
On Shape Irrelevance and Polymorphism in Type Theory

Andreas Abel
(joint work in progress with Gabriel Scherer)

Department of Computer Science
Ludwig-Maximilians-University Munich

14th Agda Intensive Meeting (AIM XIV)
Shonan Village Center

near Tokyo, Japan
9 September 2011

Andreas Abel (joint work in progress with Gabriel Scherer) (LMU)Shape Irrelevance AIM XIV 1 / 18



Type systems for computational irrelevance

Separate computationally relevant parts from “administrative”
(computationally irrelevant) parts.

Used for:
1 Extracting programs
2 Strengthening equational theory (ignore irrelevant parts during equality

checking)
3 Pruning terms, reducing memory footprint

Kinds of irrelevance:
1 Proof arguments (like x 6= 0 in division)
2 Type arguments (like A in append A xs ys)
3 “Forced” arguments (like n in vcons A n x xs)
4 Termination evidence: universe levels and sizes

Andreas Abel (joint work in progress with Gabriel Scherer) (LMU)Shape Irrelevance AIM XIV 2 / 18



The Agda Pipeline

Frontend
...

Parsing
Scope checking

Abstract syntax

Type checker ⇓
Type reconstruction

Internal erasure
Termination inference

Internal syntax

Backend
...

Extraction
Optimizations

Code generation

Andreas Abel (joint work in progress with Gabriel Scherer) (LMU)Shape Irrelevance AIM XIV 3 / 18



Internal Erasure vs. Extraction

Erasure Extraction

Free vars yes (terms) no (programs)

Evaluation under binder funs = black boxes

Equality intensional (βη), decid. observational, undecid.

Empty types hypothetical inhabitants no closed inhabitants

Identity proofs relevant irrelevant (= refl)

Accessibility proofs relevant (termination!) irrelevant

Extraction can erase all inhabitants of propositional types, i. e., with at
most one closed inhabitant.

Andreas Abel (joint work in progress with Gabriel Scherer) (LMU)Shape Irrelevance AIM XIV 4 / 18



ICC∗ and EPTS

Barras and Bernardo (FoSSaCS 2008) and Sheard and Mishra-Linger
(FoSSaCS 2008)

Γ ` A : Set Γ, x :A ` B : Set

Γ ` [x :A]→ B : Set

no rule for [x :A] ∈ Γ
Γ, [x :A] ` t : B

Γ ` λxt : [x :A]→ B

Γ ` r : [x :A]→ B Γ⊕ ` s : A

Γ ` r s : B[s/x ]

Resurrection (−)⊕ (Pfenning 2001) turns irrelevant assumptions
[x :A] into relevant ones (x :A).
Irrelevant function argument can be relevant in function codomain.

λAλx .x : [A : Set]→ A→ A
Andreas Abel (joint work in progress with Gabriel Scherer) (LMU)Shape Irrelevance AIM XIV 5 / 18



Equality in ICC∗

Equality in ICC∗ is untyped βη after erasure.

Does not scale to typed η-equality with unit type > in the presence of
large eliminations.

Given h : [A : Set]→ (A→ A)→ Bool, then?

h (N→ N) (λxλy . x y) = h > (λx . ()) : Bool

Algorithm would check heterogeneous λy . x y : N→ N = () : >?

But then t : A = () : > = t ′ : A′, inconsistent!

Andreas Abel (joint work in progress with Gabriel Scherer) (LMU)Shape Irrelevance AIM XIV 6 / 18



Irrelevance in Agda 2.2.10

Irrelevant function arguments need to be irrelevant in codomain.

Γ ` A : Set Γ, .(x :A) ` B : Set

Γ ` .(x :A)→ B : Set

Type .(A : Set)→ A→ A ill-formed.

Equality is typed βη, ignoring irrelevant arguments.

No need for heterogeneous equality.

Andreas Abel (joint work in progress with Gabriel Scherer) (LMU)Shape Irrelevance AIM XIV 7 / 18



Shape-directed η-equality

η-laws are applied according to the type shape: function type, record
type (e.g., unit type), other type.

Exact type not necessary.

Exploited by Harper/Pfenning’s simply-typed equality check for LF.

More subtle with large eliminations!

T : Bool→ Set
T true = >
T false = N→ N

Shape of T u depends on value of u.

Andreas Abel (joint work in progress with Gabriel Scherer) (LMU)Shape Irrelevance AIM XIV 8 / 18



Shape-Irrelevance

A function is shape-irrelevant if the value of the argument does not
influence the (deep) shape of the result.

Prime example: Data type constructors.

List : ˆ(A :Set)→ Set
Vec : ˆ(A :Set)→ ˆ(n :N)→ Set
Σ : ˆ(A :Set)→ ˆ(B :A→ Set)→ Set

Parameters in data constructors and projections are irrelevant!

nil : .(A :Set)→ List A
vcons : .(A :Set)→ .(n :N)→ A→ Vec A n→ Vec A (suc n)
, : .(A :Set)→ .(B :A→ Set)→ (a :A)→ B a→ Σ A B

Andreas Abel (joint work in progress with Gabriel Scherer) (LMU)Shape Irrelevance AIM XIV 9 / 18



Typing rules for irrelevance and shape-irrelevance

Function classifier p ::= . irrelevant function
| ˆ shape-irrelevant function
| ε ordinary (relevant) function

“Going types” p⊕ turns “.” into “ˆ”.

Γ ` A : Set Γ, p⊕(x :A) ` B : Set

Γ ` p(x :A)→ B : Set

Γ, p(x :A) ` t : B

Γ ` λxt : p(x :A)→ B

(x :A) ∈ Γ

Γ ` x : A

Γ ` r : p(x :A)→ B Γp ` s : A

Γ ` r s : B[s/x ]

Γ ` t : A Γ⊕ ` A = B : Set

Γ ` t : B

Γp makes assumptions available that are at least as relevant as p.

Andreas Abel (joint work in progress with Gabriel Scherer) (LMU)Shape Irrelevance AIM XIV 10 / 18



Examples

Type of nil : .(A :Set)→ List A well-formed

List : ˆ(A :Set)→ Set A : Set ` A : Set

ˆ(A :Set) ` List A

` .(A :Set)→ List A

Irrelevantly quantified variables my appear shape-irrelevantly in
codomain. Then, List’s argument is shape-irrelevant.

Universe-polymorphic lists UList : .(i :Level)→ ˆ(A :Set i)→ Set i .

Set : ˆ(i :Level)→ Set (i + 1) i :Level ` i : Level

ˆ(i :Level) ` Set i

ˆ(i :Level) ` Set i → Set i

` .(i :Level)→ Set i → Set i

Andreas Abel (joint work in progress with Gabriel Scherer) (LMU)Shape Irrelevance AIM XIV 11 / 18



Shape-directed equality

Equality judgement Γ ` t = t ′ : A relaxed: A is the common shape of
t and t ′.

Γ ` t = t ′ : .(x :A)→ B

Γ ` t u = t ′ u′ : B[u/x ]

Note: Γ, ˆ(x :A) ` B, hence B[u/x ] and B[u′/x ] same shape.

Γ ` t = t ′ : ˆ(x :A)→ B Γˆ ` u = u′ : A

Γ ` t u = t ′ u′ : B[u/x ]

Andreas Abel (joint work in progress with Gabriel Scherer) (LMU)Shape Irrelevance AIM XIV 12 / 18



Unification

Unification finds parameters.

nil 1 ⇒ List 1
1 = A

List 1 = List A
nil 1 ⇔ List A

Irrelevant parameters are not uniquely determined

nil 1 2 ⇒ UList 1 2
2 = A : Set i no eq. for 1

UList 1 2 = UList i A
nil 1 2 ⇔ UList i A

Andreas Abel (joint work in progress with Gabriel Scherer) (LMU)Shape Irrelevance AIM XIV 13 / 18



Related Work

1 Proof Irrelevance in LF (Pfenning, Reed)

2 Bracket Types (Awodey, Bauer)

3 Uniform quantification (Berger, Schwichtenberg)

4 Program extraction in Coq (Paulin-Mohring, Letouzey)

5 Implicit Calculus of Constructions (Miquel, Barras, Bernardo)

6 Erasure Pure Type Systems (Mishra-Linger, Sheard)

7 Lightning (Brady, McBride)

Andreas Abel (joint work in progress with Gabriel Scherer) (LMU)Shape Irrelevance AIM XIV 14 / 18


	Conclusions

