
Coinduction in Agda using Copatterns and Sized Types

Andreas Abel1

with James Chapman, Brigitte Pientka, Anton Setzer, David Thibodeau

1Department of Computer Science and Engineering

Gothenburg University, Sweden

Workshop on Certi�cation of High-Level and Low-Level Programs
Part of IHP Trimester on Proofs

7 July 2014

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 1 / 20

Introduction

Copatterns

Copatterns: �invented� to integrate sized coinductive types with
pattern matching.

Inspired by coalgebraic approach to coinduction (Anton Setzer).

�Solved� the subject reduction problem of dependent matching on
codata.

Operational semantics is WYSIWYG.

Implemented in Agda 2.4.0.

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 2 / 20

Introduction

Coalgebras

Copatterns = pattern matching for coalgebras.

S
f //

coit f

��

F (S)

F (coit f)

��
νF

force // F (νF)

Computation: Only unfold in�nite object on demand.

force (coit f s) = F (coit f) (f s)

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 3 / 20

Introduction

Streams as Final Coalgebra

Streams: F (S) = A× S

S
〈h,t〉 //

coit〈h,t〉

��

A× S

id×coit〈h,t〉

��
StreamA

〈head,tail〉// A× StreamA

Termination by induction on observation depth:

head (coit 〈h, t〉 s) = h s
tail (coit 〈h, t〉 s) = coit 〈h, t〉 (t s)

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 4 / 20

Introduction

Copatterns: Syntax

Elimination contexts (spines):

E ::= • head
| E t application
| π E projection

Copatterns = pattern matching elimination contexts.

Q ::= • head
| Qp application pattern
| πQ projection pattern

Rule Q[f] = t �res if copattern matches elimination context.

E = Qσ

E[f] −→ tσ

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 5 / 20

Introduction

Example: Fibonacci Stream

record Stream A : Set where
coinductive
�eld head : A

tail : Stream A

open Stream; S = Stream

zipWith : ∀{A B C} → (A → B → C) → S A → S B → S C

head (zipWith f s t) = f (head s) (head t)
tail (zipWith f s t) = zipWith f (tail s) (tail t)

�b : Stream N
((head �b)) = 0
(head (tail �b)) = 1
(tail (tail �b)) = zipWith _+_ �b (tail �b)

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 6 / 20

Introduction

Sized Coinductive Types

Track guardedness in the type system (Hughes Pareto Sabry 1996).

Size = iteration stage towards greatest �xed point.

De�ationary iteration (F need not be monotone).

ναF

force

%%
∼=

⋂
β<α

F (νβF)

delay

bb

ν0F = > universe of terms / terminal object.

Contravariant subtyping ναF ≤ νβF for α ≥ β.
Stationary point ν∞+1F = ν∞F reached for some ordinal ∞.

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 7 / 20

Introduction

Sized Fibonacci Stream

record Stream i A : Set where
coinductive
�eld head : A

tail : ∀{j : Size< i} → Stream j A

open Stream; S = Stream

zipWith : ∀{i A B C} → (A → B → C) → S i A → S i B → S i C

head (zipWith {i} f s t) = f (head s) (head t)
tail (zipWith {i} f s t) {j} = zipWith {j} f (tail s {j}) (tail t {j})

�b : ∀{i} → Stream i N
tail (tail (�b {i}) {j}) {k} = zipWith {k} _+_ (�b {k})

(tail (�b {j}) {k})

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 8 / 20

Introduction

Fibonacci Stream (Sizes Inferred)

record Stream i A : Set where
coinductive
�eld head : A

tail : ∀{j : Size< i} → Stream j A

open Stream; S = Stream

zipWith : ∀{i A B C} → (A → B → C) → S i A → S i B → S i C

head (zipWith f s t) = f (head s) (head t)
tail (zipWith f s t) = zipWith f (tail s) (tail t)

�b : ∀{i} → Stream i N
((head �b)) = 0
(head (tail �b)) = 1
(tail (tail �b)) = zipWith _+_ �b (tail �b)

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 9 / 20

Delay Monad

Example: De Bruijn Lambda Terms and Values

data Tm (n : N) : Set where
var : (x : Fin n) → Tm n

abs : (t : Tm (suc n)) → Tm n

app : (r s : Tm n) → Tm n

mutual
record Val : Set where

constructor clos
�eld {n} : N

body : Tm (suc n)
env : Env n

Env = Vec Val

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 10 / 20

Delay Monad

Running Example: Naive Call-By-Value Interpreter

Evaluator (draft).

mutual
J_K_ : ∀{n} → Tm n → Env n → Val
J var x K ρ = lookup x ρ

J abs t K ρ = clos t ρ
J app r s K ρ = apply (J r K ρ) (J s K ρ)

apply : Val → Val → Val
apply (clos t ρ) v = J t K (v :: ρ)

Of course, termination check fails!

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 11 / 20

Delay Monad

The Coinductive Delay Monad

CoInductive Delay (A : Type) : Type :=

| return (a : A)

| later (a? : Delay A).

mutual
data Delay (A : Set) : Set where

return : (a : A) → Delay A

later : (a′ : Delay′ A) → Delay A

record Delay′ (A : Set) : Set where
coinductive
constructor delay
�eld force : Delay A

open Delay′ public

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 12 / 20

Delay Monad

The Coinductive Delay Monad (Ctd.)

Nonterminating computation.

forever : ∀{A} → Delay′ A
force forever = later forever

Monad instance.

mutual
�= : ∀{A B} → Delay A → (A → Delay B) → Delay B

return a �= k = k a

later a′ �= k = later (a′ �=′ k)

�=′ : ∀{A B} → Delay′ A → (A → Delay B) → Delay′ B
force (a′ �=′ k) = force a′ �= k

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 13 / 20

Delay Monad

Evaluation In The Delay Monad

Monadic evaluator.

J_K_ : ∀{n} → Tm n → Env n → Delay Val
J var x K ρ = return (lookup x ρ)
J abs t K ρ = return (clos t ρ)
J app r s K ρ = apply (J r K ρ) (J s K ρ)

apply : Delay Val → Delay Val → Delay Val
apply u? v? = u? �= ń u →

v? �= ń v →
later (apply′ u v)

apply′ : Val → Val → Delay′ Val
force (apply′ (clos t ρ) v) = J t K (v :: ρ)

Not guarded by constructors!
Abel (Gothenburg University) Copatterns and Sized Types IHP2014 14 / 20

Delay Monad

Sized Coinductive Delay Monad

mutual
data Delay {i : Size} (A : Set) : Set where

return : (a : A) → Delay {i} A

later : (a′ : Delay′ {i} A) → Delay {i} A

record Delay′ {i : Size} (A : Set) : Set where
coinductive
constructor delay
�eld force : ∀{j : Size< i} → Delay {j} A

open Delay′ public

Size = depth = how often can we force?

Not to be confused with �number of laters�?

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 15 / 20

Delay Monad

Sized Coinductive Delay Monad (II)

Corecursion = induction on depth.

forever : ∀{i A} → Delay′ {i} A

force (forever {i}) {j} = later (forever {j})

Since j < i, the recursive call forever {j} is justi�ed.

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 16 / 20

Delay Monad

Sized Coinductive Delay Monad (III)

Monadic bind preserves depth.

mutual
�= : ∀{i A B} →

Delay {i} A → (A → Delay {i} B) → Delay {i} B

return a �= k = k a

later a′ �= k = later (a′ �=′ k)

�=′ : ∀{i A B} →
Delay′ {i} A → (A → Delay {i} B) → Delay′ {i} B

force (a′ �=′ k) = force a′ �= k

Depth of a? �= k is at least minimum of depths of a? and k a.

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 17 / 20

Delay Monad

Sized Corecursive Evaluator

Add sizes to type signatures.

J_K_ : ∀{i n} → Tm n → Env n → Delay {i} Val
J var x K ρ = return (lookup x ρ)
J abs t K ρ = return (clos t ρ)
J app r s K ρ = apply (J r K ρ) (J s K ρ)

apply : ∀{i} → Delay {i} Val → Delay {i} Val → Delay {i} Val
apply u? v? = u? �= ń u →

v? �= ń v →
later (apply′ u v)

apply′ : ∀{i} → Val → Val → Delay′ {i} Val
force (apply′ (clos t ρ) v) = J t K (v :: ρ)

Termination checker is happy!
Abel (Gothenburg University) Copatterns and Sized Types IHP2014 18 / 20

Delay Monad

Conclusions

Type-based termination allows for natural corecursive programming.

Well-founded induction works around termination checker.
Nice work-around productivity checker?! (Danielsson 2010: DSLs,
invasive.)

Compatible with Isomorphism-as-Equality (HoTT).

Available now!

Not completely for free; user needs to re�ne type signatures.

Size constraint solver could be more powerful.

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 19 / 20

Delay Monad

Related Work

1980/90s: Mendler, Pareto, Amadio, Giménez.

2000s: Barthe, Uustalu, Blanqui, Riba, Roux, Gregoire, ...

Sacchini: LICS 2013, Coq̂ .

Coalgebraic types: Hagino (1987), Cockett: Charity (1992).

Acknowledgments:

Invitations to McGill (Pientka), Tallinn (Uustalu).
Slides generated by Stevan Andjelkovic's LaTeX backend to Agda.

Abel (Gothenburg University) Copatterns and Sized Types IHP2014 20 / 20

	Introduction
	Delay Monad

