
Slide 1

Termination of Functions that Are Passed to
Their Arguments

Andreas Abel
Dept. of Comp. Sci., Chalmers

September 13, 2005
APPSEM II Workshop

Frauenchiemsee, Bavaria

Work supported by: GKLI (DFG), TYPES, APPSEM-II and CoVer (SSF)

Slide 2

Quiz: Is eqList terminating on all total inputs?

data MList m a where

Nil :: MList m a

Cons :: a -> m (MList m a) -> MList m a

eqList eqM eq Nil Nil = True

eqList eqM eq (Cons a mas) (Cons b mbs)

= eq a b

&& eqM (eqList eqM eq) mas mbs

eqList eqM eq _ _ = False

1

Slide 3

Answer: No!

• Counterexample:

data Maybe a where

Nothing :: Maybe a

Just :: a -> Maybe a

l = Cons "BLA" Nothing

eqM f _ _ = f l l

loop = eqList eqM (==) l l

• We see that loop reduces to itself.

eqList eqM eq (Cons a mas) (Cons b mbs)

= eq a b

&& eqM (eqList eqM eq) mas mbs

Slide 4

Quiz Reloaded: Is eqList now terminating on all total
inputs?

data MList m a where

Nil :: MList m a

Cons :: a -> m (MList m a) -> MList m a

type Eq a = a -> a -> Bool

eqList :: (forall a. Eq a -> Eq (m a)) -> Eq a -> Eq (MList m a)

eqList eqM eq (Cons a mas) (Cons b mbs)

= eq a b

&& eqM (eqList eqM eq) mas mbs

eqList ...

2

Slide 5

Termination

• Question: Will the run of a program eventually halt?

• Undecidable for Turing-complete programming languages
(Halteproblem).

• No termination checker can give a definitive answer for all
programs.

• Problem still interesting for:

– optimization and program specialization

– total correctness of programs

– theorem proving

Slide 6

Termination for theorem proving

• Inductive theorem provers: e.g., Agda, Coq, Epigram, Twelf.

• Some proofs are tree-shaped deriviations, e.g., proof that
[a, 0] = [b, 0].

a = b

0 = 0 [] = []

(0 :: []) = (0 :: [])

a :: (0 :: []) = b :: (0 :: [])

• Some proofs are recursive programs, manipulating derivations.

• E.g., proof of (l1 = l2) → (l2 = l3) → (l1 = l3).

• Only terminating programs denote valid proofs.

• E.g., program let trans d1 d2 = trans d1 d2 has to be rejected.

3

Slide 7

Termination of Functions Over Inductive Types

• For termination, only structure of trees is interesting.

• Structure of these trees can be represented by inductive types.

• More inductive types:

– lists

– binary trees

– natural numbers

– tree ordinals

Slide 8

Sized Inductive Types

• If T is an inductive type, let Tα denote the set of its elements
with at most α constructors.

• E.g., Listα Int contains integer lists of length < α.

• Listω Int is the type of all integer lists.

• In general, T∞ denotes the full type T .

• Sized list constructors:

nil ∈ Listα+1 Int

cons ∈ Int → Listα Int → Listα+1 Int

4

Slide 9

A recursion principle from transfinite induction

• Rule for transfinite induction:

P (0) P (α) → P (α + 1) (∀α < λ. P (α)) → P (λ)
P (β)

• Recursive programs via fixed-point combinator fix f = f (fix f).

• Instance P (α) = (fix f ∈ Aα):

• Use transfinite induction to define a recursive program:

fix f ∈ A0 f ∈ Aα → Aα+1 (∀α < λ. fix f ∈ Aα) → fix f ∈ Aλ

fix f ∈ Aβ

Slide 10

Handling base and limit case

• Recursion principle:

fix f ∈ A0 f ∈ Aα → Aα+1 (fix f ∈
⋂

α<λ Aα) → fix f ∈ Aλ

fix f ∈ Aβ

• Restrict admissible types Aα such that

– fix f ∈ A0 is trivial, e.g., Aα = Tα → C,

– (
⋂

α<λ Aα) ⊆ Aλ.

• Specialized rule

∀α. f ∈ Aα → Aα+1

fix f ∈ Aβ
Aα admissible

5

Slide 11

Type-Based Termination

• When termination checking a function clause

f : A∞

f p1 . . . pn = t(f),

• assume f to be of type Aα on the right hand side,

• assume f of type Aα+1 on the left hand side,

• check well-typedness.

• For details and soundness, see draft of my thesis.

http://www.tcs.ifi.lmu.de/~abel/diss/

Slide 12

Sized Monadic Lists

In context α : ord, M : ∗ +→ ∗, A : ∗ we have

MListα M A : ∗

nil : MListα+1 M A

cons : A → M (MListα M A) → MListα+1 M A

6

Slide 13

Solving the Quiz

• With EqA = A → A → Bool we can type monadic list equality
as follows:

eqMList : ∀M. (∀A.EqA → Eq (M A)) → ∀A.Eq A → Eq (MList∞M A)

Eq (MListα+1 M A)︷ ︸︸ ︷
eqMList eqM eq

MListα+1 M A︷ ︸︸ ︷
(cons a mas) (cons b mbs) = eq a b and

eqM

Eq (MListα M A)︷ ︸︸ ︷
(eqMList eqM eq)︸ ︷︷ ︸

Eq M (MListα M A)

M (MListα M A)︷︸︸︷
mas mbs

• A bit suprisingly, the quiz can be answered affirmatively.

Slide 14

Related works on type-based termination

• Hughes, Pareto, Sabry (POPL 1996)
Proving the correctness of reactive systems using sized types

• Amadio and Coupet-Grimal (FoSSaCS 1998)
Analysis of a guard condition in type theory

• Xi (LICS 2001), Prg. termination verification with dep. types

• Chin, Khoo (HOSC 2001), Calculating sized types

• Barthe, Frade, Giménez, Pinto, Uustalu (MSCS 2004)
Type-based termination of recursive definitions

• Blanqui (RTA 2004), A type-based termination criterion for
dependently-typed higher-order rewrite systems

• Barthe et. al. (TLCA 2005): Inferring sized types

• Buchholz (2003), Recursion on non-wellfounded trees

7

Slide 15

Acknowledgements

• Technical discussions on my thesis:

Klaus Aehlig Thorsten Altenkirch
Martin Hofmann John Hughes Ralph Matthes

Thomas Streicher Tarmo Uustalu

• Stipends

GKLI CoVer

• Colleagues at Munich and Chalmers for support

8

