
Wellfounded Recursion with Copatterns

Andreas Abel1 Brigitte Pientka2

1Department of Computer Science and Engineering
Chalmers and Gothenburg University, Sweden

2School of Computer Science
McGill University, Montreal, Canada

International Conference on Functional Programming
Boston, MA, USA

26 September 2013

Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 1 / 18

Introduction

Productivity Checking

Coinductive structures: streams, processes, servers, continuous
computation. . .

Productivity: each request returns an answer after some time.

Request on stream: give me the next element.

Dependently typed languages have a productivity checker:

nats = 0 :: map (1 +) nats

Coq says: Unguarded recursive call.

Agda sees red.

Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 2 / 18

Introduction

Better Productivity Checking with Sized Types?

John Hughes, Lars Pareto, and Amr Sabry.
Proving the correctness of reactive systems using sized types.
In POPL’96, pages 410–423, 1996.

Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 3 / 18

Introduction

Better Productivity Checking with Sized Types?

John Hughes, Lars Pareto, and Amr Sabry.
Proving the correctness of reactive systems using sized types.
In POPL’96, pages 410–423, 1996.

Andreas Abel, Type-Based Termination
ISBN 978-3-938363-04-1

Only 39.80 e
Order today!

Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 4 / 18

Introduction

Better Productivity Checking with Sized Types?

MiniAgda: Prototypical implementation of sized types
(with Karl Mehltretter).

http://www.tcs.ifi.lmu.de/˜abel/miniagda/

On-paper approaches to sized types did not scale well to deep pattern
matching.

For corecursive definitions, a dual to patterns was called for:

Copatterns

Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 5 / 18

http://www.tcs.ifi.lmu.de/~abel/miniagda/

Introduction

Coinduction and Dependent Types

Consider the corecursively defined stream a :: a :: a :: . . .

repeat a = a :: repeat a

A dilemma:

Checking dependent types needs strong reduction.
Corecursion needs lazy evaluation.

The current compromise (Coq, Agda):

Corecursive definitions are unfolded only under elimination.

repeat a 6−→
(repeat a).tail −→ (a :: repeat a).tail −→ repeat a

Reduction is context-sensitive.

Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 6 / 18

Introduction

Issues with Context-Sensitive Reduction

Subject reduction is lost (Giménez 1996, Oury 2008).

The beloved Fibonacci stream is still diverging:

fib = 0 :: 1 :: adds fib (fib.tail)

fib.tail −→ 1 :: adds fib (fib.tail)
−→ 1 :: adds fib (1 :: adds fib (fib.tail))
−→ . . .

At POPL, we presented a solution:

A. Abel, B. Pientka, D. Thibodeau, and A. Setzer.
Copatterns: Programming infinite structures by observations.
In POPL’13, pages 27–38. ACM, 2013.

Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 7 / 18

Copatterns

Copatterns — The Principle

Define infinite objects (streams, functions) by observations.

A function is defined by its applications.

A stream by its head and tail.

repeat a .head = a
repeat a .tail = repeat a

These equations are taken as reduction rules.

repeat a does not reduce by itself.

No extra laziness required.

Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 8 / 18

Copatterns

Deep Observations

Any covering set of observations allowed for definition:

fib.head = 0
fib.tail.head = 1
fib.tail.tail = adds fib (fib.tail)

Now fib.tail is stuck. Good!

Depth 0 1 2 . . .

Observations id .head .tail.head . . .
.tail .tail.tail . . .

Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 9 / 18

Productivity

Stream Productivity

Definition (Productive Stream)

A stream is productive if all observations on it converge.

Example of non-productiveness:

bla = 0 :: bla.tail

Observation bla.tail diverges.

This is apparent in copattern style...

bla .head = 0
bla .tail = bla .tail

Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 10 / 18

Productivity

Proving Productivity

Theorem (repeat is productive)

repeat a .tailn converges for all n ≥ 0.

Proof.

By induction on n.

Base (repeat a).tail0 = repeat a does not reduce.

Step (repeat a).tailn+1 = (repeat a).tail.tailn −→ (repeat a).tailn which
converges by induction hypothesis.

Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 11 / 18

Productivity

Productive Functions

Definition (Productive Function)

A function on streams is productive if it maps productive streams to
productive streams.

(adds s t).head = s.head + t.head
(adds s t).tail = adds (s.tail) (t.tail)

Productivity of adds not sufficient for fib!

Malicious adds:

adds′ s t = t.tail
fib.tail.tail −→ adds′ fib (fib.tail)

−→ fib.tail.tail −→ . . .

Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 12 / 18

Productivity

i -Productivity

Definition (Productive Stream)

A stream s is i-productive if all observations of depth < i converge.
Notation: s : Streami .

Lemma

adds : Streami → Streami → Streami for all i .

Theorem

fib is i -productive for all i .

Proof, case i + 2: Show fib is (i + 2)-productive.

Show fib.tail.tail is i-productive.
IH: fib is (i + 1)-productive, so fib is i-productive. (Subtyping!)
IH: fib is (i + 1)-productive, so fib.tail is i-productive.
By Lemma, adds fib (fib.tail) is i-productive.

Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 13 / 18

Type System

Type System for Productivity

“Church Fω with inflationary and deflationary fixed-point types”.

Coinductive types = deflationary iteration:

StreamiA =
⋂
j<i

(A× StreamjA)

Bidirectional type-checking:

Type inference Γ ` r ⇒ A and checking Γ ` t ⇔ A .

Γ ` r ⇒ StreamiA

Γ ` r .tail ⇒ ∀j<i .StreamjA Γ ` a < i

Γ ` r .tail a : StreamaA

Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 14 / 18

Type System

Copattern typing

Fibonacci again (official syntax with explicit sizes).

fib : ∀i . |i | ⇒ StreamiN
fib i .head j = 0
fib i .tail j .head k = 1
fib i .tail j .tail k = adds k (fib k) (fib j .tail k)

Copattern inference ∆ | A ` ~q ⇒ C (linear).

· | StreamkN ` · ⇒ StreamkN
k<j | ∀k<j . StreamkN ` k ⇒ StreamkN
k<j | StreamjN ` .tail k ⇒ StreamkN

j<i , k<j | ∀j<i . StreamjN ` j .tail k ⇒ StreamkN
j<i , k<j | StreamiN ` .tail j .tail k ⇒ StreamkN

Type of recursive call fib : ∀i ′<i . Streami ′N
Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 15 / 18

Type System

What else is in the paper?

Conference version:

Full type checking rules.
Inductive types as inflationary fixed-points.
Patterns and pattern typing.
Transfinite size and depth.
Lexicographic termination measures.
Declarations and mutual recursion.
Example for mixed induction-coinduction.
Adaption of Girard’s reducibility candidates.
Strong normalization proof (sketch).

Full version:

Declaration typing.
Kinding and subtyping rules.
Semantics of kinds and type constructors.
Strong normalization proof (full).

Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 16 / 18

Type System

Conclusions

A unified approach to termination and productivity: Induction.

Recursion as induction on data size.
Corecursion as induction on observation depth.

Adaption of sized types to deep (co)patterns:

Shift to in-/deflationary fixed-point types.
Bounded size quantification.

Implementations:

MiniAgda: ready to play with!
Agda: under development.

Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 17 / 18

Type System

Some Related Work

Sized types: many authors (1996–)

Inflationary fixed-points: Dam & Sprenger (2003)

Observation-centric coinduction and coalgebras: Hagino (1987),
Cockett & Fukushima (Charity, 1992)

Focusing sequent calculus: Zeilberger & Licata & Harper (2008)

Form of termination measures taken from Xi (2002)

Guarded types: next talk!

Abel Pientka (Chalmers/McGill) Copatterns ICFP’13 18 / 18

	Introduction
	Copatterns
	Productivity
	Type System

