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Introduction

Theorem Provers for Constructive Logic

Theorem Provers built on Dependent Type Theory:

Coq (INRIA, France)

Epigram (Nottingham, UK)

Agda (Chalmers, Sweden)

Their soundness is based on termination.
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Introduction

Constructive Logics

The Curry-Howard Isomorphism:

Proposition Type
A implies B A → B
Proof Purely Functional Program
Valid Proof Terminating Program

Non-terminating programs lead to inconsistency:

f : (0 = 0) → (0 = 1)
f (p) = f (p)
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Type-Based Termination Explained

Type-Based Termination, Informally

Recipe
Step 1 In the type system, attach sizes to data structures.
Step 2 Using type-checking, ensure that recursive calls use only

arguments with decreased size.
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Type-Based Termination Explained

Step 1: Sized Binary Trees

Let BTreeı denote trees of height < ı.

The empty tree has height 0, hence leaf : BTree1, but also
leaf : BTree2, leaf : BTree3, . . .

In general leaf : BTreeı+1 for all ı.

leaf : ∀ı. BTreeı+1

node : ∀ı. Int×(BTreeı × BTreeı) → BTreeı+1

BTree∞ contains all binary trees.

Subtyping: BTreeı ⊆ BTreeı+1 ⊆ · · · ⊆ BTree∞.
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Type-Based Termination Explained

Step 2: Equality Test for Sized Binary Trees

Code annotated with sizes:

eq : ∀ı. BTreeı → BTreeı → Bool

eq leaf leaf = true
eq node(i1, (l1, r1))

ı+1 node(i2, (l2, r2))
ı+1 = (i1 == i2) &&

eq l1
ı l2

ı && eq r1
ı r2

ı

eq = false

Input arguments assumed to be of size ı + 1.

Recursive arguments inferred to be of size ı.

Descend in size, hence, termination.
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Abstraction and Polymorphism

Abstracting the Branching Type

Generalize to F -Branching Int-labelled trees Treeı F

Constructors:

leaf : ∀F∀ı. Treeı+1F
node : ∀F∀ı. Int×F (TreeıF ) → Treeı+1F

Valid instances

binary trees F T = T × T
lists F T = T
finitely branching trees F T = List∞ T
infinitely branching trees F T = Nat∞ → T

Invalid instance (F not monotone), e.g., F T = T → Bool
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Abstraction and Polymorphism

Equality of F -Branching Trees

Generalize equality test to F -branching trees:

Termination not inferable with untyped methods.
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Abstraction and Polymorphism

Termination and Polymorphism

Eq T = T → T → Bool

eq : (∀T .Eq T → Eq (F T )) → ∀ı. Eq (TreeıF )

eq eqF leaf leaf = true

eq eqF node(i1, ft1)

Treeı+1 F︷ ︸︸ ︷
node(i2, ft2︸︷︷︸

F (Treeı F )

) = (i1 == i2) &&

eqF

EqT=Eq (TreeıF )︷ ︸︸ ︷
(eq eqF ) ft1 ft2

eq = false

Observe the role reversal: The recursive function (eq eqF ) becomes an
argument to its own argument eqF !
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Abstraction and Polymorphism

Evaluation

No untyped formalism can handle this example:
In the untyped setting, eq diverges, e.g., define

eqF eqT ft1 ft2 = eqT node(0, ft1) node(0, ft2)

and execute the function clause

eq eqF node(i1, ft1) node(i2, ft2) = . . .
eqF (eq eqF ) ft1 ft2

A typed formalism such as TBT uses the information that

eqF : ∀T .Eq T → Eq (F T )

is polymorphic (hence, the above instance of eqF is ill-typed).
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Theory of Type-Based Termination Transfinite Induction

Type-Based Termination, Formally

Theorem
f = s(f ) : ∀ı. A(ı) is well-defined if

1 (bottom check) A(0) contains all programs, e.g.,
A(ı) = BTreeı → C .

2 (descent) f : A(ı) implies s(f ) : A(ı + 1).
3 (admissibility)

⋂
α<λ A(α) ⊆ A(λ) for all limit ordinals λ 6= 0.

Proof.
By transfinite induction on ı.

1 (base) f : A(0) trivial.
2 (step) ind.hyp. f : A(α) implies s(f ) = f : A(α + 1).
3 (limit) f :

⋂
α<λ A(α) by ind.hyp., hence f : A(λ).
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Theory of Type-Based Termination Admissible Types for Recursion

Upper Semi-Continuous Types

Definition (upper semi-continuous)

A semantical type A : On → P(SN) is upper semi-continuous (usc) if
for all limits λ 6= 0

lim sup
α→λ

A(α) :=

( ⋂
α0<λ

⋃
α0≤α<λ

A(α)

)
⊆ A(λ)

An usc type fulfills
⋂

α<λA(α) ⊆ A(λ),
hence, is admissible.
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Theory of Type-Based Termination Admissible Types for Recursion

Lower Semi-Continuous Types

Definition (upper semi-continuous)

A semantical type A : On → P(SN) is lower semi-continuous (usc) if
for all limits λ 6= 0

A(λ) ⊆ lim inf
α→λ

A(α) :=
⋃

α0<λ

⋂
α0≤α<λ

A(α)
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Theory of Type-Based Termination Admissible Types for Recursion

Continuous Types

usc lsc

lim supα→λA(α) ⊆ A(λ) A(λ) ⊆ lim infα→λA(α)

continuous

limα→λA(α) = A(λ)
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Theory of Type-Based Termination Admissible Types for Recursion

Closure Properties of Semi-Continuity

usc condition lsc condition
A usc A monotone A lsc A antitone
A+ B usc A, B usc A+ B lsc A, B lsc
A× B usc A, B usc A× B lsc A, B lsc
A → B usc A lsc, B usc —
νF usc F usc µF lsc F lsc
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Theory of Type-Based Termination Admissible Types for Recursion

Why Upper Semi-Continuity is Vital

Let pred : ∀ı. Natı+1 → Natı such that pred 0 raises an exception. Define

f : ∀ı.

A(ı)︷ ︸︸ ︷
(Nat∞ → Natı) → X

f (g : Nat∞ → Natı+1) = f ((pred ◦ g ◦ succ) : Nat∞ → Natı)

Now f (id) loops.

The definition passes the bottom check and the descent criterion, but
A(ı) is neither usc nor admissible.
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Further Work

Related Work

Expressivity Xi Par Ama Gim Fra A Bar Bla Buch
term. measures + – – – – – – + o
dep. types o – – + – – + + –
polymorphism + o – + – + + + –
infinite branch. – – – + + + + – +
semi-cont. – ω – – – + – – –
productivity – + + + + + + – +
Features
symbolic exec. – – + + + + + + +
soundness V D SN – SN SN o SN D
ordinals < ω ≤ ω On – Ω Ωω – < ω ≤ ω
equi-rec. – + – – – + – – –
size inference – + – – – – + – –
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Further Work

Conclusions

Termination checking can be integrated into type checking

Especially powerful in combination with polymorphism

Type-Based Termination is a modern technology, still under active
development
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Further Work

Future Work

Extend to dependent types

Investigate semi-continuity for dependent types

Find intuitive explanations for non-admissibility of types

Integrate into a theorem prover
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Further Work
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Further Work Construction of Sized Types

Formalizing Sized Types

Capture the structure of data types, forget about constructor
names.

Types are build from the primitives + (disjoint sum), × (cartesian
product), → (function space).

Sized types µıF are recursive types obtained by iterating a type
transformer F :

µ0F = ∅
µα+1F = F (µα F )
µλF =

⋃
α<λ µαF

E.g., type constructor for binary trees:
BTreeF X = 1 + Int×(X × X )

Sized binary trees: BTreeı = µı BTreeF.
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