(\lambda X . A) \\
1 & =\forall X: * \cdot X \rightarrow X \\
A+B & =\forall X: * \cdot(A \rightarrow X) \rightarrow(B \rightarrow X) \rightarrow X \\
A \times B & =\forall X: * \cdot(A \rightarrow B \rightarrow X) \rightarrow X
\end{aligned}
$$

F_{ω} : sized inductive types

- Sized polymorphic lists and tree ordinals:

$$
\begin{aligned}
& \text { List }: \\
& \text { List }:= \\
& \text { ord } \xrightarrow{+} * \xrightarrow{+} * \\
& \text { Ord }: \\
& \text { Ord }:= \\
& \text { ord } \xrightarrow{+} * \lambda a \cdot \mu^{a}(\lambda X .1+A \times X) \\
& \mu^{a}\left(\lambda X .1+X+\left(\text { Nat }^{\infty} \rightarrow X\right)\right)
\end{aligned}
$$

- Sized de Bruijn terms:

$$
\begin{array}{ll}
\text { Lam }: & \text { ord } \xrightarrow{+} * \xrightarrow{+} * \\
\text { Lam }:= & \lambda a \cdot \mu^{a}(\lambda X \cdot \lambda A \cdot A+(X A \times X A)+X(\mathbf{1}+A))
\end{array}
$$

- Lam is an example of a non-regular type / heterogeneous type / nested type / inductive constructor.

F_{ω} : judgements on constructors

- Judgements

$$
\begin{array}{ll}
F: \kappa & \text { constructor } F \text { has kind } \kappa \\
F=G: \kappa & \text { constructors } F, G \text { are } \beta \eta \text {-equal } \\
F \leq G: \kappa & F \text { is a higher-order subtype of } G
\end{array}
$$

Slide 18

- Judsenent
- Kinding of type constructor constants

$$
\begin{array}{ll}
\rightarrow: * \xrightarrow{-} * \xrightarrow{+} * & \text { function space } \\
\forall_{\kappa}:(\kappa \xrightarrow[\rightarrow]{\rightarrow} *) \xrightarrow{+} * & \text { quantification } \\
\mu_{\kappa}: \text { ord } \xrightarrow{+}(\kappa \xrightarrow{+} \kappa) \xrightarrow{+} \kappa & \text { inductive constructors }
\end{array}
$$

$\mathrm{F}_{\hat{\omega}}$: higher-order subtyping

- Subtyping for ordinal expressions:

$$
\frac{a \leq b: \text { ord }}{a+1 \leq b+1: \text { ord }} \quad \frac{a \leq b: \text { ord }}{a \leq b+1: \text { ord }} \quad \frac{a: \text { ord }}{a \leq \infty: \text { ord }}
$$

- Point-wise ordering of type constructors

$$
\frac{F \leq F^{\prime}: \kappa \xrightarrow{p} \kappa^{\prime} \quad G: \kappa}{F G \leq F^{\prime} G: \kappa^{\prime}}
$$

- Co/contra-variant subtyping

$$
\frac{F: \kappa \stackrel{+}{\rightarrow} \kappa^{\prime} \quad G \leq G^{\prime}: \kappa}{F G \leq F G^{\prime}: \kappa^{\prime}} \quad \frac{F: \kappa \xrightarrow[\rightarrow]{-} \kappa^{\prime} \quad G \leq G^{\prime}: \kappa}{F G^{\prime} \leq F G: \kappa^{\prime}}
$$

- Subtyping for inductive constructors:

$$
\frac{a \leq b: \text { ord } \quad F: \kappa \xrightarrow{+} \kappa}{\mu^{a} F \leq \mu^{b} F: \kappa}
$$

$\mathrm{F}_{\hat{\omega}}:$ terms

- Terms:

$$
r, s, t::=x|\lambda x . t| r s \mid \mathrm{fix}
$$

- Typing judgment $t: A$.
- Inductive type folding and unfolding:

Slide 20

$$
\frac{t: F\left(\mu^{a} F\right)}{t: \mu^{a+1} F} \quad \frac{t: \mu^{a+1} F}{t: F\left(\mu^{a} F\right)}
$$

- Recursion rule:

$$
\frac{a: \text { ord }}{\text { fix }:\left(\forall i . A^{i} \rightarrow A^{i+1}\right) \rightarrow A^{a}} A^{i} \text { admissible }
$$

Examples

- Typing of sum:

$$
\begin{aligned}
\operatorname{sum}: & \text { List }^{\infty} \operatorname{Int} \rightarrow \text { Int } \\
\text { sum }= & \text { fix }\left(\lambda s u m: \text { List }^{i} \text { Int } \rightarrow \text { Int. } \lambda l: \text { List }^{i+1} .\right. \\
& \text { match } l \text { with }
\end{aligned}
$$

Slide 21

$$
\begin{array}{lll}
\text { nil } & \mapsto & 0 \\
\left(x::\left(x s: \text { List }^{i}\right)\right) & \mapsto & x+\text { sum } x s)
\end{array}
$$

- Syntax with implicit fix and size annotations:

$$
\begin{array}{ll}
\operatorname{sum}([])^{i+1} & =0 \\
\operatorname{sum}\left(x:: x s^{i}\right)^{i+1} & =x+\operatorname{sum} x s^{i}
\end{array}
$$

Merge sort: splitting phase

Slide 22

Merge sort: merging phase

Slide 23

Splitting: definition

$$
\begin{array}{lrl}
\text { split : } & \forall A: * \text {. List } A \rightarrow \text { List } A \times \text { List } A \\
\text { split }[] \quad & =([],[]) \\
\text { split }(y:: l) & =\operatorname{let}(x s, y s)=\text { split } l \text { in } \\
& & ((y:: y s), x s)
\end{array}
$$

Slide 24

Splitting: termination

```
split : }\foralli:\mathrm{ ord. }\forallA:*. List ' ' A List A L List A
split [] =([] ,[] )
split (y:: l i}\mp@subsup{)}{}{i+1}=\mathrm{ let (xs,ys)=split l l in
    ((y::ys) ,xs )
```

Slide 25

- To compute split at stage $i+1$, split is only used at stage i.
- Hence, split is terminating.

Splitting: bounded output

```
split : \foralli:ord. }\forallA:*.\mp@subsup{L_Lst}{}{i}A->\mp@subsup{\mathrm{ List }}{}{i}A\times\mp@subsup{\mathrm{ List }}{}{i}
split [] }\mp@subsup{]}{}{i+1}=([\mp@subsup{]}{}{i+1},[\mp@subsup{]}{}{i+1}
split }(y::\mp@subsup{l}{}{i}\mp@subsup{)}{}{i+1}=\operatorname{let}(x\mp@subsup{s}{}{i},y\mp@subsup{s}{}{i})=split \mp@subsup{l}{}{i}\mathrm{ in
    ((y :: ys) )
```

Slide 26

- We additionally can infer that split is non-size increasing.
- Using split, we can define merge sort...

Merging: definition
merge produces a sorted list from two sorted input lists
merge: \quad List Int \rightarrow List Int \rightarrow List Int
merge [] $\quad l=l$
merge ($x:: x s$) $\quad l=$ merge' $^{l} l$
Slide 27

$$
\begin{aligned}
\text { where } \text { merge }^{\prime}: \quad \text { List } A & \rightarrow \text { List } A \\
\text { merge }^{\prime}[] & =x:: x s \\
\text { merge }^{\prime}(y:: y s) \quad= & \text { if } x \leq y \text { then } \\
& x:: \text { merge } x s \quad(y:: y s) \\
& \text { else } y:: \text { merge }^{\prime} y s
\end{aligned}
$$

$\underline{\text { Merging: termination }}$
merge terminates by lexicographic ordering

$$
\begin{aligned}
& \text { merge : } \forall i \text { :ord. List }{ }^{i} \text { Int } \rightarrow \text { List }^{\infty} \text { Int } \rightarrow \text { List }^{\infty} \text { Int } \\
& \text { merge }[] \\
& \text { merge }\left(x:: x s^{i}\right)^{i+1} \\
& l=l \\
& l
\end{aligned}=\text { merge }^{\prime} l .
$$

Slide 28

$$
\begin{aligned}
& \text { where } \begin{aligned}
\text { merge }^{\prime}: \quad & \text { List } A
\end{aligned} \quad \begin{aligned}
& \text { List } A \\
\text { merge }^{\prime}[] & x:: x s \\
\text { merge }^{\prime}(y:: y s) & = \\
& \text { if } x \leq y \text { then } \\
& x:: \text { merge } x s^{i}(y:: y s) \\
& \text { else } y:: \text { merge }^{\prime} y s
\end{aligned}
\end{aligned}
$$

Merging: termination
merge terminates by lexicographic ordering
merge : $\forall i:$ ord. List i Int \rightarrow List $^{\infty}$ Int \rightarrow List $^{\infty}$ Int
merge [] $\quad l=l$
merge $\left(x:: x s^{i}\right)^{i+1} \quad l=$ merge $^{\prime} l$
Slide 29

$$
\begin{aligned}
& \text { where } \text { merge }^{\prime}: \forall j: \text { ord. List }
\end{aligned} \begin{aligned}
j & \rightarrow \text { List }^{\infty} A \\
& =x:: x s \\
\text { merge }^{\prime}[] \quad & =\text { if } x \leq y \text { then } \\
\text { merge }^{\prime}\left(y:: y s^{j}\right)^{j+1}= & x:{\text { merge } x s^{i}(y:: y s)^{j+1 \leq \infty}}= \\
& \text { else } y:: \text { merge }^{\prime} y s^{j}
\end{aligned}
$$

Merge sort: definition

$$
\begin{array}{ll}
\text { msort : List } & \text { Int } \rightarrow \text { List Int } \\
\text { msort }[] & =[] \\
\text { msort } \quad(x:: l) & =\text { msort }^{\prime} \quad x \quad l \\
\text { msort }^{\prime}: & \text { Int } \rightarrow \text { List Int } \rightarrow \text { List } \quad \text { Int }
\end{array}
$$

Slide 30

$$
\begin{aligned}
\operatorname{msort}^{\prime} x[]= & {[x] } \\
\text { msort }^{\prime} x(y:: l)= & \text { let }(x s, y s)=\text { split } l \text { in } \\
& \text { merge }\left(\text { msort }^{\prime} x \text { xs }\right) \\
& \left(\text { msort }^{\prime} y \text { ys }\right)
\end{aligned}
$$

$\underline{\text { Merge sort: termination }}$

$$
\begin{aligned}
& \text { msort }: \text { List }^{\infty} \text { Int } \rightarrow \text { List }^{\infty} \text { Int } \\
& \text { msort }[] \quad=[] \\
& \text { msort } \quad(x:: l) \quad=\text { msort }^{\prime} \text { x } l \\
& \text { msort }^{\prime}: \forall i: \text { ord. Int } \rightarrow \text { List }^{i} \text { Int } \rightarrow \text { List }^{\infty} \text { Int }
\end{aligned}
$$

Slide 31

$$
\begin{aligned}
\text { msort }^{\prime} x[]^{i+1}= & {[x] } \\
\text { msort }^{\prime} x\left(y:: l^{i}\right)= & \operatorname{let}\left(x s^{i}, y s^{i}\right)=\text { split } l^{i} \text { in } \\
& \text { merge }\left(\text { msort }^{\prime} x x s^{i}\right) \\
& \left(\text { msort }^{\prime} y y s^{i}\right)
\end{aligned}
$$

Leaving Hindley-Milner typing

- So far, termination could have been checked without types
- The size relation of split could have been recorded separately
- But now let us parametrize merge sort over a split function...

Slide 32

```
msort' split x [] = [x]
msort}\mp@subsup{}{}{\prime}\operatorname{split}x(y::l)=\mathrm{ let (xs,ys)=split l in
    merge (msort' x xs )
    (msort' y ys )
```

- The variable split can only be instantiated with non size increasing functions
- This is naturally expressed with a rank-2 size polymorphic type

Merge sort: abstract split (II)

$$
\begin{aligned}
& \text { msort }^{\prime}:\left(\forall i: \text { ord. } \forall A: * . \text { List }^{i} A \rightarrow \text { List }^{i} A \times \text { List }^{i} A\right) \rightarrow \\
& \forall i: \text { ord. Int } \rightarrow \text { List }^{i} \text { Int } \rightarrow \text { List }^{\infty} \text { Int } \\
& \text { msort' } \operatorname{split} x[]^{i+1}= {[x] } \\
& \text { msort' split } x\left(y:: l^{i}\right)= \operatorname{let}\left(x s^{i}, y s^{i}\right)=\text { split } l^{i} \text { in } \\
& \text { merge }\left(\text { msort }^{\prime} x x s^{i}\right) \\
&\left(\text { msort }^{\prime} y y s^{i}\right)
\end{aligned}
$$

Slide 34

- We drop the restriction of Hughes, Pareto, and Sabry and Barthe et. al. that sizes should be inferable

Tree ordinals

- Tree ordinals

$$
\operatorname{Ord}^{a}=\mu^{a}\left(\lambda X . \mathbf{1}+X+\left(\mathrm{Nat}^{\infty} \rightarrow X\right)\right)
$$

- Definable constructors

Slide 35

$$
\begin{aligned}
& \text { ozero }: \forall i: \text { ord. } \mathrm{Ord}^{i} \\
& \text { osucc } \\
& \text { olim } \\
& \text { ol } \forall i: \forall i: \text { ord. } \mathrm{Ord}^{i} \rightarrow \mathrm{Ord}^{i+1}\left(\mathrm{Nat} \rightarrow \mathrm{Ord}^{i}\right) \rightarrow \mathrm{Ord}^{i+1}
\end{aligned}
$$

An element of infinite height
$\operatorname{Ord}^{1} \quad \operatorname{Ord}^{2} \quad \operatorname{Ord}^{3} \quad \cdots \quad \subseteq \operatorname{Ord}^{\omega}$

Slide 36

Example: addition for tree ordinals

- Constructors:

$$
\begin{aligned}
& \text { ozero }: \forall i: \text { ord. } \mathrm{Ord}^{i} \\
& \text { osucc } \\
& \text { olim } \\
& : \forall i: \not \text { ord. }^{i} \mathrm{Ord}^{i} \rightarrow \mathrm{Ord}^{i+1} \\
& \text { ord. }\left(\mathrm{Nat} \rightarrow \mathrm{Ord}^{i}\right) \rightarrow \mathrm{Ord}^{i+1}
\end{aligned}
$$

Slide 37

- Addition:

$$
\begin{aligned}
& \text { add : } \operatorname{Ord}^{\infty} \rightarrow \forall i \text { :ord. } \text { Ord }^{i} \rightarrow \text { Ord }^{\infty} \\
& \\
& \begin{aligned}
\text { add } x \text { ozero } & =x \\
\text { add } x\left(\text { osucc } y^{i}\right)^{i+1} & =\text { osucc }\left(\text { add } x y^{i}\right) \\
\text { add } x\left(\text { olim } f^{\rightarrow i}\right)^{i+1} & =\operatorname{olim}\left(\lambda n . \text { add } x(f n)^{i}\right)
\end{aligned}
\end{aligned}
$$

Productivity

- Productivity is dual to termination
- A productive process should continuously turn input into output
- Examples: editor, operating system, stream

Slide 38

- Important in embedded and functional reactive programming

Infinite structures

- On infinite objects like streams, we are interested in the definedness rather than the size.
- s : Stream ${ }^{a} A$ means s is defined upto depth a.
- Objects which are defined upto depth ∞ are called productive.
- Basic stream operations:

Slide 39

$$
\begin{aligned}
& \left(:: \quad A \rightarrow \forall i: \text { ord. Stream }{ }^{i} A \rightarrow \text { Stream }^{i+1} A\right. \\
& \text { hd }: \forall i: \text { ord. Stream } \\
& \text { (} \quad: 1 \rightarrow A \\
& \mathrm{tl}
\end{aligned}
$$

- Subtyping: Stream ${ }^{\infty} A \leq \ldots$ Stream $^{i+1} A \leq$ Stream $^{i} A$
F_{ω} : extension by coinduction
- Add type constructor ν_{κ} : ord $\xrightarrow{-}(\kappa \xrightarrow{+} \kappa) \xrightarrow{+} \kappa$.
- Example Stream ${ }^{a}=\lambda A . \nu^{a}(\lambda X . A \times X)$.
- Recursion rule also usable for corecursion!

Slide 40

$$
\frac{a: \text { ord }}{\text { fix }:\left(\forall i . A^{i} \rightarrow A^{i+1}\right) \rightarrow A^{a}} A^{i} \text { admissible }
$$

- Example: defining infinite sequence upfrom $0=[0,1,2, \ldots]$

$$
\begin{aligned}
& \text { upfrom }: \operatorname{Int} \rightarrow \text { Stream }^{\infty} \text { Int } \\
& \text { upfrom }:=\operatorname{fix}(\lambda \text { upfrom. } \lambda n \cdot \underbrace{(n, \overbrace{\text { upfrom }(n+1)}^{\text {Stream }^{i} \mathrm{Int}})}_{\text {Stream }^{i+1} \mathrm{Int}})
\end{aligned}
$$

- Hughes, Pareto, Sabry (1996)

Proving the correctness of reactive system using sized types

- Amadio and Coupet-Grimal (1998)

Analysis of a guard condition in type theory

Slide 41

- Barthe, Frade, Giménez, Pinto, Uustalu (2004)

Type-based termination of recursive definitions

- Buchholz (2003), Recursion on non-wellfounded trees

Own works on termination

- Specification and verification of a formal system for structural recursion (TYPES'99)
- A predicative analysis of structural recursion (with Altenkirch, JFP, 2002)

Slide 42

- Termination and guardedness checking with continuous types (TLCA'03)
- Termination checking with types (ITA, 2004)
- A polymorphic λ-calculus with sized higher-order types
(Ph.D. thesis, almost ready for submission)

Works on iteration and recursion

- A predicative strong normalization proof for a λ-calculus with interleaving inductive types (Abel, Altenkirch, TYPES'99)
- Co(iteration) for higher-order nested datatypes (Abel, Matthes, TYPES'02)
- Generalized iteration and coiteration for higher-order nested datatypes (Abel, Matthes, Uustalu, FoSSaCS'03)
- Fixed points of type constructors and primitive recursion (Abel, Matthes, CSL'04)
- Generalized iteration and coiteration for higher-order and nested datatypes (Abel, Matthes, Uustalu, TCS, 2005)

Works on dependent type theory

- Meta-theoretical:

Untyped algorithmic equality for Martin-Löf's Logical Framework with Surjective Pairs (Abel, Coquand, TLCA'05)

- Case studies:

Slide $44-A$ third-order representation of the $\lambda \mu$-calculus (MERLIN'01)

- Weak normalization for the simply-typed λ-calculus in Twelf (LFM'04)
- Verifying Haskell programs in constructive type theory (Abel, Benke, Bove, Hughes, Norell, Haskell'05)
- Adopt type-based termination to dependent types
- Investigate type-based termination for higher-order abstract syntax
- Challenge: negative inductive types

$$
\begin{aligned}
\mathrm{Tm} & =(\mathrm{Tm} \times \mathrm{Tm})+(\mathrm{Tm} \rightarrow \mathrm{Tm}) \\
\text { app } & : \mathrm{Tm}^{i} \rightarrow \mathrm{Tm}^{i} \rightarrow \mathrm{Tm}^{i+1} \\
\text { abs } & :\left(\mathrm{Tm}^{?} \rightarrow \mathrm{Tm}^{i}\right) \rightarrow \mathrm{Tm}^{i+1}
\end{aligned}
$$

- Type-based termination not directly applicable.
- Can it be adopted to negative types?

Longer-term research goals

- Can type-based termination be adopted to languages with references?
- Integrate with heap type system
- Combinable with Hofmann/Jost system?

Slide 46

Works on theorem proving

- Human-readable machine-verifiable proofs for teaching constructive logic (Abel, Chang, Pfenning, PTP'01)
- Connecting a logical framework to a first-order prover (Abel, Coquand, Norell, FroCoS'05)

Slide 47

Long term research: proof documents

- Future of theorem proving:
- User writes legible, formal proof document
- Trivial steps are filled in by machine
- How should the proof language look like?
- What can be considered a trivial step?
- How to integrate automation?

This is a community effort (TYPES).

Acknowledgements

- Technical discussions on my thesis:

Klaus Aehlig	Thorsten Altenkirch	Martin Hofmann
John Hughes	Ralph Matthes	Tarmo Uustalu

Slide 49 - Stipends

$$
\text { GKLI } \quad \text { CoVer }
$$

- Colleagues at Munich and Chalmers for support

