
Semi-continuous Sized Types and Termination
Termination Checking via Type Systems

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich

Computer Science Logic 2006
Szeged, Hungary

September 26, 2006

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 1 / 21

Introduction

Theorem Provers for Constructive Logic

Theorem Provers built on Dependent Type Theory:

Coq (INRIA, France)

Epigram (Nottingham, UK)

Agda (Chalmers, Sweden)

Their soundness is based on termination.

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 2 / 21

Introduction

Constructive Logics

The Curry-Howard Isomorphism:

Proposition Type
A implies B A → B
Proof Purely Functional Program
Valid Proof Terminating Program

Non-terminating programs lead to inconsistency:

f : (0 = 0) → (0 = 1)
f (p) = f (p)

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 3 / 21

Type-Based Termination Explained

Type-Based Termination, Informally

Recipe
Step 1 In the type system, attach sizes to data structures.
Step 2 Using type-checking, ensure that recursive calls use only

arguments with decreased size.

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 4 / 21

Type-Based Termination Explained

Step 1: Sized Binary Trees

Let BTreeı denote trees of height < ı.

The empty tree has height 0, hence leaf : BTree1, but also
leaf : BTree2, leaf : BTree3, . . .

In general leaf : BTreeı+1 for all ı.

leaf : ∀ı. BTreeı+1

node : ∀ı. Int×(BTreeı × BTreeı) → BTreeı+1

BTree∞ contains all binary trees.

Subtyping: BTreeı ⊆ BTreeı+1 ⊆ · · · ⊆ BTree∞.

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 5 / 21

Type-Based Termination Explained

Step 2: Equality Test for Sized Binary Trees

Code annotated with sizes:

eq : ∀ı. BTreeı → BTreeı → Bool

eq leaf leaf = true
eq node(i1, (l1, r1))

ı+1 node(i2, (l2, r2))
ı+1 = (i1 == i2) &&

eq l1
ı l2

ı && eq r1
ı r2

ı

eq = false

Input arguments assumed to be of size ı + 1.

Recursive arguments inferred to be of size ı.

Descend in size, hence, termination.

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 6 / 21

Abstraction and Polymorphism

Abstracting the Branching Type

Generalize to F -Branching Int-labelled trees Treeı F

Constructors:

leaf : ∀F∀ı. Treeı+1F
node : ∀F∀ı. Int×F (TreeıF) → Treeı+1F

Valid instances

binary trees F T = T × T
lists F T = T
finitely branching trees F T = List∞ T
infinitely branching trees F T = Nat∞ → T

Invalid instance (F not monotone), e.g., F T = T → Bool

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 7 / 21

Abstraction and Polymorphism

Equality of F -Branching Trees

Generalize equality test to F -branching trees:

Termination not inferable with untyped methods.

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 8 / 21

Abstraction and Polymorphism

Termination and Polymorphism

Eq T = T → T → Bool

eq : (∀T .Eq T → Eq (F T)) → ∀ı. Eq (TreeıF)

eq eqF leaf leaf = true

eq eqF node(i1, ft1)

Treeı+1 F︷ ︸︸ ︷
node(i2, ft2︸︷︷︸

F (Treeı F)

) = (i1 == i2) &&

eqF

EqT=Eq (TreeıF)︷ ︸︸ ︷
(eq eqF) ft1 ft2

eq = false

Observe the role reversal: The recursive function (eq eqF) becomes an
argument to its own argument eqF !
Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 9 / 21

Abstraction and Polymorphism

Termination and Polymorphism

Eq T = T → T → Bool

eq : (∀T .Eq T → Eq (F T)) → ∀ı. Eq (TreeıF)

eq eqF leaf leaf = true

eq eqF node(i1, ft1)

Treeı+1 F︷ ︸︸ ︷
node(i2, ft2︸︷︷︸

F (Treeı F)

) = (i1 == i2) &&

eqF

EqT=Eq (TreeıF)︷ ︸︸ ︷
(eq eqF) ft1 ft2

eq = false

Observe the role reversal: The recursive function (eq eqF) becomes an
argument to its own argument eqF !
Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 9 / 21

Abstraction and Polymorphism

Evaluation

No untyped formalism can handle this example:
In the untyped setting, eq diverges, e.g., define

eqF eqT ft1 ft2 = eqT node(0, ft1) node(0, ft2)

and execute the function clause

eq eqF node(i1, ft1) node(i2, ft2) = . . .
eqF (eq eqF) ft1 ft2

A typed formalism such as TBT uses the information that

eqF : ∀T .Eq T → Eq (F T)

is polymorphic (hence, the above instance of eqF is ill-typed).
Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 10 / 21

Theory of Type-Based Termination Transfinite Induction

Type-Based Termination, Formally

Theorem
f = s(f) : ∀ı. A(ı) is well-defined if

1 (bottom check) A(0) contains all programs, e.g.,
A(ı) = BTreeı → C .

2 (descent) f : A(ı) implies s(f) : A(ı + 1).
3 (admissibility)

⋂
α<λ A(α) ⊆ A(λ) for all limit ordinals λ 6= 0.

Proof.
By transfinite induction on ı.

1 (base) f : A(0) trivial.
2 (step) ind.hyp. f : A(α) implies s(f) = f : A(α + 1).
3 (limit) f :

⋂
α<λ A(α) by ind.hyp., hence f : A(λ).

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 11 / 21

Theory of Type-Based Termination Admissible Types for Recursion

Upper Semi-Continuous Types

Definition (upper semi-continuous)

A semantical type A : On → P(SN) is upper semi-continuous (usc) if
for all limits λ 6= 0

lim sup
α→λ

A(α) :=

(⋂
α0<λ

⋃
α0≤α<λ

A(α)

)
⊆ A(λ)

An usc type fulfills
⋂

α<λA(α) ⊆ A(λ),
hence, is admissible.

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 12 / 21

Theory of Type-Based Termination Admissible Types for Recursion

Lower Semi-Continuous Types

Definition (upper semi-continuous)

A semantical type A : On → P(SN) is lower semi-continuous (usc) if
for all limits λ 6= 0

A(λ) ⊆ lim inf
α→λ

A(α) :=
⋃

α0<λ

⋂
α0≤α<λ

A(α)

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 13 / 21

Theory of Type-Based Termination Admissible Types for Recursion

Continuous Types

usc lsc

lim supα→λA(α) ⊆ A(λ) A(λ) ⊆ lim infα→λA(α)

continuous

limα→λA(α) = A(λ)

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 14 / 21

Theory of Type-Based Termination Admissible Types for Recursion

Closure Properties of Semi-Continuity

usc condition lsc condition
A usc A monotone A lsc A antitone
A+ B usc A, B usc A+ B lsc A, B lsc
A× B usc A, B usc A× B lsc A, B lsc
A → B usc A lsc, B usc —
νF usc F usc µF lsc F lsc

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 15 / 21

Theory of Type-Based Termination Admissible Types for Recursion

Why Upper Semi-Continuity is Vital

Let pred : ∀ı. Natı+1 → Natı such that pred 0 raises an exception. Define

f : ∀ı.

A(ı)︷ ︸︸ ︷
(Nat∞ → Natı) → X

f (g : Nat∞ → Natı+1) = f ((pred ◦ g ◦ succ) : Nat∞ → Natı)

Now f (id) loops.

The definition passes the bottom check and the descent criterion, but
A(ı) is neither usc nor admissible.

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 16 / 21

Further Work

Related Work

Expressivity Xi Par Ama Gim Fra A Bar Bla Buch
term. measures + – – – – – – + o
dep. types o – – + – – + + –
polymorphism + o – + – + + + –
infinite branch. – – – + + + + – +
semi-cont. – ω – – – + – – –
productivity – + + + + + + – +
Features
symbolic exec. – – + + + + + + +
soundness V D SN – SN SN o SN D
ordinals < ω ≤ ω On – Ω Ωω – < ω ≤ ω
equi-rec. – + – – – + – – –
size inference – + – – – – + – –

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 17 / 21

Further Work

Conclusions

Termination checking can be integrated into type checking

Especially powerful in combination with polymorphism

Type-Based Termination is a modern technology, still under active
development

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 18 / 21

Further Work

Future Work

Extend to dependent types

Investigate semi-continuity for dependent types

Find intuitive explanations for non-admissibility of types

Integrate into a theorem prover

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 19 / 21

Further Work

Acknowledgements

Technical discussions on my thesis
Klaus Aehlig Thorsten Altenkirch
Ikegami Daisuke Martin Hofmann

John Hughes Ralph Matthes Tarmo Uustalu

Financial support
Graduiertenkolleg Logik in der Informatik

Project CoVer (Swedish Foundation for Strategic Research)
TYPES

APPSEM II

Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 20 / 21

Further Work Construction of Sized Types

Formalizing Sized Types

Capture the structure of data types, forget about constructor
names.

Types are build from the primitives + (disjoint sum), × (cartesian
product), → (function space).

Sized types µıF are recursive types obtained by iterating a type
transformer F :

µ0F = ∅
µα+1F = F (µα F)
µλF =

⋃
α<λ µαF

E.g., type constructor for binary trees:
BTreeF X = 1 + Int×(X × X)

Sized binary trees: BTreeı = µı BTreeF.
Andreas Abel (LMU Munich) Semi-continuous Sized Types CSL’06 21 / 21

	Introduction
	Type-Based Termination Explained
	Abstraction and Polymorphism
	Theory of Type-Based Termination
	Transfinite Induction
	Admissible Types for Recursion: Semi-Continuous Types

	Further Work
	

