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Introduction

Copatterns

Copatterns: �invented� to integrate sized coinductive types with
pattern matching.

Inspired by coalgebraic approach to coinduction (Anton Setzer).

�Solved� the subject reduction problem of dependent matching on
codata.

Operational semantics is WYSIWYG.

Implemented in Agda 2.4.0.
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Introduction

Coalgebras

Copatterns = pattern matching for coalgebras.

S
f //

coit f

��

F (S)

F (coit f)

��
νF

force // F (νF )

Computation: Only unfold in�nite object on demand.

force (coit f s) = F (coit f) (f s)
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Introduction

Streams as Final Coalgebra

Streams: F (S) = A× S

S
〈h,t〉 //

coit〈h,t〉

��

A× S

id×coit〈h,t〉

��
StreamA

〈head,tail〉// A× StreamA

Termination by induction on observation depth:

head (coit 〈h, t〉 s) = h s
tail (coit 〈h, t〉 s) = coit 〈h, t〉 (t s)
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Introduction

Copatterns: Syntax

Elimination contexts (spines):

E ::= • head
| E t application
| π E projection

Copatterns = pattern matching elimination contexts.

Q ::= • head
| Qp application pattern
| πQ projection pattern

Rule Q[f ] = t �res if copattern matches elimination context.

E = Qσ

E[f ] −→ tσ
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Introduction

Example: Fibonacci Stream

record Stream A : Set where
coinductive
�eld head : A

tail : Stream A

open Stream; S = Stream

zipWith : ∀{A B C} → (A → B → C) → S A → S B → S C

head (zipWith f s t) = f (head s) (head t)
tail (zipWith f s t) = zipWith f (tail s) (tail t)

�b : Stream N
( (head �b)) = 0
(head (tail �b)) = 1
(tail (tail �b)) = zipWith _+_ �b (tail �b)
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Introduction

Sized Coinductive Types

Track guardedness in the type system (Hughes Pareto Sabry 1996).

Size = iteration stage towards greatest �xed point.

De�ationary iteration (F need not be monotone).

ναF

force

%%
∼=

⋂
β<α

F (νβF )

delay

bb

ν0F = > universe of terms / terminal object.

Contravariant subtyping ναF ≤ νβF for α ≥ β.
Stationary point ν∞+1F = ν∞F reached for some ordinal ∞.
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Introduction

Sized Fibonacci Stream

record Stream i A : Set where
coinductive
�eld head : A

tail : ∀{j : Size< i} → Stream j A

open Stream; S = Stream

zipWith : ∀{i A B C} → (A → B → C) → S i A → S i B → S i C

head (zipWith {i} f s t) = f (head s) (head t)
tail (zipWith {i} f s t) {j} = zipWith {j} f (tail s {j}) (tail t {j})

�b : ∀{i} → Stream i N
tail (tail (�b {i}) {j}) {k} = zipWith {k} _+_ (�b {k})

(tail (�b {j}) {k})
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Introduction

Fibonacci Stream (Sizes Inferred)

record Stream i A : Set where
coinductive
�eld head : A

tail : ∀{j : Size< i} → Stream j A

open Stream; S = Stream

zipWith : ∀{i A B C} → (A → B → C) → S i A → S i B → S i C

head (zipWith f s t) = f (head s) (head t)
tail (zipWith f s t) = zipWith f (tail s) (tail t)

�b : ∀{i} → Stream i N
( (head �b)) = 0
(head (tail �b)) = 1
(tail (tail �b)) = zipWith _+_ �b (tail �b)
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Delay Monad

Example: De Bruijn Lambda Terms and Values

data Tm (n : N) : Set where
var : (x : Fin n) → Tm n

abs : (t : Tm (suc n)) → Tm n

app : (r s : Tm n) → Tm n

mutual
record Val : Set where

constructor clos
�eld {n} : N

body : Tm (suc n)
env : Env n

Env = Vec Val
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Delay Monad

Running Example: Naive Call-By-Value Interpreter

Evaluator (draft).

mutual
J_K_ : ∀{n} → Tm n → Env n → Val
J var x K ρ = lookup x ρ

J abs t K ρ = clos t ρ
J app r s K ρ = apply (J r K ρ) (J s K ρ)

apply : Val → Val → Val
apply (clos t ρ) v = J t K (v :: ρ)

Of course, termination check fails!
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Delay Monad

The Coinductive Delay Monad

CoInductive Delay (A : Type) : Type :=

| return (a : A)

| later (a? : Delay A).

mutual
data Delay (A : Set) : Set where

return : (a : A) → Delay A

later : (a′ : Delay′ A) → Delay A

record Delay′ (A : Set) : Set where
coinductive
constructor delay
�eld force : Delay A

open Delay′ public
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Delay Monad

The Coinductive Delay Monad (Ctd.)

Nonterminating computation.

forever : ∀{A} → Delay′ A
force forever = later forever

Monad instance.

mutual
_�=_ : ∀{A B} → Delay A → (A → Delay B) → Delay B

return a �= k = k a

later a′ �= k = later (a′ �=′ k)

_�=′_ : ∀{A B} → Delay′ A → (A → Delay B) → Delay′ B
force (a′ �=′ k) = force a′ �= k
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Delay Monad

Evaluation In The Delay Monad

Monadic evaluator.

J_K_ : ∀{n} → Tm n → Env n → Delay Val
J var x K ρ = return (lookup x ρ)
J abs t K ρ = return (clos t ρ)
J app r s K ρ = apply (J r K ρ) (J s K ρ)

apply : Delay Val → Delay Val → Delay Val
apply u? v? = u? �= ń u →

v? �= ń v →
later (apply′ u v)

apply′ : Val → Val → Delay′ Val
force (apply′ (clos t ρ) v) = J t K (v :: ρ)

Not guarded by constructors!
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Delay Monad

Sized Coinductive Delay Monad

mutual
data Delay {i : Size} (A : Set) : Set where

return : (a : A) → Delay {i} A

later : (a′ : Delay′ {i} A) → Delay {i} A

record Delay′ {i : Size} (A : Set) : Set where
coinductive
constructor delay
�eld force : ∀{j : Size< i} → Delay {j} A

open Delay′ public

Size = depth = how often can we force?

Not to be confused with �number of laters�?

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 15 / 20



Delay Monad

Sized Coinductive Delay Monad (II)

Corecursion = induction on depth.

forever : ∀{i A} → Delay′ {i} A

force (forever {i}) {j} = later (forever {j})

Since j < i, the recursive call forever {j} is justi�ed.
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Delay Monad

Sized Coinductive Delay Monad (III)

Monadic bind preserves depth.

mutual
_�=_ : ∀{i A B} →

Delay {i} A → (A → Delay {i} B) → Delay {i} B

return a �= k = k a

later a′ �= k = later (a′ �=′ k)

_�=′_ : ∀{i A B} →
Delay′ {i} A → (A → Delay {i} B) → Delay′ {i} B

force (a′ �=′ k) = force a′ �= k

Depth of a? �= k is at least minimum of depths of a? and k a.
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Delay Monad

Sized Corecursive Evaluator

Add sizes to type signatures.

J_K_ : ∀{i n} → Tm n → Env n → Delay {i} Val
J var x K ρ = return (lookup x ρ)
J abs t K ρ = return (clos t ρ)
J app r s K ρ = apply (J r K ρ) (J s K ρ)

apply : ∀{i} → Delay {i} Val → Delay {i} Val → Delay {i} Val
apply u? v? = u? �= ń u →

v? �= ń v →
later (apply′ u v)

apply′ : ∀{i} → Val → Val → Delay′ {i} Val
force (apply′ (clos t ρ) v) = J t K (v :: ρ)

Termination checker is happy!
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Delay Monad

Conclusions

Type-based termination allows for natural corecursive programming.

Well-founded induction works around termination checker.
Nice work-around productivity checker?! (Danielsson 2010: DSLs,
invasive.)

Compatible with Isomorphism-as-Equality (HoTT).

Available now!

Not completely for free; user needs to re�ne type signatures.

Size constraint solver could be more powerful.
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Delay Monad
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