Set-based Operators and Fixed-Points by Support

Andreas Abel

April 22, 2004

In Abel and Altenkirch's article A Predicative Analysis of Structural Recursion [AA02] one finds on page 34 a definition of the semantics $[\![\sigma]\!]$ of a strictly positive inductive type σ . This definition (5.1) is itself a strictly-positive inductive definition on the meta-level. In the following we exhibit its correspondence to the algorithmic construction of a least fixed-point as found in Pierce's book Types and Programming Languages [Pie02] on pages 290–295.

First we give a simplified version of the definition restricted to a single type variable.

Definition 5.1. For $\sigma \in Ty(X)$ and a closed type τ let

$$\llbracket \sigma \rrbracket : \mathcal{P} \left(\operatorname{Val}^{\tau} \right) \to \mathcal{P} \left(\operatorname{Val}^{\sigma(\tau)} \right)$$

be a monotone operator with a urelement relation

$$\mathcal{U}^{\sigma} \subseteq \operatorname{Val}^{\tau} \times \operatorname{Val}^{\sigma(\tau)}$$

such that for all $v \in \operatorname{Val}^{\sigma(\tau)}$ and $u \in \operatorname{Val}^{\tau}$:

$$\frac{v \in \llbracket \sigma \rrbracket(V) \qquad u \ \mathcal{U}^{\sigma} \ v}{u \in V} (\operatorname{sb1}) \qquad \frac{v \in \llbracket \sigma \rrbracket(\operatorname{Val}^{\tau})}{v \in \llbracket \sigma \rrbracket(\mathcal{U}^{\sigma}(v))} (\operatorname{sb2})$$

where $\mathcal{U}^{\sigma}(v) = \{w \mid w \mathcal{U}^{\sigma}v\}$. The interpretation of μ -types is then obtained by

$$\frac{v \in \llbracket \sigma \rrbracket(\operatorname{Val}^{\mu X.\sigma}) \quad \forall u. \ u \ \mathcal{U}^{\sigma} \ v \to u \in \llbracket \mu X.\sigma \rrbracket}{\operatorname{fold}(v) \in \llbracket \mu X.\sigma \rrbracket}$$

Pierce (page 290) assumes a universe U and an operator $F : \mathcal{P}(U) \to \mathcal{P}(U)$ and calls a set X generating for x if $x \in F(X)$. The support $support_F(x)$ of x is the least generating set for x if there exists one, otherwise undefined. Consider the following correspondences:

Abel, Altenkirch	Pierce
Val	U
$\llbracket \sigma \rrbracket$	F
\mathcal{U}^{σ}	$support_F$

Then (sb2) expresses that $\mathcal{U}^{\sigma}(v)$ is a generating set for v if v is $\llbracket \sigma \rrbracket$ -generateable. Property (sb1) can be rewritten as if $v \in \llbracket \sigma \rrbracket(V)$ then $\mathcal{U}^{\sigma}(v) \subseteq V$, expressing the second condition on the support of v that it is the least generating set for v. Hence, for $\llbracket \sigma \rrbracket$ -generateable elements v, it holds that $\mathcal{U}^{\sigma}(v) = support_{\llbracket \sigma \rrbracket(v)}$.

Extending the urelement relation to sets,

$$\mathcal{U}^{\sigma}(V) = \bigcup_{v \in V} \mathcal{U}^{\sigma}(v),$$

property (sb1) becomes $W \subseteq [\![\sigma]\!](V)$ implies $\mathcal{U}^{\sigma}(W) \subseteq V$, exhibiting a Galois connection. This corresponds to Pierce's Lemma 21.5.7 (page 293). Finally, in Exercise 21.5.13 Pierce gives a partial algorithm to test whether a set X is contained in the least-fixed point μF . The logical reading of the algorithm is

 $X \subseteq \mu F$ iff X empty or $(support_F(X) \text{ defined and } support_F(X) \subseteq \mu F)$

Abel and Altenkirch's rule for introducing elements of an inductive type, generalized to sets reads

$$\frac{V \subseteq \llbracket \sigma \rrbracket(\operatorname{Val}^{\mu X.\sigma}) \qquad \mathcal{U}^{\sigma}(V) \subseteq \llbracket \mu X.\sigma \rrbracket}{\operatorname{fold} V \subseteq \llbracket \mu X.\sigma \rrbracket}.$$

The first condition states that all elements of V are $\llbracket \sigma \rrbracket$ -generateable which means that the support of V is defined. Modulo the folding operation, which comes from iso-recursive types, the rule now exactly expresses Pierce's algorithm.

References

- [AA02] Andreas Abel and Thorsten Altenkirch. A predicative analysis of structural recursion. Journal of Functional Programming, 12(1):1–41, January 2002.
- [Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.