
Verifying Haskell Programs
Using Constructive Type Theory

Andreas Abel Marcin Benke Ana Bove John Hughes
Ulf Norell

Haskell Workshop, 2005

1 Example: Queues

A Specification of Queues

• A queue is simply a list.

type Queue a = [a]

empty = []
add x q = q ++ [x]
isEmpty q = null q
front (x:q) = x
remove (x:q) = q

• Enqueueing has linear time complexity.

• Implementation should have amortized constant time operations.

An Implementation of Queues

• A queue consists of a front list and a reversed back list.

type QueueI a = ([a],[a])

retrieve :: QueueI a -> Queue a
retrieve (f,b) = f ++ reverse b

• An datainvariant:

If the front list is empty, then so is the back list.

1

Implementation of Queue Operations

• Auxiliary operationflipQ restores the invariant.

flipQ ([],b) = (reverse b,[])
flipQ q = q

• Queue operations:

emptyI = ([],[])
addI x (f,b) = flipQ (f,x:b)
isEmptyI (f,b) = null f
frontI (x:f,b) = x
removeI (x:f,b) = flipQ (f,b)

Soundness

• Diagram should commute:

QueueI
opI

QueueI

Queue
op

Queue

retrieve retrieve

• Example:

retrieve (addI x q) == add x (retrieve q)

2 From Haskell to Agda

Proofs about Haskell Programs

• We need a translation:

2

Haskell

Agda

?

• But: Haskell is a rich language!

Translation Outline

• We use GHC Core as an intermediate language.

Haskell

GHC Core

Agda

GHC

?

• (GHC) Core = SystemFω + data types + mutual recursion.

• Type classes and nested patterns are translated away by GHC.

Target: Agda

• Purely functional, dependently typed language.

• Propositions are sets (types):Prop = Set.

• Predicates are dependent types, e.g.:

Even : Nat → Prop

lemma : (n : Nat) → Evenn → Even(n + 2)

Agda Programs Must Be...

• predicative,

• terminating,

3

• and total. Oops!

front (x:q) = x

• We need to translate each typeA by Maybe A.

A Monadic Translation

• Partiality involved? TranslateA by Maybe A.

• Everything total? TranslateA by A.

• Maybe is a monad.

• Identity is a monad.

• We do amonadictranslation.

Translation Outline (refined)

Haskell

GHC Core

Agda

GHC

Monadic Translation

3 Monadic Translation

Monads in Agda

• An abstract monad:

m : Set → Set

return (α :Set) : α → m α
(�=) (α, β :Set) : m α → (α → m β) → m β

• Arguments to the right of (:) are implicit.

4

Translating the λ-Calculus

• Translation of types:

τ † = m τ∗

(α~τ)∗ = α~τ∗

(τ1 → τ2)∗ = τ †1 → τ †2

• Translation of programs (domain-free):

x† = x
(λx.e)† = return (λx. e†)

(f e)† = f† �= λf ′. f ′ e†

Dealing with Polymophism

• In the literature (Barthe, Hatcliff, Thiemann 1997):

(∀α.σ)† = m ((α :Set) → σ†)

(Λα.e)† = return (λα. e†)

• But Agda is predicative:(α :Set) → σ is not inSet!

• However, we want to instantiateα with somem τ .

• So,m needs to be inSet → Set.

• =⇒ Polytypes are translated non-monadically.

Translating Polymorphism

• Our approach:
(∀α.σ)† = (α :Set) → σ†

(Λα.e)† = λα. e†

• Consistent with Haskell semantics:

– Type abstraction and applications arenot computations, but information for
the compiler.

– (Λα.⊥) = ⊥.

• We need to distinguish betweenmonotypesandpolytypes.

5

Translation Outline (revised)

Haskell

GHC Core

Pred. Core

Agda

GHC

Preprocessor

Monadic Translation

Predicative Core

• PredicativeFω (restriction of Leivant 1991):

κ ::= ∗ | κ → κ′ kinds

τ ::= α~τ | τ → τ ′ monotypes
σ ::= τ | ∀α :κ. σ | σ 7→ σ′ polytypes

• Translation of poly-function types (arise from dictionaries):

(σ1 7→ σ2)† = σ†1 → σ†2

(λx :σ.e)† = λx :σ†. e†

(fσ1 7→σ2 e)† = f† e†

Translating Datatypes

• Lists . . .
data List α = Nil

| Cons α (List α)

• . . . are translated as:

data List (α :Set) = Nil
| Cons (mx :m α) (mxs :m (List α))

Demo

6

Conclusions

• New monadic translation.

• Pragmatic approach to Haskell program verification.

• Drawbacks:

– Monads everywhere.

– GHC Core designed as frontend for compiler, not theorem prover.

• But:

– Lightweight translation (easy to get right).

– “Core-ification” preserves most names.

– Proofs about thede-facto semanticsof Haskell programs.

7

