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Introduction

Productivity Checking

Coinductive structures: streams, processes, servers, continuous
computation. . .

Productivity: each request returns an answer after some time.

Request on stream: give me the next element.

Dependently typed languages have a productivity checker:

nats = 0 :: map (1 + ) nats

Coq says: Unguarded recursive call.

Agda sees red.
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Introduction

Better Productivity Checking with Sized Types?

John Hughes, Lars Pareto, and Amr Sabry.
Proving the correctness of reactive systems using sized types.
In POPL’96, pages 410–423, 1996.
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Introduction

Better Productivity Checking with Sized Types?

MiniAgda: Prototypical implementation of sized types
(with Karl Mehltretter).

http://www.tcs.ifi.lmu.de/˜abel/miniagda/

On-paper approaches to sized types did not scale well to deep pattern
matching.

For corecursive definitions, a dual to patterns was called for:

Copatterns
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Introduction

Coinduction and Dependent Types

Consider the corecursively defined stream a :: a :: a :: . . .

repeat a = a :: repeat a

A dilemma:

Checking dependent types needs strong reduction.
Corecursion needs lazy evaluation.

The current compromise (Coq, Agda):

Corecursive definitions are unfolded only under elimination.

repeat a 6−→
(repeat a).tail −→ (a :: repeat a).tail −→ repeat a

Reduction is context-sensitive.
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Introduction

Issues with Context-Sensitive Reduction

Subject reduction is lost (Giménez 1996, Oury 2008).

The beloved Fibonacci stream is still diverging:

fib = 0 :: 1 :: adds fib (fib.tail)

fib.tail −→ 1 :: adds fib (fib.tail)
−→ 1 :: adds fib (1 :: adds fib (fib.tail))
−→ . . .

At POPL, we presented a solution:

A. Abel, B. Pientka, D. Thibodeau, and A. Setzer.
Copatterns: Programming infinite structures by observations.
In POPL’13, pages 27–38. ACM, 2013.
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Copatterns

Copatterns — The Principle

Define infinite objects (streams, functions) by observations.

A function is defined by its applications.

A stream by its head and tail.

repeat a .head = a
repeat a .tail = repeat a

These equations are taken as reduction rules.

repeat a does not reduce by itself.

No extra laziness required.
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Copatterns

Deep Observations

Any covering set of observations allowed for definition:

fib.head = 0
fib.tail.head = 1
fib.tail.tail = adds fib (fib.tail)

Now fib.tail is stuck. Good!

Depth 0 1 2 . . .

Observations id .head .tail.head . . .
.tail .tail.tail . . .
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Productivity

Stream Productivity

Definition (Productive Stream)

A stream is productive if all observations on it converge.

Example of non-productiveness:

bla = 0 :: bla.tail

Observation bla.tail diverges.

This is apparent in copattern style...

bla .head = 0
bla .tail = bla .tail
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Productivity

Proving Productivity

Theorem (repeat is productive)

repeat a .tailn converges for all n ≥ 0.

Proof.

By induction on n.

Base (repeat a).tail0 = repeat a does not reduce.

Step (repeat a).tailn+1 = (repeat a).tail.tailn −→ (repeat a).tailn which
converges by induction hypothesis.
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Productivity

Productive Functions

Definition (Productive Function)

A function on streams is productive if it maps productive streams to
productive streams.

(adds s t).head = s.head + t.head
(adds s t).tail = adds (s.tail) (t.tail)

Productivity of adds not sufficient for fib!

Malicious adds:

adds′ s t = t.tail
fib.tail.tail −→ adds′ fib (fib.tail)

−→ fib.tail.tail −→ . . .
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Productivity

i -Productivity

Definition (Productive Stream)

A stream s is i-productive if all observations of depth < i converge.
Notation: s : Streami .

Lemma

adds : Streami → Streami → Streami for all i .

Theorem

fib is i -productive for all i .

Proof, case i + 2: Show fib is (i + 2)-productive.

Show fib.tail.tail is i-productive.
IH: fib is (i + 1)-productive, so fib is i-productive. (Subtyping!)
IH: fib is (i + 1)-productive, so fib.tail is i-productive.
By Lemma, adds fib (fib.tail) is i-productive.
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Type System

Type System for Productivity

“Church Fω with inflationary and deflationary fixed-point types”.

Coinductive types = deflationary iteration:

StreamiA =
⋂
j<i

(A× StreamjA)

Bidirectional type-checking:

Type inference Γ ` r ⇒ A and checking Γ ` t ⇔ A .

Γ ` r ⇒ StreamiA

Γ ` r .tail ⇒ ∀j<i .StreamjA Γ ` a < i

Γ ` r .tail a : StreamaA
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Type System

Copattern typing

Fibonacci again (official syntax with explicit sizes).

fib : ∀i . |i | ⇒ StreamiN
fib i .head j = 0
fib i .tail j .head k = 1
fib i .tail j .tail k = adds k (fib k) (fib j .tail k)

Copattern inference ∆ | A ` ~q ⇒ C (linear).

· | StreamkN ` · ⇒ StreamkN
k<j | ∀k<j . StreamkN ` k ⇒ StreamkN
k<j | StreamjN ` .tail k ⇒ StreamkN

j<i , k<j | ∀j<i . StreamjN ` j .tail k ⇒ StreamkN
j<i , k<j | StreamiN ` .tail j .tail k ⇒ StreamkN

Type of recursive call fib : ∀i ′<i . Streami ′N
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Type System

What else is in the paper?

Conference version:

Full type checking rules.
Inductive types as inflationary fixed-points.
Patterns and pattern typing.
Transfinite size and depth.
Lexicographic termination measures.
Declarations and mutual recursion.
Example for mixed induction-coinduction.
Adaption of Girard’s reducibility candidates.
Strong normalization proof (sketch).

Full version:

Declaration typing.
Kinding and subtyping rules.
Semantics of kinds and type constructors.
Strong normalization proof (full).
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Type System

Conclusions

A unified approach to termination and productivity: Induction.

Recursion as induction on data size.
Corecursion as induction on observation depth.

Adaption of sized types to deep (co)patterns:

Shift to in-/deflationary fixed-point types.
Bounded size quantification.

Implementations:

MiniAgda: ready to play with!
Agda: under development.
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Type System

Some Related Work

Sized types: many authors (1996–)

Inflationary fixed-points: Dam & Sprenger (2003)

Observation-centric coinduction and coalgebras: Hagino (1987),
Cockett & Fukushima (Charity, 1992)

Focusing sequent calculus: Zeilberger & Licata & Harper (2008)

Form of termination measures taken from Xi (2002)

Guarded types: next talk!
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