On Shape Irrelevance and Polymorphism in Type Theory

Andreas Abel
(joint work in progress with Gabriel Scherer)

Department of Computer Science
Ludwig-Maximilians-University Munich

14th Agda Intensive Meeting (AIM XIV)
Shonan Village Center
near Tokyo, Japan
9 September 2011

Andreas Abel (joint work in progress with G Shape Irrelevance AIM XIV

1/18



Type systems for computational irrelevance

@ Separate computationally relevant parts from “administrative”
(computationally irrelevant) parts.
@ Used for:
© Extracting programs
@ Strengthening equational theory (ignore irrelevant parts during equality
checking)
© Pruning terms, reducing memory footprint
@ Kinds of irrelevance:
@ Proof arguments (like x # 0 in division)
@ Type arguments (like A in append A xs ys)
© ‘“Forced” arguments (like n in vcons A n x xs)
@ Termination evidence: universe levels and sizes

Andreas Abel (joint work in progress with Gg Shape Irrelevance AIM XIV 2/18



|
The Agda Pipeline

Frontend Pars!ng
Scope checking

Abstract syntax
Type reconstruction
Type checker [} Internal erasure
Termination inference

Internal syntax
Extraction
Backend : Optimizations
Code generation

Andreas Abel (joint work in progress with G Shape Irrelevance AIM XIV 3/18



Internal Erasure vs. Extraction

Erasure

Extraction

Free vars yes (terms) no (programs)
Evaluation under binder funs = black boxes
Equality intensional (/n), decid. | observational, undecid.

Empty types

hypothetical inhabitants

no closed inhabitants

Identity proofs

relevant

irrelevant (= refl)

Accessibility proofs

relevant (termination!)

irrelevant

Extraction can erase all inhabitants of propositional types, i.e., with at
most one closed inhabitant.

Andreas Abel (joint work in progress with G Shape lIrrelevance

AIM XIV

4/18



N
ICC* and EPTS

@ Barras and Bernardo (FoSSaCS 2008) and Sheard and Mishra-Linger
(FoSSaCSs 2008)

M= A: Set I, x:AF B:Set
[+ [x:A] — B : Set

M [x:AlFt:B
= Axt:[x:Al— B

no rule for [x: Al € T

Me=r:[x:Al— B M rs:A
[Frs:B[s/x]

o Resurrection (—)% (Pfenning 2001) turns irrelevant assumptions
[x:A] into relevant ones (x:A).
@ lrrelevant function argument can be relevant in function codomain.
MMx.x :[A:Set] - A=A

Andreas Abel (joint work in progress with Gg Shape Irrelevance AIM XIV 5/18




Equality in ICC*

Equality in ICC* is untyped (37 after erasure.

Does not scale to typed n-equality with unit type T in the presence of
large eliminations.

Given h: [A: Set] — (A — A) — Bool, then?

h (N — N) (AxA\y.xy)=h T (Ax.()) : Bool

Algorithm would check heterogeneous A\y.xy N — N =():T?
But then t: A= (): T =1t': A, inconsistent!

Andreas Abel (joint work in progress with Gg Shape Irrelevance AIM XIV 6 /18



Irrelevance in Agda 2.2.10

@ Irrelevant function arguments need to be irrelevant in codomain.

= A:Set M, .(x:A) - B:Set
I+ .(x:A) — B: Set

Type .(A: Set) — A — A ill-formed.

Equality is typed (37, ignoring irrelevant arguments.

No need for heterogeneous equality.

Andreas Abel (joint work in progress with G Shape Irrelevance AIM XIV 7 /18



Shape-directed 7-equality

n-laws are applied according to the type shape: function type, record
type (e.g., unit type), other type.

Exact type not necessary.

Exploited by Harper/Pfenning’s simply-typed equality check for LF.

More subtle with large eliminations!

T : Bool — Set
Ttrue = T
Tfalse = N—N

Shape of T u depends on value of w.

Andreas Abel (joint work in progress with Gg Shape Irrelevance AIM XIV 8 /18



Shape-Irrelevance

@ A function is shape-irrelevant if the value of the argument does not
influence the (deep) shape of the result.

@ Prime example: Data type constructors.

List : "(A:Set) — Set
Vec : "(A:Set) — "(n:N) — Set
Y : "(A:Set) - "(B:A— Set) — Set

@ Parameters in data constructors and projections are irrelevant!

nil : .(A:Set) — List A
veons : .(A:Set) — .(n:N) — A — VecAn — Vec A (sucn)
L . .(A:Set) —» .(B:A— Set) — (a:A) - Ba— X AB

Andreas Abel (joint work in progress with Gg

Shape Irrelevance AIM XIV 9 /18



Typing rules for irrelevance and shape-irrelevance

= irrelevant function
| " shape-irrelevant function
| ¢ ordinary (relevant) function

@ Function classifier p

unn

e “Going types” p® turns “." into
I A:Set [, p®(x:A) F B : Set Mp(x:A) Ft:B
= p(x:A) — B : Set = Axt: p(x:A) — B

(x:A) el r=r:p(x:A)— B P rEs:A
Fr=x:A I+rs:B[s/x]

M-t A M - A=B:Set
M-t B

@ [P makes assumptions available that are at least as relevant as p.

Andreas Abel (joint work in progress with Gz Shape lIrrelevance AIM XIV 10 / 18



Examples

e Type of nil : .(A:Set) — List A well-formed
List : "(A:Set) — Set A:Set - A: Set
“(A:Set) I- List A
F.(A:Set) — List A

@ Irrelevantly quantified variables my appear shape-irrelevantly in
codomain. Then, List's argument is shape-irrelevant.
@ Universe-polymorphic lists UList : .(i:Level) — “(A:Set /) — Set .
Set : “(i:Level) — Set (i + 1) i:Level Fi: Level
“(i:Level) F Set i
“(i:Level) - Seti — Seti
- .(i:Level) — Set i — Set i

Andreas Abel (joint work in progress with Gg Shape Irrelevance AIM XIV 11 /18



Shape-directed equality

e Equality judgement I F t =t : A relaxed: A is the common shape of
t and t'.

Frect=t:.(x:A)— B
+tu=tuv:Blu/x]|

@ Note: I', "(x:A) - B, hence B[u/x| and B[u'/x] same shape.

Frect=t:"(x:A)— B Mhu=0u:A
tu=tuv:Blu/x]|

Andreas Abel (joint work in progress with Gg Shape Irrelevance AIM XIV 12 /18



Unification

@ Unification finds parameters.

1=A

List_ 1 = ListA
nil .1 &= List A

nil .1 = List _1

@ lrrelevant parameters are not uniquely determined

2=A:Seti no eq. for_1

il 1.2 = UList 1.2
n = Ulist UList 1 2 — UListi A
nil .1 2 &= UList/i A

Andreas Abel (joint work in progress with Gg Shape Irrelevance AIM XIV 13 /18



Related Work

Proof Irrelevance in LF (Pfenning, Reed)

Bracket Types (Awodey, Bauer)

Uniform quantification (Berger, Schwichtenberg)

Program extraction in Coq (Paulin-Mohring, Letouzey)
Implicit Calculus of Constructions (Miquel, Barras, Bernardo)
Erasure Pure Type Systems (Mishra-Linger, Sheard)
Lightning (Brady, McBride)

000000

Andreas Abel (joint work in progress with G Shape Irrelevance AIM XIV 14 /18



	Conclusions

