Type-Based Termination and
Productivity Checking

Andreas Abel
Dept. of Comp. Sci., Chalmers

Slide 1
TCS Oberseminar, LMU Munich
July 19, 2005

Work supported by: GKLI (DFG), TYPES, APPSEM-II and CoVer (SSF)

Short CV

1999 Diploma from this university
Major in computer science, minor in mathematics
Diplomathesis: termination checker foetus for structural

Tecursion

Slide 2
1999-2003 Ph.D. student at this chair in the PhD program Logic in

Computer Science:

2000/01 Visit to Frank Pfenning at Carnegie-Mellon, Pittsburgh,
USA: Development of a tutorial proof checker (Tutch) for

constructive logics

Short CV (cont.)

2004-today Postdoc at Chalmers, Géteborg, Sweden
Verifying Haskell programs using First-Order Logic and Type
Theory

Oct 2005(?!) Ph.D. from this university A Polymorphic
Slide 3 Lambda-Calculus with Sized Higher-Order Types

Talk outline

1. Introduction to termination

2. Inductive types and a recursion principle

3. F,—a type system for termination
Slide 4 4. Examples: the type system at work

5. Productivity via coinduction

6. Achieved results and future work

Termination

e Question: Will the run of a program eventually halt?
e Undecidable for Turing-complete programming languages

(Halteproblem).

e No termination checker can give a definitive answer for all

Slide 5 programs.

e Problem still interesting for:

— optimization and program specialization
— total correctness of programs

— theorem proving

Termination for theorem proving

Inductive theorem provers: e.g., Agda, Coq, LEGO, Twelf.

Some proofs are tree-shaped deriviations, e.g., proof that
[av 0} = [ba O]

0=0 []=]]

0:[]) = (0::[])

y=b:(0::1]])

Some proofs are recursive programs, manipulating derivations.

E.g., pI‘OOf of (ll = lg) — (ZQ = 13) — (ll = l3)

a=15b

a:(0:]

Slide 6

[]
— =~
Il

Only terminating programs denote valid proofs.

e E.g., program transd; do = transd; ds has to be rejected.

Termination of Functions Over Inductive Types

e For termination, only structure of trees is interesting.
e Structure of these trees can be represented by inductive types.

e More inductive types:

lists

Slide 7 — binary trees

natural numbers

— tree ordinals

Inductive types

Semantical perspective: types are value sets.

Example: integer lists

— [] is an int. list

— if z is an int. and zs an int. list, then x :: zs is an int. list
Slide 8 e Least solution of type equation

List Int = {[]} U{z :: zs | x € Int and xs € List Int}

Abstracting away the names

List Int = 1 + Int xList Int

Definable as least fixed-point u°°F of some type operator F
List Int := p*°(AX. 1+ Int x X)

[terating to the least fixed point

w>F
/Lw+1F
Slide 9 peF
WF
wF
uwF
[terating to the least fixed point
e The least fixed point is reachable from below by ordinal
iteration:
WF = 0
pet'E = F(u*F)
PE = UsrnF
Slide 10
e E.g., List® Int := p*(AX. 1+ Int xX) contains integer lists of
length < a.

List Int is already the least fixed point.

List constructors definable:

[] € List"Int

() € Int— List” Int — List* ™" Int

Recursive functions over inductive types

e E.g., we want to define list summation sum € List” Int — Int.

e Recursive program:

sum [] = 0
sum (z:xs) = x+sumauas
Slide 11 e Via fixed-point combinator fix f = f (fix f).
sum = fix (Asum.Al. match [with
nil — 0
(x::2s) +— x+ sumuzs)
f
e How to prove that sum is well defined, i.e., terminating?
A recursion principle from transfinite induction
e Rule for transfinite induction:
P(0) P(a) = Pla+1) (Va < \. P(a)) — P(\)
P(3)
e Use transfinite induction to define a recursive program:
Slide 12

fix f € AY feAY — Axtl (Va < \.fix f € A) — fix f € A
fix f € AP

e For sum € List” Int — Int, instantiate A% = List® Int — Int and
0 =w.

Handling base and limit case

e Recursion principle:

fix f € AY feAY — Axtl (fix f € Nyon A%) — fix f € AY

fix f € AP

Slide 13 e Restrict admissible types A% such that

— fix f € A" is trivial, e.g., A® = u®F — C,
= (Nacn A7) € AN

e Specialized rule

Va. f € AY — Act!

fxf € A7 A% admissible
ix

From semantics to syntax

e Recapitulation of semantic types we used:

Va. f € A® — Ao+!

fixf € A7 A% admissible
ix

sum € List”Int — Int

Slide 14 nil € List®t!int

(:) € Int— List” Int — List®"" Int

e We only talk about ordinal variables («, (3), successor, and
closure ordinal (in this case, w)!

e We can turn these semantic rules into syntax without an

ordinal notation system (e.g., Cantor normal form).

F.: a type system for termination

A language with three levels:

— Terms (programs) which have types.
— Type constructors: a language to construct types.

— Kinds, the “types” of type constructor.

Slide 15 e Kinds:

K = types A, B
| ord ordinals a, b
| K1 2 K2 p-variant type constructors F, G
e Constructors can be covariant (p = +), contravariant (p = —),

and non-varaint (p = o, “don’t know”).

F_: constructors

Types and type constructors:

F.G = X|MX.F|FG|—|V.|p®
a,b = i]la+1]|o0

Slide 16 e Defined types:

VX:kA = VY.(AX.A)

1 = VXix X - X
A+B = VX*x(A—-X)->(B—-X)—X
AxB = VX« (A—-B-X)—X

F.: sized inductive types

e Sized polymorphic lists and tree ordinals:
List : ord 5« 5 &

List = XaAA.p®(AX.14+ A X X)

Ord : ord 5 x

Slide 17 Ord := Xa.p®(AX.14 X + (Nat™ — X))

e Sized de Bruijn terms:

Lam : ord 5 % 5«

Lam = Aa. p® AXMA A+ (X Ax X A) + X (1+ A))

e Lam is an example of a non-regular type / heterogeneous type
/ nested type / inductive constructor.

F.: judgements on constructors

e Judgements

constructor F' has kind »

F
F=G: constructors F, G are On-equal
F<G: F' is a higher-order subtype of G
Slide 18

e Kinding of type constructor constants

_ + .
— Tk %k function space
o -+ . .
Ve 1 (k— %) > quantification
+ . .
[:ord 5 (k =) K inductive constructors

F.: higher-order subtyping

Subtyping for ordinal expressions:
a<b:ord a<b:ord a : ord
a+1<b+1:ord a<b+1:ord a < oo :ord

Point-wise ordering of type constructors

F<F .k G:k

Slide 19 FG<FG:r

Co/contra-variant subtyping

F:r5w G<d :k F:rx— & G<G K
FGL<FG :xK FG <FG:K

Subtyping for inductive constructors:

a<b:ord F:rbk

poF < pbF @k

F.: terms

o Terms:
rys,t = | Aa.t | rs | fix

Typing judgment ¢ : A.

e Inductive type folding and unfolding;:
Slide 20
t: F(ueF) t:ptttE
t:pstlE t: F(ueF)

e Recursion rule:

a :ord
fix : (Vi. At — A1) — Ae

A? admissible

10

Examples

e Typing of sum:

sum : List™Int — Int
sum = fix (Asum:List’ Int — Int. Al:List"!,
match [with
Slide 21 _
nil — 0
(z = (zs: List")) +— x+ sumxs)
e Syntax with implicit fix and size annotations:
sum ([])*! =0
sum (z:as’) Tt = x4 sumas’
Merge sort: splitting phase
[71] [53] [62]
Slide 22 \ / \ /
71, 53] (62, 84]

71,62, 53, 84]

11

Merge sort: merging phase

[71] [53] [62] [84]

N N/

[53,71] (62, 84]

\/

53,62, 71, 84]

Splitting: definition

split : VA:x. List A— List A x List A
split [] =1 .0)
split (y:1) = let(zs,ys)=splitl in

((yys) ms)

Slide 24

12

Splitting: termination

split : Vi:ord. VA:x. List’A — List A x List A

split [] =1 .0)

split (y =2 1)1 = let (zs , ys)=split{’ in
((y=ys) Las)

Slide 25
e To compute split at stage ¢ + 1, split is only used at stage 1.
e Hence, split is terminating.
Splitting: bounded output
split : Vi:ord. VA: . List’A — List’A x List'A
split [J* = ([17
split (y = 11)iT1 = let (zs?, ys®) =splitl® in
(55 9"+ asii41)
Slide 26

e We additionally can infer that split is non-size increasing.

e Using split, we can define merge sort. ..

13

Slide 27

Slide 28

Merging: definition

merge produces a sorted list from two sorted input lists

merge : List Int — List Int — List Int
merge] I =1
merge (x :: s) I = mergel
where merge’ : List A—List A
merge’ [] = zuxs
merge’ (y :: ys) = if z <y then
x :: merge zs (y :: ys)
else y :: merge’ ys
Merging: termination
merge terminates by lexicographic ordering
merge : Vi:ord. List’ Int — List™ Int — List™ Int
merge [] I =1
merge (v :: 2s')t1 | = merge [
where merge’ : List A—List A
merge’ [] = z:uxs
merge’ (y :: ys) = if z <y then
x :: merge s’ (y :: ys)

else y :: merge’ ys

14

Merging: termination

merge terminates by lexicographic ordering

merge : Vi:ord. List’ Int — List™ Int — List™ Int

merge [] I =1
merge (v :: 2s')T1 | = merge [
Slide 29 ,
where merge’ : Vj:ord. List” A — List™ A
merge’ [] = z:xs
merge’ (y :: ys7)itt = if o <y then
T merge xs' (y 2 ys)I TS
else 7 :: merge’ ys’
Merge sort: definition
msort : List Int — List Int
msort [] =]
msort (x::l) = msort’ x !
msort’ : Int — List Int — List Int
Slide 30 msort’ z H = [x]

msort’ x (y :: 1) = let (zs ,ys)=split I in
merge (msort’ x zs)
(msort’ y ys)

15

Slide 31

Slide 32

Merge sort: termination

msort : List®™ Int — List™ Int

msort [] =]

msort (x :: 1) msort’ x [

msort’ : Vi:ord. Int — List’ Int — List™ Int
msort’ z []"T1 = [z]
msort’ x (y :: I*) = let (x5, ys*) =split I* in
merge (msort’ x zs')
(msort’ y ys?)

Leaving Hindley-Milner typing

e So far, termination could have been checked without types
e The size relation of split could have been recorded separately

e But now let us parametrize merge sort over a split function...

16

Merge sort: abstract split

msort” split x [] = [z]
msort’ split x (y :: 1) = let (xs ,ys)=split | in
merge (msort’ x zs)
Slide 33 (msort’ y ys)

e The variable split can only be instantiated with non size

increasing functions

e This is naturally expressed with a rank-2 size polymorphic type

Merge sort: abstract split (II)

msort’ : (Vi:ord. VA:#. List'A — List' A x List'A) —
Vi:ord. Int — List’ Int — List™ Int
msort’ split x [|"T1 = [x]
msort’ split x (y :: I') = let (xs', ys*) = split I* in
merge (msort’ x zs')
Slide 34 (msort’ y ys?)

e We drop the restriction of Hughes, Pareto, and Sabry and
Barthe et. al. that sizes should be inferable

17

Tree ordinals

e Tree ordinals

Ord* = u* (AX.14+ X + (Nat™ — X))

e Definable constructors

Slide 35 ozero : Vi:ord. Ord’

osucc : Vi:ord. Ord® — Ord'™?

olim : Vi:ord. (Nat — Ord’) — Ord"**

An element of infinite height

Ord* Ord? Ord? e C Ord”

ozero

Slide 36 ‘

ozero osucc

0ozero %OSUCC/. .

olim

Ord“ ™!

18

Example: addition for tree ordinals

e Constructors:

ozero : Vi:ord. Ord’
osucc : Vi:ord. Ord" — Ord"*!
olim : Vi:ord. (Nat — Ord") — Ord"**
Slide 37
e Addition:
add : Ord™ — Vi:ord. Ord’ — Ord™
add x ozero = =z
add x (osucc y*)"*1 = osucc (add z y*)
add z (olim f 791 = olim (An. add = (f n)?)
Productivity
e Productivity is dual to termination
e A productive process should continuously turn input into
output
e Examples: editor, operating system, stream
Slide 38 e Important in embedded and functional reactive programming

19

Infinite structures

e On infinite objects like streams, we are interested in the
definedness rather than the size.

s : Stream® A means s is defined upto depth a.

Objects which are defined upto depth oo are called productive.

Basic stream operations:

Slide 39 , ,
() : A — Vi:ord.Stream’A — Stream"™'A

hd : Vi:ord.Stream'™'4 — A
tl : Vi:ord.Stream* A4 — Stream'A

Subtyping: Stream™ A < ...Stream"' A < Stream’A

F.: extension by coinduction

Add type constructor v, : ord = (k = k) & K.

Example Stream® = AA.v% (A X. A x X).

e Recursion rule also usable for corecursion!

a : ord
Slide 40 fix : (Vi. A* — Atl) — A

- A" admissible

Example: defining infinite sequence upfrom0 = [0,1,2,..]

upfrom : Int — Stream® Int Stream Int
—_——
upfrom = fix (Aupfrom.An. (n, upfrom(n +1)))

Stream®*1 Int

20

Related works on type-based termination

e Hughes, Pareto, Sabry (1996)

Proving the correctness of reactive system using sized types

e Amadio and Coupet-Grimal (1998)

Analysis of a guard condition in type theory

Slide 41 e Barthe, Frade, Giménez, Pinto, Uustalu (2004)

Type-based termination of recursive definitions

e Buchholz (2003), Recursion on non-wellfounded trees

Own works on termination

Specification and verification of a formal system for structural

recursion (TYPES’99)

e A predicative analysis of structural recursion
(with Altenkirch, JEP, 2002)

o Termination and guardedness checking with continuous types
(TLCA’03)

Termination checking with types (ITA, 2004)

Slide 42

o A polymorphic \-calculus with sized higher-order types
(Ph.D. thesis, almost ready for submission)

21

Works on iteration and recursion

o A predicative strong normalization proof for a A-calculus with
interleaving inductive types (Abel, Altenkirch, TYPES’99)

e Co(iteration) for higher-order nested datatypes
(Abel, Matthes, TYPES’02)

o Generalized iteration and coiteration for higher-order nested

Slide 43
datatypes (Abel, Matthes, Uustalu, FoSSaCS’03)
o Fized points of type constructors and primitive recursion
(Abel, Matthes, CSL’04)
e Generalized iteration and coiteration for higher-order and
nested datatypes (Abel, Matthes, Uustalu, TCS, 2005)
Works on dependent type theory
e Meta-theoretical:
Untyped algorithmic equality for Martin-Lof’s Logical
Framework with Surjective Pairs (Abel, Coquand, TLCA’05)
e Case studies:
Slide 44 — A third-order representation of the Au-calculus
(MERLIN’01)
— Weak normalization for the simply-typed A-calculus in Twelf
(LFM’04)

— Verifying Haskell programs in constructive type theory
(Abel, Benke, Bove, Hughes, Norell, Haskell’05)

22

Short-term research goals

e Adopt type-based termination to dependent types
e Investigate type-based termination for higher-order abstract

syntax

— Challenge: negative inductive types

Slide 45
Tm = (TmxTm)+ (Tm — Tm)

app @ Tm'—Tm' — Tm'H!

abs @ (Tm’ = Tm’) - Tm'™!

— Type-based termination not directly applicable.
— Can it be adopted to negative types?

Longer-term research goals

e Can type-based termination be adopted to languages with

references?
e Integrate with heap type system
e Combinable with Hofmann/Jost system?

Slide 46

23

Works on theorem proving

e Human-readable machine-verifiable proofs for teaching
constructive logic (Abel, Chang, Pfenning, PTP’01)

e Connecting a logical framework to a first-order prover

(Abel, Coquand, Norell, FroCoS’05)

Slide 47
Long term research: proof documents
e Future of theorem proving:
— User writes legible, formal proof document
— Trivial steps are filled in by machine
e How should the proof language look like?
Slide 48

What can be considered a trivial step?

e How to integrate automation?

This is a community effort (TYPES).

24

Acknowledgements

e Technical discussions on my thesis:

Klaus Aehlig Thorsten Altenkirch Martin Hofmann
John Hughes Ralph Matthes Tarmo Uustalu

Slide 49 e Stipends

GKLI CoVer

e Colleagues at Munich and Chalmers for support

25

