
Slide 1

Type-Based Termination and

Productivity Checking

Andreas Abel
Dept. of Comp. Sci., Chalmers

TCS Oberseminar, LMU Munich
July 19, 2005

Work supported by: GKLI (DFG), TYPES, APPSEM-II and CoVer (SSF)

Slide 2

Short CV

1999 Diploma from this university
Major in computer science, minor in mathematics
Diplomathesis: termination checker foetus for structural
recursion

1999-2003 Ph.D. student at this chair in the PhD program Logic in
Computer Science:

2000/01 Visit to Frank Pfenning at Carnegie-Mellon, Pittsburgh,
USA: Development of a tutorial proof checker (Tutch) for
constructive logics

1

Slide 3

Short CV (cont.)

2004-today Postdoc at Chalmers, Göteborg, Sweden
Verifying Haskell programs using First-Order Logic and Type
Theory

Oct 2005(?!) Ph.D. from this university A Polymorphic
Lambda-Calculus with Sized Higher-Order Types

Slide 4

Talk outline

1. Introduction to termination

2. Inductive types and a recursion principle

3. Fω̂—a type system for termination

4. Examples: the type system at work

5. Productivity via coinduction

6. Achieved results and future work

2

Slide 5

Termination

• Question: Will the run of a program eventually halt?

• Undecidable for Turing-complete programming languages
(Halteproblem).

• No termination checker can give a definitive answer for all
programs.

• Problem still interesting for:

– optimization and program specialization

– total correctness of programs

– theorem proving

Slide 6

Termination for theorem proving

• Inductive theorem provers: e.g., Agda, Coq, LEGO, Twelf.

• Some proofs are tree-shaped deriviations, e.g., proof that
[a, 0] = [b, 0].

a = b

0 = 0 [] = []

(0 :: []) = (0 :: [])

a :: (0 :: []) = b :: (0 :: [])

• Some proofs are recursive programs, manipulating derivations.

• E.g., proof of (l1 = l2) → (l2 = l3) → (l1 = l3).

• Only terminating programs denote valid proofs.

• E.g., program trans d1 d2 = trans d1 d2 has to be rejected.

3

Slide 7

Termination of Functions Over Inductive Types

• For termination, only structure of trees is interesting.

• Structure of these trees can be represented by inductive types.

• More inductive types:

– lists

– binary trees

– natural numbers

– tree ordinals

Slide 8

Inductive types

• Semantical perspective: types are value sets.

• Example: integer lists

– [] is an int. list

– if x is an int. and xs an int. list, then x :: xs is an int. list

• Least solution of type equation

List Int = {[]} ∪ {x :: xs | x ∈ Int and xs ∈ List Int}

• Abstracting away the names

List Int = 1 + Int×List Int

• Definable as least fixed-point µ∞F of some type operator F

List Int := µ∞(λX. 1 + Int×X)

4

Slide 9

Iterating to the least fixed point

µ0F

µ1F

µ2F
µωF

µω+1F

µ∞F

Slide 10

Iterating to the least fixed point

• The least fixed point is reachable from below by ordinal
iteration:

µ0F = ∅
µα+1F = F (µα F)

µλF =
⋃

α<λ µαF

• E.g., Listα Int := µα(λX. 1 + Int×X) contains integer lists of
length < α.

• Listω Int is already the least fixed point.

• List constructors definable:

[] ∈ Listα+1 Int

(::) ∈ Int → Listα Int → Listα+1 Int

5

Slide 11

Recursive functions over inductive types

• E.g., we want to define list summation sum ∈ Listω Int → Int.

• Recursive program:

sum [] = 0

sum (x :: xs) = x + sum xs

• Via fixed-point combinator fix f = f (fix f).

sum = fix (λsum.λl. match l with

nil 7→ 0

(x :: xs) 7→ x + sum xs)︸ ︷︷ ︸
f

• How to prove that sum is well defined, i.e., terminating?

Slide 12

A recursion principle from transfinite induction

• Rule for transfinite induction:

P (0) P (α) → P (α + 1) (∀α < λ. P (α)) → P (λ)
P (β)

• Use transfinite induction to define a recursive program:

fix f ∈ A0 f ∈ Aα → Aα+1 (∀α < λ. fix f ∈ Aα) → fix f ∈ Aλ

fix f ∈ Aβ

• For sum ∈ Listω Int → Int, instantiate Aα = Listα Int → Int and
β = ω.

6

Slide 13

Handling base and limit case

• Recursion principle:

fix f ∈ A0 f ∈ Aα → Aα+1 (fix f ∈
⋂

α<λ Aα) → fix f ∈ Aλ

fix f ∈ Aβ

• Restrict admissible types Aα such that

– fix f ∈ A0 is trivial, e.g., Aα = µαF → C,

– (
⋂

α<λ Aα) ⊆ Aλ.

• Specialized rule

∀α. f ∈ Aα → Aα+1

fix f ∈ Aβ
Aα admissible

Slide 14

From semantics to syntax

• Recapitulation of semantic types we used:

∀α. f ∈ Aα → Aα+1

fix f ∈ Aβ
Aα admissible

sum ∈ Listω Int → Int

nil ∈ Listα+1 Int

(::) ∈ Int → Listα Int → Listα+1 Int

• We only talk about ordinal variables (α, β), successor, and
closure ordinal (in this case, ω)!

• We can turn these semantic rules into syntax without an
ordinal notation system (e.g., Cantor normal form).

7

Slide 15

Fω̂: a type system for termination

• A language with three levels:

– Terms (programs) which have types.

– Type constructors: a language to construct types.

– Kinds, the “types” of type constructor.

• Kinds:

κ ::= ∗ types A,B

| ord ordinals a, b

| κ1
p→ κ2 p-variant type constructors F,G

• Constructors can be covariant (p = +), contravariant (p = −),
and non-varaint (p = ◦, “don’t know”).

Slide 16

Fω̂: constructors

• Types and type constructors:

F,G ::= X | λX.F | F G | → | ∀κ | µa

a, b ::= i | a + 1 | ∞

• Defined types:

∀X :κ.A = ∀κ(λX.A)

1 = ∀X :∗. X → X

A + B = ∀X :∗. (A → X) → (B → X) → X

A×B = ∀X :∗. (A → B → X) → X

8

Slide 17

Fω̂: sized inductive types

• Sized polymorphic lists and tree ordinals:

List : ord
+→ ∗ +→ ∗

List := λa.λA. µa (λX.1 + A×X)

Ord : ord
+→ ∗

Ord := λa. µa (λX.1 + X + (Nat∞ → X))

• Sized de Bruijn terms:

Lam : ord
+→ ∗ +→ ∗

Lam := λa. µa (λX.λA.A + (X A×X A) + X (1 + A))

• Lam is an example of a non-regular type / heterogeneous type
/ nested type / inductive constructor.

Slide 18

Fω̂: judgements on constructors

• Judgements

F : κ constructor F has kind κ

F = G : κ constructors F,G are βη-equal

F ≤ G : κ F is a higher-order subtype of G

• Kinding of type constructor constants

→ : ∗ −→ ∗ +→ ∗ function space

∀κ : (κ ◦→ ∗) +→ ∗ quantification

µκ : ord
+→ (κ +→ κ) +→ κ inductive constructors

9

Slide 19

Fω̂: higher-order subtyping

• Subtyping for ordinal expressions:

a ≤ b : ord

a + 1 ≤ b + 1 : ord

a ≤ b : ord

a ≤ b + 1 : ord

a : ord

a ≤ ∞ : ord

• Point-wise ordering of type constructors

F ≤ F ′ : κ
p→ κ′ G : κ

F G ≤ F ′ G : κ′

• Co/contra-variant subtyping

F : κ
+→ κ′ G ≤ G′ : κ

F G ≤ F G′ : κ′
F : κ

−→ κ′ G ≤ G′ : κ

F G′ ≤ F G : κ′

• Subtyping for inductive constructors:

a ≤ b : ord F : κ
+→ κ

µaF ≤ µbF : κ

Slide 20

Fω̂: terms

• Terms:
r, s, t ::= x | λx.t | r s | fix

• Typing judgment t : A.

• Inductive type folding and unfolding:

t : F (µaF)
t : µa+1F

t : µa+1F

t : F (µaF)

• Recursion rule:

a : ord

fix : (∀i. Ai → Ai+1) → Aa
Ai admissible

10

Slide 21

Examples

• Typing of sum:

sum : List∞ Int → Int

sum = fix (λsum :Listi Int → Int. λl :Listi+1.

match l with

nil 7→ 0

(x :: (xs : Listi)) 7→ x + sum xs)

• Syntax with implicit fix and size annotations:

sum ([])i+1 = 0

sum (x :: xsi)i+1 = x + sum xsi

Slide 22

Merge sort: splitting phase

[71] [53] [62] [84]

[71, 53]

^^=======

@@�������
[62, 84]

^^=======

@@�������

[71, 62, 53, 84]

hhQQQQQQQQQQQQ

66mmmmmmmmmmmm

11

Slide 23

Merge sort: merging phase

[71]

��=
==

==
==

[53]

����
��

��
�

[62]

��=
==

==
==

[84]

����
��

��
�

[53, 71]

((QQQQQQQQQQQQ
[62, 84]

vvmmmmmmmmmmmm

[53, 62, 71, 84]

Slide 24

Splitting: definition

split : ∀i :ord.∀A :∗. ListiA → ListiA× ListiA

split []i+1 = ([]i+1, []i+1)
split (y :: li)i+1 = let (xsi, ysi)=split li in

((y :: ys)i+1, xsi≤i+1)

12

Slide 25

Splitting: termination

split : ∀i :ord.∀A :∗. ListiA → ListiA× ListiA

split []i+1 = ([]i+1, []i+1)
split (y :: li)i+1 = let (xsi, ysi)=split li in

((y :: ys)i+1, xsi≤i+1)

• To compute split at stage i + 1, split is only used at stage i.

• Hence, split is terminating.

Slide 26

Splitting: bounded output

split : ∀i :ord.∀A :∗. ListiA → ListiA× ListiA

split []i+1 = ([]i+1, []i+1)
split (y :: li)i+1 = let (xsi, ysi)=split li in

((y :: ys)i+1, xsi≤i+1)

• We additionally can infer that split is non-size increasing.

• Using split, we can define merge sort. . .

13

Slide 27

Merging: definition

merge produces a sorted list from two sorted input lists

merge : ∀i :ord. Listi Int → List∞ Int → List∞ Int

merge [] l = l

merge (x :: xsi)i+1 l = merge′ l

where merge′ : ∀j :ord. Listj A → List∞ A

merge′ [] = x :: xs

merge′ (y :: ysj)j+1 = if x ≤ y then

x :: merge xsi (y :: ys)j+1

else y :: merge′ ysj

Slide 28

Merging: termination

merge terminates by lexicographic ordering

merge : ∀i :ord. Listi Int → List∞ Int → List∞ Int

merge [] l = l

merge (x :: xsi)i+1 l = merge′ l

where merge′ : ∀j :ord. Listj A → List∞ A

merge′ [] = x :: xs

merge′ (y :: ysj)j+1 = if x ≤ y then

x :: merge xsi (y :: ys)j+1≤∞

else y :: merge′ ysj

14

Slide 29

Merging: termination

merge terminates by lexicographic ordering

merge : ∀i :ord. Listi Int → List∞ Int → List∞ Int

merge [] l = l

merge (x :: xsi)i+1 l = merge′ l

where merge′ : ∀j :ord. Listj A → List∞ A

merge′ [] = x :: xs

merge′ (y :: ysj)j+1 = if x ≤ y then

x :: merge xsi (y :: ys)j+1≤∞

else y :: merge′ ysj

Slide 30

Merge sort: definition

msort : List∞ Int → List∞ Int

msort [] = []
msort (x :: l) = msort′ x l

msort′ : ∀i :ord. Int → Listi Int → List∞ Int

msort′ x []i+1 = [x]
msort′ x (y :: li) = let (xsi, ysi)=split li in

merge (msort′ x xsi)
(msort′ y ysi)

15

Slide 31

Merge sort: termination

msort : List∞ Int → List∞ Int

msort [] = []
msort (x :: l) = msort′ x l

msort′ : ∀i :ord. Int → Listi Int → List∞ Int

msort′ x []i+1 = [x]
msort′ x (y :: li) = let (xsi, ysi)=split li in

merge (msort′ x xsi)
(msort′ y ysi)

Slide 32

Leaving Hindley-Milner typing

• So far, termination could have been checked without types

• The size relation of split could have been recorded separately

• But now let us parametrize merge sort over a split function...

16

Slide 33

Merge sort: abstract split

msort′ split x []i+1 = [x]
msort′ split x (y :: li) = let (xsi, ysi)=split li in

merge (msort′ x xsi)
(msort′ y ysi)

• The variable split can only be instantiated with non size
increasing functions

• This is naturally expressed with a rank-2 size polymorphic type

Slide 34

Merge sort: abstract split (II)

msort′ : (∀i :ord.∀A :∗. ListiA → ListiA× ListiA) →
∀i :ord. Int → Listi Int → List∞ Int

msort′ split x []i+1 = [x]
msort′ split x (y :: li) = let (xsi, ysi)=split li in

merge (msort′ x xsi)
(msort′ y ysi)

• We drop the restriction of Hughes, Pareto, and Sabry and
Barthe et. al. that sizes should be inferable

17

Slide 35

Tree ordinals

• Tree ordinals

Orda = µa (λX.1 + X + (Nat∞ → X))

• Definable constructors

ozero : ∀i :ord. Ordi

osucc : ∀i :ord. Ordi → Ordi+1

olim : ∀i :ord. (Nat → Ordi) → Ordi+1

Slide 36

An element of infinite height

Ord1 Ord2 Ord3 . . . ⊆ Ordω

ozero

ozero osucc

ozero osucc osucc . . .

olim

VVVVVVVVVVVVV

NNNNNN
rrrrrr

Ordω+1

18

Slide 37

Example: addition for tree ordinals

• Constructors:

ozero : ∀i :ord. Ordi

osucc : ∀i :ord. Ordi → Ordi+1

olim : ∀i :ord. (Nat → Ordi) → Ordi+1

• Addition:

add : Ord∞ → ∀i :ord. Ordi → Ord∞

add x ozero = x

add x (osucc yi)i+1 = osucc (add x yi)

add x (olim f ·→i)i+1 = olim (λn. add x (f n)i)

Slide 38

Productivity

• Productivity is dual to termination

• A productive process should continuously turn input into
output

• Examples: editor, operating system, stream

• Important in embedded and functional reactive programming

19

Slide 39

Infinite structures

• On infinite objects like streams, we are interested in the
definedness rather than the size.

• s : StreamaA means s is defined upto depth a.

• Objects which are defined upto depth ∞ are called productive.

• Basic stream operations:

(::) : A → ∀i :ord.StreamiA → Streami+1A

hd : ∀i :ord.Streami+1A → A

tl : ∀i :ord.Streami+1A → StreamiA

• Subtyping: Stream∞A ≤ . . .Streami+1A ≤ StreamiA

Slide 40

Fω̂: extension by coinduction

• Add type constructor νκ : ord
−→ (κ +→ κ) +→ κ.

• Example Streama = λA. νa (λX.A×X).

• Recursion rule also usable for corecursion!

a : ord

fix : (∀i. Ai → Ai+1) → Aa
Ai admissible

• Example: defining infinite sequence upfrom 0 = [0, 1, 2, ...]

upfrom : Int → Stream∞ Int

upfrom := fix (λupfrom.λn. (n,

Streami Int︷ ︸︸ ︷
upfrom(n + 1))︸ ︷︷ ︸
Streami+1 Int

)

20

Slide 41

Related works on type-based termination

• Hughes, Pareto, Sabry (1996)
Proving the correctness of reactive system using sized types

• Amadio and Coupet-Grimal (1998)
Analysis of a guard condition in type theory

• Barthe, Frade, Giménez, Pinto, Uustalu (2004)
Type-based termination of recursive definitions

• Buchholz (2003), Recursion on non-wellfounded trees

Slide 42

Own works on termination

• Specification and verification of a formal system for structural
recursion (TYPES’99)

• A predicative analysis of structural recursion
(with Altenkirch, JFP, 2002)

• Termination and guardedness checking with continuous types
(TLCA’03)

• Termination checking with types (ITA, 2004)

• A polymorphic λ-calculus with sized higher-order types
(Ph.D. thesis, almost ready for submission)

21

Slide 43

Works on iteration and recursion

• A predicative strong normalization proof for a λ-calculus with
interleaving inductive types (Abel, Altenkirch, TYPES’99)

• Co(iteration) for higher-order nested datatypes
(Abel, Matthes, TYPES’02)

• Generalized iteration and coiteration for higher-order nested
datatypes (Abel, Matthes, Uustalu, FoSSaCS’03)

• Fixed points of type constructors and primitive recursion
(Abel, Matthes, CSL’04)

• Generalized iteration and coiteration for higher-order and
nested datatypes (Abel, Matthes, Uustalu, TCS, 2005)

Slide 44

Works on dependent type theory

• Meta-theoretical:
Untyped algorithmic equality for Martin-Löf ’s Logical
Framework with Surjective Pairs (Abel, Coquand, TLCA’05)

• Case studies:

– A third-order representation of the λµ-calculus
(MERLIN’01)

– Weak normalization for the simply-typed λ-calculus in Twelf
(LFM’04)

– Verifying Haskell programs in constructive type theory
(Abel, Benke, Bove, Hughes, Norell, Haskell’05)

22

Slide 45

Short-term research goals

• Adopt type-based termination to dependent types

• Investigate type-based termination for higher-order abstract
syntax

– Challenge: negative inductive types

Tm = (Tm× Tm) + (Tm → Tm)

app : Tmi → Tmi → Tmi+1

abs : (Tm? → Tmi) → Tmi+1

– Type-based termination not directly applicable.

– Can it be adopted to negative types?

Slide 46

Longer-term research goals

• Can type-based termination be adopted to languages with
references?

• Integrate with heap type system

• Combinable with Hofmann/Jost system?

23

Slide 47

Works on theorem proving

• Human-readable machine-verifiable proofs for teaching
constructive logic (Abel, Chang, Pfenning, PTP’01)

• Connecting a logical framework to a first-order prover
(Abel, Coquand, Norell, FroCoS’05)

Slide 48

Long term research: proof documents

• Future of theorem proving:

– User writes legible, formal proof document

– Trivial steps are filled in by machine

• How should the proof language look like?

• What can be considered a trivial step?

• How to integrate automation?

This is a community effort (TYPES).

24

Slide 49

Acknowledgements

• Technical discussions on my thesis:

Klaus Aehlig Thorsten Altenkirch Martin Hofmann
John Hughes Ralph Matthes Tarmo Uustalu

• Stipends

GKLI CoVer

• Colleagues at Munich and Chalmers for support

25

