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This Lecture: a Taste of PLT

A taste of an application of formal languages and automata

Programming Language Technology

Parsing, type-checking, interpretation, compilation

DAT151 / DIT230

Next edition: 2016/2017 LP2 (November-Jan)

Andreas Abel (GU) Programming Language Technology DIT321 2016 2 / 17



Parsing

latin / old french pars = part(s) (of speech)

A parser for a formal language
1 Takes input stream of characters
2 Checks if input forms word of language
3 Outputs typically one of:

Parse tree
Abstract syntax tree
Result of interpreting input (if it is a program)
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Running Example: Calculator

This lecture: write a parser for a calculator

Expr ::= Number | Expr + Expr | Expr * Expr | ( Expr )

This grammar is ambiguous:
1+2*3 could be parsed as product 1+2 * 3 or sum 1 + 2*3.

Disambiguated grammar (left-associative):

Atom ::= Number | ( Expr )

Product ::= Atom | Product * Atom

Expr ::= Product | Expr + Product
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Implementing Parsers

We can write a parser directly, e.g. in Haskell.

parseNumber :: String -> Either Error (Integer, String)

Parses a number and returns the remaining input.

parseNumber "345" = Right (345, "")

parseNumber "1 + 2" = Right (1, " + 2")

parseNumber "1hello" = Right (1, "hello")

parseNumber "hello" = Left ExpectedNumber

Should skip whitespace.

parseNumber " 345 " = Right (345, " ")
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Composing Parsers

Parsers can be combined (google: parser combinators)

type Parser a = String -> Either Error (a, String)

orP :: Parser a -> Parser a -> Parser a

thenP :: Parser a -> Parser b -> Parser (a, b)

Can we represent grammar as parser directly!?

parseAtom = parseNumber ‘orP‘

(parseLParen ‘thenP‘ parseExpr ‘thenP‘ parseRParen)

Parser combinators became popular with higher-order programming
languages (Haskell, ML)

However, there are some caveats . . .

Andreas Abel (GU) Programming Language Technology DIT321 2016 6 / 17



Problems of Parser Combinators

Naive translation of grammar fails

parseExpr = parseProduct ‘orP‘

(parseExpr ‘thenP‘ parsePlus ‘thenP‘ parseProduct)

parseExpr "hello" loops.

Need to write grammar in a form suitable for recursive-decent aka LL
(Left-to-right Left-most-derivation) parsing.

Backtracking for alternative orP can be expensive.
Parser might become exponential time.

Let’s put our formal language theory to work for efficient parsing!
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From Grammars to Parser Generators

Parsing programming language is one of the foundations of IT

Most programming languages adhere to a context-free grammar
(CFG) suitable for efficient LR-parsing

Division of task:
1 Lexer: transforms character string into token stream.

Discards whitespace and comments.
Recognizes numbers, string literals etc. via finite automata.

2 Parser: processes token stream according to grammar.

Automation:
1 Lexers are generated from regular expressions.
2 Parsers are generated from CFGs.
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Lexical Analyzers

Lexer is short for lexical analyzer.

Big finite automaton with output: In accepting states, a token
(depending on the state) is output.

Typical form: A = (A1 + · · · + An)∗

Each automaton Ai has a specific output, e.g.:

A1 recognizes whitespace, produces no output.
A2 recognizes numbers, outputs the number.
A3 recognizes (, outputs token LParen.
. . .
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Alex: a Lexer Generator for Haskell

https://www.haskell.org/alex/

.x file maps regular expressions to output actions.

$white+ ; -- no action

@number { \ s -> Number (read s) }

@nulls { \ s -> error ("invalid number " ++ s) }

"+" { \ s -> Plus }

"*" { \ s -> Times }

"(" { \ s -> LParen }

")" { \ s -> RParen }

Abbreviations (macros) for REs can be given:

$digit = 0-9

$digit1 = 1-9

@number = 0 | $digit1 ( $digit * )

@nulls = 0 ( 0 + )
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Example tokens (Haskell code)

data Token

= Number Integer

| Plus

| Times

| LParen

| RParen
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LR Parsers

LR = Left-to-right Rightmost-derivation.

Efficient bottom-up parsing using stack.

Two actions:
1 Shift: put input token onto stack.
2 Reduce: replace topmost stack symbol by non-terminal, according to a

grammar rule.

Decision whether to shift or to reduce is taken by a finite automaton
running over the stack contents.

States of this FA are the parser states.
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Run of a LR-Parser

Stack Input Action

1+2*3 shift

1 +2*3 reduce Atom ::= Number

A +2*3 reduce Product ::= Atom

P +2*3 reduce Expr ::= Product

E +2*3 shift(2)

E+2 *3 reduce Atom ::= Number

E+A *3 reduce Product ::= Atom

E+P *3 shift(2)

E+P*3 reduce Atom ::= Number

E+P*A reduce Product ::= Product * Atom

E+P reduce Expr ::= Expr + Product

E accept
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Happy: A Parser Generator for Haskell

https://www.haskell.org/happy/

.y-file contains token definitions and grammar with actions

Expr : Product { $1 }

| Expr ’+’ Product { $1 + $3 }

Product : Atom { $1 }

| Product ’*’ Atom { $1 * $3 }

Atom : num { $1 }

| ’(’ Expr ’)’ { $2 }

Haskell code inside the { braces }.

$n refers to value of nth item in rule.

This parser directly computes the value of the parsed expression.
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Happy: Token definitions

Connect tokens accepted by Happy parser to the ones produced by
the Alex lexer.

%tokentype { Token }

%token

’+’ { Plus }

’*’ { Times }

’(’ { LParen }

’)’ { RParen }

num { Number $$ } -- $$ holds the value of the token
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BNFC: A BNF Compiler

Usually, a parser should output the abstract syntax tree (AST).

Calculating its value can be done in a second pass (interpretation).

BNFC http://bnfc.digitalgrammars.com/ gives additional
convenience.

.cf file contains BNF-grammar with rule names.

BNFC produces input for several lexer/parser generators from the
same grammar.

The generated parsers produce ASTs.

BNFC also produces pretty-printers and visitors for these ASTs.

Supported languages include: C, C++, Haskell, Java.
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Conclusions

Suggested exercises:

Implement the calculator in your favorite programming language using
its lexer and parser generators.

Extend the calculator by subtraction, division, etc.

Extend the lexer towards single-line and block comments.

Extend the calculator by variables and let-bindings.

Implement the calculator using BNFC.
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