Verifying Haskell Programs
Using Constructive Type Theory

Andreas Abel Marcin Benke Ana Bove John Hughes
Ulf Norell

Haskell Workshop, 2005

1 Example: Queues

A Specification of Queues

e A queue is simply a list.

type Queue a = [a]

empty =1
add x q =q ++ [X]
iSEmpty g null g

front (x:q) = x
remove (x:q) =

e Engueueing has linear time complexity.
e Implementation should have amortized constant time operations.
An Implementation of Queues

e A queue consists of a front list and a reversed back list.

type Queuel a = ([a],[a])

retrieve :: Queuel a -> Queue a
retrieve (f,b) = f ++ reverse b

e An datainvariant

If the front list is empty, then so is the back list.

Implementation of Queue Operations

o Auxiliary operationflipQ restores the invariant.

flipQ ([1,b) = (reverse b,[])
flipQ q =q

e Queue operations:

emptyl = (0.0)
addl x (fb) = flipQ (f,x:b)
isEmptyl (f,b) = null f

frontl (x:f,b) = x

removel (x:f,b) = flipQ (f,b)

Soundness

e Diagram should commute:

opl

Queuel Queuel
retrieve retrieve
Queue op Queue
e Example:
retrieve (addl x q) == add x (retrieve q)

2 From Haskell to Agda
Proofs about Haskell Programs

e We need a translation:

e But: Haskell is a rich language!

Translation Outline

e We use GHC Core as an intermediate language.

GHC

e (GHC) Core = Systent, + data types + mutual recursion.

e Type classes and nested patterns are translated away by GHC.
Target: Agda

e Purely functional, dependently typed language.

e Propositions are sets (type®)rop = Set.

e Predicates are dependent types, e.g.:
Even : Nat — Prop

lemma : (n:Nat) — Evenn — Even(n + 2)

Agda Programs Must Be...

e predicative,

e terminating,

e and total. Oops!

front (x:q) = X

¢ \We need to translate each tydeby Maybe A.

A Monadic Translation

o Partiality involved? Translatd by Maybe A.
e Everything total? Translatd by A.

e Maybe is a monad.

e |dentity is a monad.

e We do amonadictranslation.

Translation Outline (refined)

. Monadic Translation

o

3 Monadic Translation

Monads in Agda

e An abstract monad:
m : Set — Set

return (o : Set) D a—ma
(>=)(a,3:Set) : ma—(a—mpB)—m}p

e Arguments to the right of:Y are implicit.

Translating the A-Calculus

e Translation of types:

= mr*
(a?)* = aT
(m—m) = -7

e Translation of programs (domain-free):

o = =z
(Az.e)t = return (Az.ef)
(fe)t = fi>=Af.fe

Dealing with Polymophism
¢ In the literature (Barthe, Hatcliff, Thiemann 1997):
(Va.o)T = m((a:Set) — o)

(Aae)t = return (Ma.el)

But Agda is predicativefo : Set) — o is not inSet!

However, we want to instantiatewith somem 7.

So,m needs to be iSet — Set.

= Polytypes are translated non-monadically.

Translating Polymorphism

e Our approach:
(Va.o)T = (a:Set) — of

(Aa.e)t = da.ef

e Consistent with Haskell semantics:

— Type abstraction and applications a computationgout information for
the compiler.

- (Aa.l) = 1.

e We need to distinguish betweemnotypesndpolytypes

Translation Outline (revised)

Nreprocessor

\I\/Ionadic Translation

Predicative Core

e PredicativeF,, (restriction of Leivant 1991):

kK u= x| Kk— K kinds
T ou= aT|T—o1 monotypes
o = 7|Va:ik.oc|o— o polytypes

e Translation of poly-function types (arise from dictionaries):

(o1~ o)t = o =0l
(Az:o.e)t = Az:of.el
(ftfl'—wz e)T — fT eT
Translating Datatypes
e Lists...
data Lista = Nil

| Cons « (List)

e ...are translated as:

data List (a:Set) = Nil
| Cons (mz:ma) (mzs:m (List o))

Demo

Conclusions

e New monadic translation.
e Pragmatic approach to Haskell program verification.

e Drawbacks:

— Monads everywhere.

— GHC Core designed as frontend for compiler, not theorem prover.
e But:

— Lightweight translation (easy to get right).
— “Core-ification” preserves most names.
— Proofs about thee-facto semantiasf Haskell programs.

