# Fixed Points of Type Constructors and Primitive Recursion 

Andreas Abel<br>joint work with Ralph Matthes

CSL'04
Karpacz, Karkonoski National Park, Poland September 21, 2004

- Regular data types in Haskell:
data Nat = Zero | Succ Nat
data List a $=$ Nil | Cons a (List a)
- Least fixed points of type transformers of kind $* \rightarrow *$ :

$$
\begin{array}{lll}
\text { NatF } & : & * \rightarrow * \\
\text { NatF } & := & \lambda X .1+X \\
\text { Nat } & : & * \\
\text { Nat } & := & \mu \text { NatF }
\end{array}
$$

- Works also for List, since parameter a can be abstracted.

$$
\begin{array}{ll}
\text { List }: & * \rightarrow * \\
\text { List }:= & \lambda A \cdot \mu(\lambda X .1+A \times X)
\end{array}
$$

- Non-regular or nested datatype: non-empty triangles.

```
data Tri a = Sg a | Cons a (Tri (e,a))
```

- Parameter (resp., element type) grows in recursion.

$A |$| $E$ | $E$ | $E$ |
| :---: | :---: | :---: |
| $A$ | $E$ | $E$ |
| $A$ | $E$ |  |
|  |  |  |
| $A$ |  |  |

- Fixed point of a type constructor of kind $(* \rightarrow *) \rightarrow(* \rightarrow *)$ (rank-2 type).

$$
\begin{array}{ll}
\text { TriF }: \quad(* \rightarrow *) \rightarrow * \rightarrow * & \text { Tri }: \quad * \rightarrow * \\
\text { TriF }:=\lambda X \lambda A \cdot A+A \times X(E \times A) & \text { Tri }:=\mu \text { TriF }
\end{array}
$$

- ... requires polymorphic recursion.
- Example: cutting the top row off a trapezium.

```
cut :: Tri(e,a) -> Tri a
cut (Sg (e,a) ) = Sg a
cut (Cons (e,a) r) = Cons a (cut r)
```

- In the recursive call, the argument $r$ has type $\operatorname{Tri}(e,(e, a))$.
- Does the recursive definition of cut have a solution? (Yes.)
- Instance of a terminating programming scheme.
- Description:
- top-down pass: recursive decent into datastructure, adjusting parameters for the ...
- ... bottom-up pass: composing the result
- herein: each node treated generically, no access to current position or whole data structure
- Example: Nat.add, List.map, List.foldr
- Properties: termination, computational laws (fusion).
- Drawback: Result is always built from scratch, hence predecessor functions like Nat.pred, List.tail have linear time complexity.
- Primitive recursive functions: e.g., Nat.factorial or redecoration (Uustalu/Vene, 2002)

```
redec :: (List a -> b) -> List a -> List b
redec f Nil = Nil
redec f (Cons a as) = Cons (f (Cons a as)) (redec f as)
```

- Like iteration, but access to immediate sublist as itself, not just to the result of redec for as.
- Hence, access to current position $1=$ (Cons a as) on r.h.s.
- Iteration for rank-1 (= regular) datatypes can be simulated by $\beta$-reduction in System $\mathrm{F}(=\lambda 2)$.
- Primitive recursion can be simulated in an extension Fix (= $\lambda 2 U)$ of System F by positive fixed point (=retract) types. (Geuvers 1992)

$$
\mathrm{It} \longrightarrow \mathrm{~F}
$$

$$
\mathrm{Rec} \longrightarrow \mathrm{Fix}
$$

- Primitive recursion cannot be simulated by $\beta$-reduction in System F. (Spławski/Urzyczyn 1999)
- Relabelling the diagonal of a triangular matrix: The new diagonal element is computed from its subtriangle by the redecoration rule $\mathrm{f}:$ : Tri a $\rightarrow$ b.

```
redec :: (Tri a -> b) -> Tri a -> Tri b
redec f t@(Sg a ) = Sg (f t)
redec f t@(Cons a r) = Cons (f t) (redec (lift f) r)
```

- Herein, we need to lift the redecoration rule to a trapezium.

```
lift :: (Tri a -> b) -> Tri (e,a) -> (e,b)
lift f t = (aux t, f (cut t))
    where aux (Sg (e,a) ) = e
            aux (Cons (e,a) r) = e
```

- Iteration for rank- $n$ datatypes can be simulated in System $\mathrm{F}^{\omega}$.
(TYPES 02, FoSSaCS 03, forthcoming TCS)
- New result: primitive recursion can be simulated in Fix ${ }^{\omega}$.

$$
\begin{gathered}
\mathrm{It}^{\omega} \longrightarrow \mathrm{F}^{\omega} \\
\operatorname{Rec}^{\omega} \longrightarrow \mathrm{Fix}^{\omega}
\end{gathered}
$$

- Fix ${ }^{\omega}$ : System $\mathrm{F}^{\omega}$ with fixed points of positive type constructors.
- Difficulty: What is positivity for higher ranks?
- Solution: Distinguish co-/contra-/invariant type constructors by polarity annotation in their kind (Steffen 1998).

System Fix ${ }^{\omega}$ : Syntax

| Polarities | $p$ | :: | + | covariant |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | - | contravariant |
|  |  |  | - | invariant |

Kinds $\kappa \quad::=* \mid p \kappa \rightarrow \kappa^{\prime}$

Constructors $\quad A, B, F, G::=X\left|\lambda X^{p \kappa} . F\right| F G|A \rightarrow B| \forall X^{\kappa} . A \mid$ fix $F$
Objects (terms) $\quad r, s, t \quad::=x|\lambda x . t| r s$
Contexts $\Delta \quad::=\diamond|\Delta, x: A| \Delta, X^{p \kappa}$

- Impredicative encodings (non-strictly positive):

$$
\begin{array}{rll}
\times & : & +* \rightarrow+* \rightarrow * \\
\times & := & \lambda X^{+*} \lambda Y^{+*} \forall Z^{*} .(X \rightarrow Y \rightarrow Z) \rightarrow Z \\
+ & : & +* \rightarrow+* \rightarrow * \\
+ & := & \lambda X^{+*} \lambda Y^{+*} \forall Z^{*} .(X \rightarrow Z) \rightarrow(Y \rightarrow Z) \rightarrow Z
\end{array}
$$

- Self-composition of monotone $X:+* \rightarrow *$ is monotone in $X$ :

$$
\lambda X^{+(+* \rightarrow *)} \lambda A^{+*} . X(X A):+(+* \rightarrow *) \rightarrow(+* \rightarrow *)
$$

- But: self-composition of arbitrary $X: \circ * \rightarrow *$ is not monotone in $X$ :

$$
\forall \lambda X^{+(\circ * \rightarrow *)} \lambda A^{\circ *} \cdot X(X A):+(\circ * \rightarrow *) \rightarrow(\circ * \rightarrow *)
$$

- Function space and quantification:

$$
\frac{-\Delta \vdash A: * \quad \Delta \vdash B: *}{\Delta \vdash A \rightarrow B: *} \quad \frac{\Delta, X^{\circ \kappa} \vdash A: *}{\Delta \vdash \forall X^{\kappa} \cdot A: *}
$$

$-\Delta$ inverts all polarities in $\Delta$.

- Positive fixed points:

$$
\frac{\Delta \vdash F:+\kappa \rightarrow \kappa}{\Delta \vdash \operatorname{fix} F: \kappa}
$$

- Variables:

$$
\frac{X^{p \kappa} \in \Delta \quad p \in\{+, \circ\}}{\Delta \vdash X: \kappa} \quad \frac{\Delta, X^{p \kappa} \vdash F: \kappa^{\prime}}{\Delta \vdash \lambda X^{p \kappa} \cdot F: p \kappa \rightarrow \kappa^{\prime}}
$$

- Application of covariant constructor:

$$
\frac{\Delta \vdash F:+\kappa \rightarrow \kappa^{\prime} \quad \Delta \vdash G: \kappa}{\Delta \vdash F G: \kappa^{\prime}}
$$

- Application of contravariant constructor:

$$
\frac{\Delta \vdash F:-\kappa \rightarrow \kappa^{\prime} \quad-\Delta \vdash G: \kappa}{\Delta \vdash F G: \kappa^{\prime}}
$$

- Application of invariant constructor:

$$
\frac{\Delta \vdash F: \circ \kappa \rightarrow \kappa^{\prime} \quad \circ \Delta \vdash G: \kappa}{\Delta \vdash F G: \kappa^{\prime}}
$$

$\circ \Delta$ erases all assumptions with positive or negative polarity from $\Delta$.

- Fixed-point axiom.

$$
\frac{\Delta \vdash F:+\kappa \rightarrow \kappa}{\Delta \vdash \operatorname{fix} F=F(\text { fix } F): \kappa}
$$

- Computation: $\beta$-axiom.

$$
\frac{\Delta, X^{p \kappa} \vdash F: \kappa^{\prime} \quad p \Delta \vdash G: \kappa}{\Delta \vdash\left(\lambda X^{p \kappa} . F\right) G=[G / X] F: \kappa^{\prime}}
$$

- Extensionality: $\eta$-axiom.

$$
\frac{\Delta \vdash F: p \kappa \rightarrow \kappa^{\prime}}{\Delta \vdash \lambda X^{p \kappa} \cdot F X=F: \kappa^{\prime}} X \notin \mathrm{FV}(F)
$$

- Congruences for all type constructors.
- Symmetry and transitivity. (Reflexivity admissible.)
- Typing rules of simply typed lambda-calculus,
- plus quantification,

$$
\frac{\Delta, X^{\circ \kappa} \vdash t: A}{\Delta \vdash t: \forall X^{\kappa} \cdot A} \quad \frac{\Delta \vdash t: \forall X^{\kappa} \cdot A \quad \circ \Delta \vdash F: \kappa}{\Delta \vdash t:[F / X] A}
$$

- and type equality (includes fixed point (un)folding).

$$
\frac{\Delta \vdash t: A \quad \Delta \vdash A=B: *}{\Delta \vdash t: B}
$$

- Reduction: just $\beta$.
- Construct a model of untyped strongly normalizing terms.
- Types are interpreted as saturated set of SN terms, constructors as operators on these sets:

$$
\begin{array}{lll}
A: * & \Longrightarrow & \llbracket A \rrbracket \in \mathrm{SAT} \\
F:+\kappa \rightarrow \kappa^{\prime} & \Longrightarrow & \llbracket F \rrbracket \in \mathrm{SAT}^{\kappa} \xrightarrow{+} \mathrm{SAT}^{\kappa^{\prime}}
\end{array}
$$

- Positive constructors are interpreted as monotone operators.
- Soundness: If $t: A$ then $t \in \llbracket A \rrbracket$.
- Entails that $t$ cannot be reduced infinitely.
- Natural transformation $F \subseteq^{\vec{k} \rightarrow *} G:=\forall \vec{X}^{\vec{k}} \cdot F \vec{X} \rightarrow G \vec{X}$.
- Formation

$$
\mu^{\kappa}:(\kappa \rightarrow \kappa) \rightarrow \kappa
$$

- Introduction

$$
\text { in }^{\kappa}: F\left(\mu^{\kappa} F\right) \subseteq^{\kappa} \mu^{\kappa} F
$$

- Elimination

$$
\frac{s: \forall X^{\kappa} \cdot\left(X \subseteq^{\kappa} \mu^{\kappa} F\right) \rightarrow\left(X \subseteq^{\kappa} G\right) \rightarrow\left(F X \subseteq^{\kappa} G\right)}{\operatorname{MRec}^{\kappa} s: \mu^{\kappa} F \subseteq^{\kappa} G}
$$

- Reduction

$$
\operatorname{MRec} s(\operatorname{in} t) \longrightarrow_{\beta} s \operatorname{id}(\operatorname{MRec} s) t
$$

- $\mu^{\kappa}$, $\mathrm{in}^{\kappa}$, and MRec ${ }^{\kappa}$ can be defined in Fix ${ }^{\omega}$; the reduction rule is simulated.
- Conventional primitive recursion relies on monotonicity of type generating functor $F$.
- For rank 1: mon $F:=\forall A \forall B .(A \rightarrow B) \rightarrow(F A \rightarrow F B)$.
- For higher ranks: several formulations of monotonicity.
- Basic monotonicity: $\operatorname{mon} F:=\forall A^{\kappa} \forall B^{\kappa} .\left(A \subseteq^{\kappa} B\right) \rightarrow\left(F A \subseteq^{\kappa} F B\right)$.
- But: $\lambda X . X \circ X$ not basic monotone.
- Hence no primitive recursion principle for truly nested datatypes like

```
data Bush a = Nil | Cons a (Bush (Bush a))
```

- Other notions of monotonicity: FoSSaCS 2003, TCS 200?.


## Results:

- First formulation (!?) of primitive recursion for nested data types.
- First formulation (!?) of positive recursive types for higher ranks.
- Embedding of primitive recursion into fixed-point types (Geuvers 1992) works also for higher ranks.

Further work: conventional primitive recursion

- Nested datatypes: Okasaki 1996, Hinze 1998, Bird/Paterson 1999, Altenkirch/Reus 1999
- Polarized higher-order subtyping: Steffen 1998,

Duggan/Compagnoni 1998

Let $\mathrm{U}=\bigcup_{\kappa} \mathrm{SAT}^{\kappa}$. For valuation $\theta \in \mathrm{TyVar} \rightharpoonup \mathrm{U}$, define $\llbracket-\rrbracket_{\theta} \in \operatorname{Constr} \rightharpoonup \mathrm{U}:$

$$
\left.\begin{array}{rl}
\llbracket X \rrbracket_{\theta} & := \\
\llbracket \lambda(X) \\
\llbracket X X^{p \kappa} . F \rrbracket_{\theta}:= & \begin{cases}\mathcal{F} & \text { if } \mathcal{F} \in \mathrm{SAT}^{\kappa} \xrightarrow{p} \mathrm{SAT}^{\kappa^{\prime}} \text { for some } \kappa^{\prime} \\
\text { undef. } & \text { else }\end{cases} \\
& \text { where } \mathcal{F}\left(\mathcal{G} \in \mathrm{SAT}^{\kappa}\right):=\llbracket F \rrbracket_{\theta[X \mapsto \mathcal{G}]}
\end{array}\right] \begin{aligned}
& \\
& \llbracket F G \rrbracket_{\theta}:= \llbracket F \rrbracket_{\theta}\left(\llbracket G \rrbracket_{\theta}\right) \\
& \llbracket \text { fix } F \rrbracket_{\theta}:= \begin{cases}\text { Ifp } \mathcal{F} & \text { if } \mathcal{F} \in \mathrm{SAT}^{\kappa} \xrightarrow{+} \mathrm{SAT}^{\kappa} \text { for some } \kappa \\
\text { undef. } & \text { else }\end{cases} \\
& \text { where } \mathcal{F}:=\llbracket F \rrbracket_{\theta}
\end{aligned}
$$

- Extend interpretation to contexts $\Delta$.
- Let $\theta \in \mathrm{SAT}^{\Delta}$ (each variable mapped to semantical operator of correct kind).
- If $\Delta \vdash F: \kappa$ then $\llbracket F \rrbracket_{\theta} \in \mathrm{SAT}^{\kappa}$ (welldefinedness).
- If $\Delta \vdash F=F^{\prime}: \kappa$ then $\llbracket F \rrbracket_{\theta}=\llbracket F^{\prime} \rrbracket_{\theta}$ (soundness of equality).

