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Type systems for computational irrelevance

Separate computationally relevant parts from “administrative”
(computationally irrelevant) parts.

Used for:
1 Extracting programs
2 Strengthening equational theory (ignore irrelevant parts during equality

checking)
3 Pruning terms, reducing memory footprint

Kinds of irrelevance:
1 Proof arguments (like x 6= 0 in division)
2 Type arguments (like A in append A xs ys)
3 “Forced” arguments (like n in vcons A n x xs)
4 Termination evidence: universe levels and sizes
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The Agda Pipeline

Frontend
...

Parsing
Scope checking

Abstract syntax

Type checker ⇓
Type reconstruction

Internal erasure
Termination inference

Internal syntax

Backend
...

Extraction
Optimizations

Code generation
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Internal Erasure vs. Extraction

Erasure Extraction

Free vars yes (terms) no (programs)

Evaluation under binder funs = black boxes

Equality intensional (βη), decid. observational, undecid.

Empty types hypothetical inhabitants no closed inhabitants

Identity proofs relevant irrelevant (= refl)

Accessibility proofs relevant (termination!) irrelevant

Extraction can erase all inhabitants of propositional types, i. e., with at
most one closed inhabitant.
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ICC∗ and EPTS

Barras and Bernardo (FoSSaCS 2008) and Sheard and Mishra-Linger
(FoSSaCS 2008)

Γ ` A : Set Γ, x :A ` B : Set

Γ ` [x :A]→ B : Set

no rule for [x :A] ∈ Γ
Γ, [x :A] ` t : B

Γ ` λxt : [x :A]→ B

Γ ` r : [x :A]→ B Γ⊕ ` s : A

Γ ` r s : B[s/x ]

Resurrection (−)⊕ (Pfenning 2001) turns irrelevant assumptions
[x :A] into relevant ones (x :A).
Irrelevant function argument can be relevant in function codomain.

λAλx .x : [A : Set]→ A→ A
Andreas Abel (joint work in progress with Gabriel Scherer) (LMU)Shape Irrelevance AIM XIV 5 / 18



Equality in ICC∗

Equality in ICC∗ is untyped βη after erasure.

Does not scale to typed η-equality with unit type > in the presence of
large eliminations.

Given h : [A : Set]→ (A→ A)→ Bool, then?

h (N→ N) (λxλy . x y) = h > (λx . ()) : Bool

Algorithm would check heterogeneous λy . x y : N→ N = () : >?

But then t : A = () : > = t ′ : A′, inconsistent!

Andreas Abel (joint work in progress with Gabriel Scherer) (LMU)Shape Irrelevance AIM XIV 6 / 18



Irrelevance in Agda 2.2.10

Irrelevant function arguments need to be irrelevant in codomain.

Γ ` A : Set Γ, .(x :A) ` B : Set

Γ ` .(x :A)→ B : Set

Type .(A : Set)→ A→ A ill-formed.

Equality is typed βη, ignoring irrelevant arguments.

No need for heterogeneous equality.
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Shape-directed η-equality

η-laws are applied according to the type shape: function type, record
type (e.g., unit type), other type.

Exact type not necessary.

Exploited by Harper/Pfenning’s simply-typed equality check for LF.

More subtle with large eliminations!

T : Bool→ Set
T true = >
T false = N→ N

Shape of T u depends on value of u.
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Shape-Irrelevance

A function is shape-irrelevant if the value of the argument does not
influence the (deep) shape of the result.

Prime example: Data type constructors.

List : ˆ(A :Set)→ Set
Vec : ˆ(A :Set)→ ˆ(n :N)→ Set
Σ : ˆ(A :Set)→ ˆ(B :A→ Set)→ Set

Parameters in data constructors and projections are irrelevant!

nil : .(A :Set)→ List A
vcons : .(A :Set)→ .(n :N)→ A→ Vec A n→ Vec A (suc n)
, : .(A :Set)→ .(B :A→ Set)→ (a :A)→ B a→ Σ A B
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Typing rules for irrelevance and shape-irrelevance

Function classifier p ::= . irrelevant function
| ˆ shape-irrelevant function
| ε ordinary (relevant) function

“Going types” p⊕ turns “.” into “ˆ”.

Γ ` A : Set Γ, p⊕(x :A) ` B : Set

Γ ` p(x :A)→ B : Set

Γ, p(x :A) ` t : B

Γ ` λxt : p(x :A)→ B

(x :A) ∈ Γ

Γ ` x : A

Γ ` r : p(x :A)→ B Γp ` s : A

Γ ` r s : B[s/x ]

Γ ` t : A Γ⊕ ` A = B : Set

Γ ` t : B

Γp makes assumptions available that are at least as relevant as p.
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Examples

Type of nil : .(A :Set)→ List A well-formed

List : ˆ(A :Set)→ Set A : Set ` A : Set

ˆ(A :Set) ` List A

` .(A :Set)→ List A

Irrelevantly quantified variables my appear shape-irrelevantly in
codomain. Then, List’s argument is shape-irrelevant.

Universe-polymorphic lists UList : .(i :Level)→ ˆ(A :Set i)→ Set i .

Set : ˆ(i :Level)→ Set (i + 1) i :Level ` i : Level

ˆ(i :Level) ` Set i

ˆ(i :Level) ` Set i → Set i

` .(i :Level)→ Set i → Set i
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Shape-directed equality

Equality judgement Γ ` t = t ′ : A relaxed: A is the common shape of
t and t ′.

Γ ` t = t ′ : .(x :A)→ B

Γ ` t u = t ′ u′ : B[u/x ]

Note: Γ, ˆ(x :A) ` B, hence B[u/x ] and B[u′/x ] same shape.

Γ ` t = t ′ : ˆ(x :A)→ B Γˆ ` u = u′ : A

Γ ` t u = t ′ u′ : B[u/x ]
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Unification

Unification finds parameters.

nil 1 ⇒ List 1
1 = A

List 1 = List A
nil 1 ⇔ List A

Irrelevant parameters are not uniquely determined

nil 1 2 ⇒ UList 1 2
2 = A : Set i no eq. for 1

UList 1 2 = UList i A
nil 1 2 ⇔ UList i A
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