Semi-continuous Sized Types and Termination Termination Checking via Type Systems

Andreas Abel

Department of Computer Science Ludwig-Maximilians-University Munich

Computer Science Logic 2006 Szeged, Hungary September 26, 2006

Andreas Abel (LMU Munich)

Semi-continuous Sized Types

CSL'06 1 / 21

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem Provers for Constructive Logic

Theorem Provers built on Dependent Type Theory:

- Coq (INRIA, France)
- Epigram (Nottingham, UK)
- Agda (Chalmers, Sweden)

Their soundness is based on *termination*.

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Constructive Logics

The Curry-Howard Isomorphism:

Proposition	Type
A implies B	A ightarrow B
Proof	Purely Functional Program
Valid Proof	Terminating Program

Non-terminating programs lead to inconsistency:

 $f: (0 = 0) \to (0 = 1)$ f(p) = f(p)

《曰》《圖》《臣》《臣》 三臣

Type-Based Termination, Informally

Recipe

Step 1 In the type system, attach sizes to data structures. Step 2 Using type-checking, ensure that recursive calls use only

arguments with decreased size.

Step 1: Sized Binary Trees

- Let BTree^i denote trees of height < i.
- The empty tree has height 0, hence leaf : BTree¹, but also leaf : BTree², leaf : BTree³, ...
- In general leaf : $BTree^{i+1}$ for all i.

- BTree^{∞} contains all binary trees.
- Subtyping: $\mathsf{BTree}^i \subseteq \mathsf{BTree}^{i+1} \subseteq \cdots \subseteq \mathsf{BTree}^{\infty}$.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

Step 2: Equality Test for Sized Binary Trees

• Code annotated with sizes:

```
\mathsf{eq}:\forall i.\,\mathsf{BTree}^i\to\mathsf{BTree}^i\to\mathsf{Bool}
```

```
eq leaf leaf = true
eq node(i_1, (l_1, r_1))^{i+1} node(i_2, (l_2, r_2))^{i+1} = (i_1 == i_2) &&
eq l_1^i l_2^i && eq r_1^i r_2^i
eq _ = false
```

- Input arguments assumed to be of size i + 1.
- Recursive arguments inferred to be of size $\imath.$
- Descend in size, hence, termination.

(日) (四) (三) (三) (三) (三)

Abstracting the Branching Type

- Generalize to $F\text{-}\mathrm{Branching}\ \mathsf{Int}\text{-}\mathrm{labelled}\ \mathrm{trees}\ \mathsf{Tree}^{\imath}\ F$
- Constructors:

leaf : $\forall F \forall i. \operatorname{Tree}^{i+1} F$ node : $\forall F \forall i. \operatorname{Int} \times F(\operatorname{Tree}^{i} F) \to \operatorname{Tree}^{i+1} F$

• Valid instances

binary trees $F T = T \times T$ listsF T = Tfinitely branching trees $F T = \text{List}^{\infty} T$ infinitely branching trees $F T = \text{Nat}^{\infty} \to T$

• Invalid instance (F not monotone), e.g., $F T = T \rightarrow \text{Bool}$

Equality of F-Branching Trees

- Generalize equality test to F-branching trees:
- Termination not inferable with untyped methods.

A D N A B N A B N

Termination and Polymorphism

$$Eq T = T \rightarrow T \rightarrow Bool$$

$$eq : (\forall T.Eq T \rightarrow Eq (F T)) \rightarrow \forall i. Eq (Tree^{i}F)$$

$$eq \ eqF \ leaf \ leaf = true$$

$$eq \ eqF \ node(i_1, ft_1) \ node(i_2, ft_2) = (i_1 == i_2) \&\&$$

$$F(Tree^{i}F)$$

$$eqF \ (eq \ eqF) \ ft_1 \ ft_2$$

$$eq \ _{---} = false$$

Observe the role reversal: The recursive function $(eq \ eq F)$ becomes an argument to its own argument eq F!

Andreas Abel (LMU Munich)

Semi-continuous Sized Types

CSL'06 9 / 21

Termination and Polymorphism

$$Eq T = T \rightarrow T \rightarrow Bool$$

$$eq : (\forall T.Eq T \rightarrow Eq (F T)) \rightarrow \forall i. Eq (Tree^{i}F)$$

$$eq \ eqF \ leaf \ leaf = true$$

$$eq \ eqF \ node(i_1, ft_1) \underbrace{\operatorname{Tree}^{i+1} F}_{F(\operatorname{Tree}^i F)} = (i_1 == i_2) \&\&$$

$$\underbrace{F(\operatorname{Tree}^i F)}_{F(\operatorname{Tree}^i F)} eqF \ (eq \ eqF) \ ft_1 \ ft_2$$

$$eq \ _{---} = false$$

Observe the role reversal: The recursive function $(eq \ eq F)$ becomes an argument to its own argument eq F!

Andreas Abel (LMU Munich)

Semi-continuous Sized Types

CSL'06 9 / 21

Evaluation

No untyped formalism can handle this example:

• In the untyped setting, eq diverges, e.g., define

 $eqF \ eqT \ ft_1 \ ft_2 = eqT \ node(0, ft_1) \ node(0, ft_2)$

• and execute the function clause

eq eqF node (i_1, ft_1) node $(i_2, ft_2) = \dots$ eqF (eq eqF) ft_1 ft_2

A typed formalism such as TBT uses the information that

eqF: $\forall T$. Eq $T \rightarrow$ Eq (F T)

is polymorphic (hence, the above instance of eqF is ill-typed).

Type-Based Termination, Formally

Theorem

- f = s(f): $\forall i. A(i)$ is well-defined if
 - (bottom check) A(0) contains all programs, e.g., $A(i) = BTree^i \rightarrow C.$
 - (descent) f : A(i) implies s(f) : A(i+1).
 - **③** (admissibility) $\bigcap_{\alpha < \lambda} A(\alpha) \subseteq A(\lambda)$ for all limit ordinals $\lambda \neq 0$.

Proof.

By transfinite induction on i.

- **(base)** f : A(0) trivial.
- (step) ind.hyp. $f : A(\alpha)$ implies $s(f) = f : A(\alpha + 1)$.
- **③** (limit) $f : \bigcap_{\alpha < \lambda} A(\alpha)$ by ind.hyp., hence $f : A(\lambda)$.

Upper Semi-Continuous Types

Definition (upper semi-continuous)

A semantical type $\mathcal{A} : \mathsf{On} \to \mathcal{P}(\mathsf{SN})$ is upper semi-continuous (*usc*) if for all limits $\lambda \neq 0$

$$\limsup_{\alpha \to \lambda} \mathcal{A}(\alpha) := \left(\bigcap_{\alpha_0 < \lambda} \bigcup_{\alpha_0 \le \alpha < \lambda} \mathcal{A}(\alpha)\right) \subseteq \mathcal{A}(\lambda)$$

An usc type fulfills $\bigcap_{\alpha < \lambda} \mathcal{A}(\alpha) \subseteq \mathcal{A}(\lambda)$, hence, is admissible.

Lower Semi-Continuous Types

Definition (upper semi-continuous)

A semantical type $\mathcal{A} : \mathsf{On} \to \mathcal{P}(\mathsf{SN})$ is lower semi-continuous (usc) if for all limits $\lambda \neq 0$

$$\mathcal{A}(\lambda) \subseteq \liminf_{\alpha \to \lambda} \mathcal{A}(\alpha) := \bigcup_{\alpha_0 < \lambda} \bigcap_{\alpha_0 \le \alpha < \lambda} \mathcal{A}(\alpha)$$

A B +
 A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Continuous Types

Closure Properties of Semi-Continuity

usc	$\operatorname{condition}$	lsc	$\operatorname{condition}$
${\cal A} usc$	\mathcal{A} monotone	${\cal A}~lsc$	${\cal A}$ antitone
$\mathcal{A} + \mathcal{B} usc$	$\mathcal{A}, \mathcal{B} \; usc$	$\mathcal{A} + \mathcal{B} lsc$	$\mathcal{A}, \mathcal{B} \ lsc$
$\mathcal{A} imes \mathcal{B} \ usc$	$\mathcal{A}, \mathcal{B} \; usc$	$\mathcal{A} imes \mathcal{B} \; lsc$	$\mathcal{A}, \mathcal{B} \ lsc$
$\mathcal{A} ightarrow \mathcal{B} \ usc$	$\mathcal{A} \ lsc, \ \mathcal{B} \ usc$		
$ u \mathcal{F} usc$	${\cal F} \; usc$	$\mu \mathcal{F} \; lsc$	${\cal F}~lsc$

∃ ⊳

・ロト ・回ト ・ヨト・

Why Upper Semi-Continuity is Vital

Let pred : $\forall i$. Natⁱ⁺¹ \rightarrow Natⁱ such that pred 0 raises an exception. Define

$$f: \forall i. \ (Nat^{\infty} \to Nat^{i}) \to X$$
$$f(g: Nat^{\infty} \to Nat^{i+1}) = f \ ((pred \circ g \circ succ): Nat^{\infty} \to Nat^{i})$$

Now f(id) loops.

The definition passes the bottom check and the descent criterion, but A(i) is neither usc nor admissible.

Related Work

Expressivity	Xi	Par	Ama	Gim	Fra	Α	Bar	Bla	Buch
term. measures	+	—	—		—			+	0
dep. types	0	—	-	+	—	_	+	+	—
polymorphism	+	0	-	+	—	+	+	+	—
infinite branch.	—	_	-	+	+	+	+	—	+
semi-cont.	—	ω	-	—	—	+	—	—	—
productivity	—	+	+	+	+	+	+	—	+
Features									
symbolic exec.	—	—	+	+	+	+	+	+	+
soundness	V	D	SN	—	SN	SN	0	SN	D
ordinals	$<\omega$	$\leq \omega$	On	_	Ω	Ω_ω	—	$<\omega$	$\leq \omega$
equi-rec.	—	+	—	_	—	+	—	—	—
size inference	—	+	-	—	-	—	+	—	—

1 9 9 9 P

イロト イヨト イヨト イヨト

Conclusions

- Termination checking can be integrated into type checking
- Especially powerful in combination with polymorphism
- Type-Based Termination is a modern technology, still under active development

イロト イヨト イヨト イヨト

18 / 21

Future Work

- Extend to dependent types
- Investigate semi-continuity for dependent types
- Find intuitive explanations for non-admissibility of types
- Integrate into a theorem prover

19 / 21

Acknowledgements

Technical discussions on my thesi	s
-----------------------------------	---

Klaus AehligThorsten AltenkirchIkegami DaisukeMartin HofmannJohn HughesRalph MatthesTarmo Uustalu

Financial support

Graduiertenkolleg Logik in der Informatik Project CoVer (Swedish Foundation for Strategic Research) TYPES APPSEM II

Andreas Abel (LMU Munich)

Semi-continuous Sized Types

CSL'06 20 / 21

ヘロト ヘヨト ヘヨト ヘ

Formalizing Sized Types

- Capture the structure of data types, forget about constructor names.
- Types are build from the primitives + (disjoint sum), × (cartesian product), → (function space).
- Sized types $\mu^i F$ are recursive types obtained by iterating a type transformer F:

$$\mu^{0}F = \emptyset \mu^{\alpha+1}F = F(\mu^{\alpha}F) \mu^{\lambda}F = \bigcup_{\alpha < \lambda} \mu^{\alpha}F$$

・ロト ・回ト ・ヨト ・ヨト ・ ヨー うへの

CSL'06

21 / 21

- E.g., type constructor for binary trees: BTreeF $X = 1 + Int \times (X \times X)$
- Sized binary trees: $\mathsf{BTree}^i = \mu^i \mathsf{BTreeF}$.