
Programming Language Technology
Putting Formal Languages to Work

Andreas Abel

Department of Computer Science and Engineering
Chalmers and Gothenburg University

Finite Automata Theory and Formal Languages
TMV027/DIT321, LP4 2016

16 May 2016

Andreas Abel (GU) Programming Language Technology DIT321 2016 1 / 17

This Lecture: a Taste of PLT

A taste of an application of formal languages and automata

Programming Language Technology

Parsing, type-checking, interpretation, compilation

DAT151 / DIT230

Next edition: 2016/2017 LP2 (November-Jan)

Andreas Abel (GU) Programming Language Technology DIT321 2016 2 / 17

Parsing

latin / old french pars = part(s) (of speech)

A parser for a formal language
1 Takes input stream of characters
2 Checks if input forms word of language
3 Outputs typically one of:

Parse tree
Abstract syntax tree
Result of interpreting input (if it is a program)

Andreas Abel (GU) Programming Language Technology DIT321 2016 3 / 17

Running Example: Calculator

This lecture: write a parser for a calculator

Expr ::= Number | Expr + Expr | Expr * Expr | (Expr)

This grammar is ambiguous:
1+2*3 could be parsed as product 1+2 * 3 or sum 1 + 2*3.

Disambiguated grammar (left-associative):

Atom ::= Number | (Expr)

Product ::= Atom | Product * Atom

Expr ::= Product | Expr + Product

Andreas Abel (GU) Programming Language Technology DIT321 2016 4 / 17

Implementing Parsers

We can write a parser directly, e.g. in Haskell.

parseNumber :: String -> Either Error (Integer, String)

Parses a number and returns the remaining input.

parseNumber "345" = Right (345, "")

parseNumber "1 + 2" = Right (1, " + 2")

parseNumber "1hello" = Right (1, "hello")

parseNumber "hello" = Left ExpectedNumber

Should skip whitespace.

parseNumber " 345 " = Right (345, " ")

Andreas Abel (GU) Programming Language Technology DIT321 2016 5 / 17

Composing Parsers

Parsers can be combined (google: parser combinators)

type Parser a = String -> Either Error (a, String)

orP :: Parser a -> Parser a -> Parser a

thenP :: Parser a -> Parser b -> Parser (a, b)

Can we represent grammar as parser directly!?

parseAtom = parseNumber ‘orP‘

(parseLParen ‘thenP‘ parseExpr ‘thenP‘ parseRParen)

Parser combinators became popular with higher-order programming
languages (Haskell, ML)

However, there are some caveats . . .

Andreas Abel (GU) Programming Language Technology DIT321 2016 6 / 17

Problems of Parser Combinators

Naive translation of grammar fails

parseExpr = parseProduct ‘orP‘

(parseExpr ‘thenP‘ parsePlus ‘thenP‘ parseProduct)

parseExpr "hello" loops.

Need to write grammar in a form suitable for recursive-decent aka LL
(Left-to-right Left-most-derivation) parsing.

Backtracking for alternative orP can be expensive.
Parser might become exponential time.

Let’s put our formal language theory to work for efficient parsing!

Andreas Abel (GU) Programming Language Technology DIT321 2016 7 / 17

From Grammars to Parser Generators

Parsing programming language is one of the foundations of IT

Most programming languages adhere to a context-free grammar
(CFG) suitable for efficient LR-parsing

Division of task:
1 Lexer: transforms character string into token stream.

Discards whitespace and comments.
Recognizes numbers, string literals etc. via finite automata.

2 Parser: processes token stream according to grammar.

Automation:
1 Lexers are generated from regular expressions.
2 Parsers are generated from CFGs.

Andreas Abel (GU) Programming Language Technology DIT321 2016 8 / 17

Lexical Analyzers

Lexer is short for lexical analyzer.

Big finite automaton with output: In accepting states, a token
(depending on the state) is output.

Typical form: A = (A1 + · · · + An)∗

Each automaton Ai has a specific output, e.g.:

A1 recognizes whitespace, produces no output.
A2 recognizes numbers, outputs the number.
A3 recognizes (, outputs token LParen.
. . .

Andreas Abel (GU) Programming Language Technology DIT321 2016 9 / 17

Alex: a Lexer Generator for Haskell

https://www.haskell.org/alex/

.x file maps regular expressions to output actions.

$white+ ; -- no action

@number { \ s -> Number (read s) }

@nulls { \ s -> error ("invalid number " ++ s) }

"+" { \ s -> Plus }

"*" { \ s -> Times }

"(" { \ s -> LParen }

")" { \ s -> RParen }

Abbreviations (macros) for REs can be given:

$digit = 0-9

$digit1 = 1-9

@number = 0 | $digit1 ($digit *)

@nulls = 0 (0 +)

Andreas Abel (GU) Programming Language Technology DIT321 2016 10 / 17

https://www.haskell.org/alex/

Example tokens (Haskell code)

data Token

= Number Integer

| Plus

| Times

| LParen

| RParen

Andreas Abel (GU) Programming Language Technology DIT321 2016 11 / 17

LR Parsers

LR = Left-to-right Rightmost-derivation.

Efficient bottom-up parsing using stack.

Two actions:
1 Shift: put input token onto stack.
2 Reduce: replace topmost stack symbol by non-terminal, according to a

grammar rule.

Decision whether to shift or to reduce is taken by a finite automaton
running over the stack contents.

States of this FA are the parser states.

Andreas Abel (GU) Programming Language Technology DIT321 2016 12 / 17

Run of a LR-Parser

Stack Input Action

1+2*3 shift

1 +2*3 reduce Atom ::= Number

A +2*3 reduce Product ::= Atom

P +2*3 reduce Expr ::= Product

E +2*3 shift(2)

E+2 *3 reduce Atom ::= Number

E+A *3 reduce Product ::= Atom

E+P *3 shift(2)

E+P*3 reduce Atom ::= Number

E+P*A reduce Product ::= Product * Atom

E+P reduce Expr ::= Expr + Product

E accept

Andreas Abel (GU) Programming Language Technology DIT321 2016 13 / 17

Happy: A Parser Generator for Haskell

https://www.haskell.org/happy/

.y-file contains token definitions and grammar with actions

Expr : Product { $1 }

| Expr ’+’ Product { $1 + $3 }

Product : Atom { $1 }

| Product ’*’ Atom { $1 * $3 }

Atom : num { $1 }

| ’(’ Expr ’)’ { $2 }

Haskell code inside the { braces }.

$n refers to value of nth item in rule.

This parser directly computes the value of the parsed expression.

Andreas Abel (GU) Programming Language Technology DIT321 2016 14 / 17

https://www.haskell.org/happy/

Happy: Token definitions

Connect tokens accepted by Happy parser to the ones produced by
the Alex lexer.

%tokentype { Token }

%token

’+’ { Plus }

’*’ { Times }

’(’ { LParen }

’)’ { RParen }

num { Number $$ } -- $$ holds the value of the token

Andreas Abel (GU) Programming Language Technology DIT321 2016 15 / 17

BNFC: A BNF Compiler

Usually, a parser should output the abstract syntax tree (AST).

Calculating its value can be done in a second pass (interpretation).

BNFC http://bnfc.digitalgrammars.com/ gives additional
convenience.

.cf file contains BNF-grammar with rule names.

BNFC produces input for several lexer/parser generators from the
same grammar.

The generated parsers produce ASTs.

BNFC also produces pretty-printers and visitors for these ASTs.

Supported languages include: C, C++, Haskell, Java.

Andreas Abel (GU) Programming Language Technology DIT321 2016 16 / 17

http://bnfc.digitalgrammars.com/

Conclusions

Suggested exercises:

Implement the calculator in your favorite programming language using
its lexer and parser generators.

Extend the calculator by subtraction, division, etc.

Extend the lexer towards single-line and block comments.

Extend the calculator by variables and let-bindings.

Implement the calculator using BNFC.

Andreas Abel (GU) Programming Language Technology DIT321 2016 17 / 17

