

Generic Log and Performance Data
from Customer Installations
Collection, Transmission, and Processing of Unite Communications
from Ascom’s Unite System at Customer’s Site
Master’s thesis in Computer Systems and Networks

ALAA ALNUWEIRI
JEMIMA MASAMU

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden 2016

Master’s thesis 2016

Generic Log and Performance Data From
Customer Installations

Collection, Transmission, and Processing of Unite Communications
from Ascom’s Unite System at Customer’s Site

ALAA ALNUWEIRI

JEMIMA MASAMU

Department of Computer Science and Engineering
Division of Computer Networks and Systems

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden 2016

Generic Log and Performance Data from Customer Installations
Collection, Transmission and Processing of Unite Communications from
Ascom’s Unite System at Customer’s Site

ALAA ALNUWEIRI
JEMIMA MASAMU

© ALAA ALNUWEIRI & JEMIMA MASAMU, 2016.

Supervisor: Andreas Abel, Department of Computer Science and Engineering
Supervisor: Mats Andreasen, Ascom Wireless Solutions
Examiner: K V S Prasad, Department of Computer Science and Engineering

Master’s Thesis 2016
Department of Computer Science and Engineering
Division of Networks and Systems
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Illustration of our solution to capture the Unite System communications.
This solution captures information from the customer’s site, then transfers the in-
formation via Internet for storage in a database located at Ascom R&D.

Typeset in LATEX
Gothenburg, Sweden 2016

iv

Generic Log and Performance Data from Customer Installations
Collection, Transmission and Processing of Unite Communications from
Ascom’s Unite System at Customer’s Site
ALAA ALNUWEIRI
JEMIMA MASAMU
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Ascom Wireless Solutions has been developing on-site wireless communication so-
lutions to customers all over the world. It does this by providing customers with
solutions to support and optimize their mission-critical processes. The information
generated from these solutions has been used by Ascom in developing their prod-
ucts. But, Ascom faces a challenge on how to gather this information as they use
a method that is time-consuming, requires customer’s involvement, and imposes se-
curity concerns to their network.

The main aim of this thesis is to get a better understanding of the Unite System
which is being used differently by different customers. The understanding of Unite
System involves capturing of large amounts of data (big data) generated from cus-
tomer’s site. The captured information assists in further system development such
as database processing. Furthermore, Ascom can use it to perform analysis and
troubleshoot different faults or errors identified in Ascom’s systems.

In this project, we used Ascom’s special tool known as a Buslogger which was con-
figured and automated on an embedded PC to capture Unite communications from
customer’s site. To present Ascom with captured information, we tested both FTP
applications and cloud storage services for transmission, and relational and NoSQL
database solutions for storage. We later selected Tresorit cloud service for trans-
ferring Unite communications due to its compatibility with HIPAA standards and
ability to support end-to-end Encryption. Once the transferred files reached Ascom
R&D, we stored them in Oracle database. Among tested solutions, Oracle database
is the only relational database that supports XML datatype and is easier to manage
when compared to NoSQL.

Keywords: Big data, Unite (Unified IP and Telecommunication Environment),
FTP, SQL, Encryption, Privacy, Cloud.

v

Acknowledgements
We are taking this chance to express our sincere gratitude to our supervisor An-
dreas Abel and examiner K.V.S. Prasad, of the Department of Computer Science
and Engineering, Chalmers University of Technology, for their valuable supervision
and guidance throughout the whole study.

Special appreciation is extended to our co-supervisor Mats Andreasen of Ascom
Wireless Solutions, for his valuable assistance, encouragement, and guidance through-
out the project.

Our sincere gratitude to Ascom Wireless Solutions, Gothenburg office for their facil-
itation in providing office space, data and a great team of professionals who assisted
us at every chance they got.

Also, we are profoundly grateful to the Swedish Institute for awarding us full-time
scholarships to pursue our master degrees.

Last but not least, we would like to thank our families and friends in Palestine,
Tanzania, Syria, and Sweden for all the love and support.

Alaa Alnuweiri, Gothenburg, September 2016
Jemima Masamu, Gothenburg, September 2016

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1
1.2 Project Objectives . 2
1.3 Report Structure . 3

2 The Unite System 5
2.1 Unite Protocol . 6
2.2 Unite Connectivity Manager . 7

3 Related Work 9
3.1 Big Data Transfer Protocols . 9
3.2 Big Data Security in Globus . 9
3.3 Cryptographic Cloud Storage . 10
3.4 Relational and NoSQL Database . 10

4 System Architecture and Design 13
4.1 System Architecture . 13

4.1.1 Physical View . 13
4.1.2 Information Flow . 14

4.2 System Design . 15
4.2.1 Client-Server Architecture . 15
4.2.2 Embedded PC . 15

4.3 File Transfer Protocol . 16
4.4 Cloud Storage Services . 17

5 Specifications 19
5.1 Use Case Diagrams . 20

5.1.1 Nurse . 20
5.1.2 Buslogger . 22
5.1.3 System Administrator . 23

5.2 Requirements . 23
5.2.1 Functional Requirements . 23
5.2.2 Non-Functional Requirements 25

ix

Chapter Contents Contents

6 Implementation 27
6.1 Data Capturing from Unite CM by Buslogger 27
6.2 Transmission of Unite Communications 27

6.2.1 Online Cloud Services . 27
6.2.1.1 Globus . 27
6.2.1.2 Tresorit . 28
6.2.1.3 Google Drive . 31
6.2.1.4 Dropbox . 32

6.2.2 FTP . 33
6.2.2.1 FileZilla . 33
6.2.2.2 WinSCP . 34

6.2.3 Physical Delivery . 34
6.3 Storage of Communication Information 35

6.3.1 Relational Database . 35
6.3.1.1 Oracle Database . 35
6.3.1.2 Microsoft SQL Server 2014 36
6.3.1.3 PostgreSQL . 36

6.3.2 Non Relational Database . 38
6.3.2.1 Neo4j . 38

6.4 Proof Of Concept (POC) . 39
6.4.1 PoC Description . 40
6.4.2 Testing PoC . 43

7 Discussion 45

8 Conclusion and Future Work 47

9 Bibliographic Notes 49

A Appendix 1 53
A.1 AutoIt: Script . 53

A.1.1 Script for Starting Buslogger 53
A.1.2 Script for Stopping Buslogger 54

A.2 Compression Java Program . 54
A.3 Decompression Java Program . 60
A.4 Storage Java Program . 64

x

List of Figures

2.1 Logical structure of Unite System . 5
2.2 Unite System Illustration © Ascom 7

4.1 Physical view . 13
4.2 Information flow . 14
4.3 Client-Server architecture . 15
4.4 Passive FTP: Client sets both port connections to server 16
4.5 Active FTP: Client sets command port, Server sets data port 17
4.6 Cloud storage architecture . 18

5.1 Nurse - Use case diagram . 20
5.2 Buslogger - Use case diagram . 22
5.3 System administrator - Use case diagram 23

6.1 Tresorit security of file uploading. 29
6.2 Traditional cloud storage security [22]. 30
6.3 Tresorit end to end encryption and decryption [22]. 30
6.4 PostGreSQL Architecture . 37
6.5 Class diagram showing implementation of proof of concept 39

xi

Chapter List of Figures List of Figures

xii

List of Tables

5.1 Actors and use cases involved in Unite System 19

6.1 Globus globally accessible data environment (GLADE) 28
6.2 Google drive storage capacity & cost 32
6.3 PostGreSQL size limit . 37

xiii

Chapter List of Tables List of Tables

xiv

1
Introduction

Big data is being used in most of the IT sectors as a means of running analysis on
large data sets through high-performance computing (HPC) systems. There are key
enablers that have contributed to the growth of big data which include the increase
of storage capacities, availability of data, and the increase of processing power. The
big data storage is used to handle enormous amounts of data, keep scaling to keep
up with growth, and provide the input/output operations per second (IOPS) nec-
essary to deliver data to analytics tools [10]. Most of the big data practitioners
e.g., Google or Amazon, run hyper-scale computing environments such as servers
with direct-attached storage. Although big data storage has been implemented in
several IT sectors, the challenge remains as to: How do you capture, store, access
and analyze enough data to gather those insights and justify the resources that have
been committed to the task?

Big data can be characterized by either volume, velocity (e.g., data streaming) or
a variety in terms of structured or unstructured, meaning data with predefined
data schema/model/structure or data that does not have a well-defined data model
respectively. Due to advancements in technology, volume or size of data can range
from Gigabytes to Terabytes, and even more. The velocity refers to the speed at
which data is generated since different applications have different speed requirements
when generating data. Additionally, variety refers to different formats in which
data is generated or stored, where unstructured data is widely generated as opposed
to structured data. Such data can be derived from sources such as enterprises,
transactional systems, and social media [19].

1.1 Background
The modern company environment uses various communication technologies and
devices to communicate and collaborate with various stakeholders. The communi-
cation infrastructure has changed from the traditional wired local area network to
embrace the emerging wireless technologies, for example, Wi-Fi. Additionally, the
devices used to connect to the network are not limited to company computers only
but to more devices such as smartphones, tablets, and laptops.

Ascom Wireless Solutions develops on-site wireless communication solutions to cus-
tomers all over the world, by providing them with solutions to support and opti-
mize their mission-critical processes. Additionally, Ascom Wireless Solutions uses a

1

Chapter 1. Introduction 1.2. Project Objectives

large amount of data (big data) generated from customer’s site in order to develop
their products. The collected information also aids in activities such as performing
analysis or troubleshooting different faults or errors identified in Ascom’s systems.
However, there is a challenge on how to gather big data which is currently used at
the customer system, and security concerns that may arise in the process. Addition-
ally, Ascom has a vast geographical distribution with a large number of installed
systems, which presents a challenge in understanding the use of their products and
solutions since the installed systems are being used in many different ways.

1.2 Project Objectives
The main aim of this thesis is to get a better understanding of the Unite System
since it is being used differently by different customers. This helped in obtaining
information that assists in further system development such as database processing
and analysis. Understanding of Unite System involved investigating and evaluating
different approaches for collecting large amounts of data (big data) using TCP/UDP
IP-based communications from customer’s site. The primary beneficiary in our case
is Ascom, our industrial partner, who will use the solution to better understand
patterns in which its customers use Unite Systems. In terms of academia, we con-
tributed by introducing an information model that can be used by other researchers
in order to duplicate or extend the work of this project. The model assists in ob-
taining information about different events, such as the times the alarm went off and
messages sent and acted upon.

We achieved our goals by building an application and deploying it on the customer’s
site. The application kept track of the customer’s activity in Unite System and log
them. The log data was sent to a server located at Ascom in order to further ana-
lyze it. We studied different alternatives to implement and deploy the solution. We
did this by having an embedded application installed on the embedded PC located
at customer’s site so as to solve the business problem with capturing big data as
mentioned in the introduction.

We investigated different alternatives for transforming and storing the collected data,
to facilitate analyzing it efficiently. Additionally, we identified metrics for measuring
the system’s performance.

When implementing the solution, we took into consideration the very important
data security aspects. These include avoiding intrusion during data transmission,
compliance with the customer’s security regulations, and compliance with Health In-
surance Portability and Accountability Act (HIPAA). HIPAA outlines the security
standards to protect the created, received, maintained, and electronically trans-
mitted data in the health domain. This implies that the transmitted data being
encrypted and accessed by authorized persons only.

Achieving the project goal provided Ascom with the required information for fur-
ther studies and researches in order to improve the working environment in hospitals.

2

1.3. Report Structure Chapter 1. Introduction

That includes, but are not limited to, reducing nurse stress level, giving more nurse’s
time for the patient, and improving the work quality by reducing the risk for er-
ror. Moreover, it allows further studies by Ascom to improve the Unite System
functionality by using the information model to identify bottlenecks and missed
messages/responses and to detect errors.

1.3 Report Structure
The main structure of the report starts from Chapter 1 which introduces the back-
ground problem then details on general objectives of this thesis work. Chapter 2
gives an introduction to Unite System including its logical structure and protocols,
and Unite Connectivity Manager. Furthermore, Chapter 3 surveys related works
for secure file transfer protocols and database solutions. Chapter 4 highlights the
architecture and design of our system. The specifications are given in Chapter 5 and
include use case diagrams and their descriptions. Chapter 6 describes the method-
ologies used in capturing, transferring, and storing Unite communications, and the
Proof of Concept. We finalize with the discussion of our findings in Chapter 7,
concluding our findings and suggesting what to be done in the future in Chapter 8.

3

Chapter 1. Introduction 1.3. Report Structure

4

2
The Unite System

Ascom Unite System is the communication platform that links Ascom messaging
system with mission-critical work processes and tasks. This system is designed to
operate with high-performance, flexible and reliable communication. The Unite Sys-
tem communication is based on sending and receiving information in the form of
XML-based messages. In addition, Ascom Unite system has a centralized web-based
Graphical User Interface (GUI) for updating and configuring devices. The Unite Sys-
tem can be built by either of the two central modules: Unite Connectivity Manager
(Unite CM) which is a Linux embedded server platform or Unite Communication
Server (Unite CS). A Windows’ server known as Unite Application Manager (Unite
AM) provides an administration interface which facilitates configuration, manage-
ment, and daily operations to customers. Unite AM works in combination with
Unite CM and other Unite modules e.g., Mobile Monitoring Gateway (MMG), tele-
care IP System Manager (NISM2), and Unite Connect for Nurse Call module. Also,
the Unite System has a platform which consists of following three logical structures
as shown in Figure 2.1:

Figure 2.1: Logical structure of Unite System

5

Chapter 2. The Unite System 2.1. Unite Protocol

• Customer application - These are applications running on the customer’s site
on Ascom Unite AM in a Windows server environment. Unite AM provides
administration interface, capacity enhancing functionality, and throughput for
the system. An example of these applications includes Ascom Unite Admin for
the management of users and devices, Ascom Unite Assign for staff schedul-
ing and assignment, Ascom Unite View for overviewing incoming events, and
Ascom Unite Alarm Agent for sending out and coordinating emergency alerts.

• System services - Example of service handled in the system is message routing
which also involves message diversion. Other services are system supervision
in which proper handling of messages is ensured by Unite CM, activity logging
for storing different activities e.g., messaging and alarms in the Unite System,
and address resolving.

• Carrier systems - Unite CM is used as an interface to gain access to the carrier
systems. It handles data bearer dependent communication with wireless hand-
sets, input/output hardware and other systems. There is a range of different
carrier systems such as Ascom paging system, Internet Protocol - Digital En-
hanced Cordless Telecommunications (IP-DECT), Wireless Fidelity (WiFi),
and Global System for Mobile communication (3G/GSM).

2.1 Unite Protocol

The Unite System is built up by modules which interact as one system using Unite
protocol. The Unite protocol is an encrypted proprietary protocol that is built in
the following three layers on top of TCP/IP:
(i) Unite Transport Protocol (UTP): Is a low-level transport layer protocol that

enables a secure encrypted transmission channel between Unite components.
It can be used as a transport protocol for message delivery in the Unite System.

(ii) Unite Service Delivery (USD): Is a high transport layer that handles the ad-
dressing and delivery of messages. This layer is located between Unite Transfer
Protocol (UTP) and Unite Service Protocol (USP). Also, it can be seen as a
mobility layer since it contains the location of the user which is not always
static. Additionally, USD provides mobility to users and services and helps to
route messages to the correct destination.

(iii) Unite Service Protocol (USP): This is an application layer that uses transport
protocol for message delivery and defines the exchange of data between appli-
cations in the Unite System e.g., Unite services and their contents. Example
of services defined by USP include:

• Sending messages to users and event communication e.g., interactive mes-
sages, paging or input events.

• System internal communications e.g., error handling, data updates or
system control.

• Supervising communications and service registration.

6

2.2. Unite Connectivity Manager Chapter 2. The Unite System

2.2 Unite Connectivity Manager
Unite CM is used for delivering messages, data, and critical alarms to mobile staff
members regardless of the type of device used (e.g., Ascom smartphones and IP-
DECT handsets) and as an interface to different carrier systems such as VoWiFi and
paging system. As shown in Figure 2.2, Unite CM connects different information
systems e.g., Patient Monitoring System, by improving workflow through delivering
of messages or events to staff. Also, the Unite CM supervises the Unite system so
as to ensure safety during message handling. A good example being the delivery
of the status log to the fault handler application in the Unite CM in the event of
faults or when an equipment/module is lost in the system. In addition, the Unite
CM can store collected logs consisting of different activities in the Unite System for
troubleshooting or future analysis.SYSTEM PERSPECTIVE

Unite Connect

Local network

Unite Connectivity

Manager

Unite Assign

Unite Admin Unite View

Smart Devices/Ascom Myco

Fixed Display Devices

Paging

WiFi

IP-DECT

GSM/3G/4G

L

A

N

Ascom Pagers

Ascom Myco

Ascom Handsets

Clinical Systems
Nurse Call

Patient Monitor

RTLS

EHR

Unite AM

Mobile DevicesCommunication InfrastructureUnite Messaging Suite®Clinical Systems

Figure 2.2: Unite System Illustration © Ascom

Furthermore, Unite CM offers other services such as message routing through the
use of number plan tables and centralized management of devices used in the system
i.e. configuration and software upgrading. In message routing, Unite Name Server
(UNS) is used to contain the number plan tables which are used for translating
unique call IDs used by users and application in the system to their destination ad-
dresses. The number plan assists in forwarding or diverting a message to a user/sys-
tem or to another user/system respectively when the origin user is absent or out of
range.

7

Chapter 2. The Unite System 2.2. Unite Connectivity Manager

8

3
Related Work

3.1 Big Data Transfer Protocols
Se-young et al. [9] presented a characterization study of big data transfer protocols
on a long-haul network. In this research the big data transfer protocols were catego-
rized into TCP-based protocols which utilize the existing TCP congestion avoidance
algorithms and UDP-based protocols that depend on the UDP congestion avoid-
ance algorithms. In addition, three open-source protocols; GridFTP, FDT, and
UDT were used in the analysis of big data transfer. GridFTP provides enhance-
ments such as data striping, TCP socket buffer optimization, parallel data transfer
and extensions to File Transfer Protocols (FTP). Fast Data Transfer (FDT) uses
TCP as its transport protocol and provides multiple I/O threads and platform inde-
pendent implementation. UDP-based Data Transfer (UDT) provides TCP-friendly
congestion control on top of UDP and uses De-creasing Increases Additive Increase
Multiplicative Decrease (DAIMD) and rate control to achieve high throughput over
long-haul networks.

In the experiments performed, round trip time (RTT) was used to investigate the
effect of congestion caused by the protocols building up queues in routers along the
path, which increased as the data flow increased. It was later found that using data
flow, GridFTP had the fastest data transfer, UDT had an implementation issue
which limited its performance and FDT had limited performance due to the use of
small buffer size.

3.2 Big Data Security in Globus
Secure methods are of equal importance as high-performance methods when the
data size grows. An example of these data sets includes medical, personal, financial,
government and intellectual property data. In the research by Kyle Chard et al. [3],
Globus was used for the customers to access, move, and share large amounts of data
remotely. Globus capabilities were split into Globus Nexus service which manages
user identities and Globus transfer service that manages transferring, synchroniza-
tion and sharing of tasks. In ensuring security for the user identities, Globus Nexus
stores salted passwords for comparison when authenticating, SSH public keys and
X509 Certificates for single-sign-on. Furthermore, in transferring data between logi-
cal endpoints, Globus uses GridFTP protocol in which data encryption is supported
based on secure sockets layer (SSL) connections.

9

Chapter 3. Related Work 3.3. Cryptographic Cloud Storage

Although Globus managed to provide high-performance, reliability, secure data
transfer, synchronization, and sharing of data compared to its competitors such
as GreenButton and WarpDrive, there were challenges during its use. Some of these
challenges include difficulty in accessing metadata from the files due to storage in
different formats and inefficient use of file-based data because the data required for
analysis does not always match the model used to store it [3].

3.3 Cryptographic Cloud Storage
Most of the cloud-based services such as Dropbox, Tresorit, Google Drive and One
Drive use either server-side encryption or end-to-end encryption when sharing or
storing files. So, cloud service providers are faced with the challenge to ensure in-
tegrity, confidentiality, and control over stored data. Most of the cloud services
e.g., Dropbox and Google Drive, use server-side encryption in which the encryp-
tion/decryption of the stored files is offered by the cloud providers. In this type
of encryption, stored data remain secure in the cloud (at rest), but users have no
control over how the encryption is done or who has access to the decryption keys.
Since the stored files get encrypted and decrypted at the cloud, the files remain
insecure in transit if (SSL/TLS) has not been used by the cloud service in creating
a secure channel.

The challenges in server-side encryption have resulted in the use of end-to-end en-
cryption in which data is encrypted before transmitted to a server and then de-
crypted by the receiving party. An example of cloud-based services that use end-
to-end encryption is Tresorit and SpiderOak. Additionally, when using end-to-end
encryption, no one can access the stored data except for the owner and his/her au-
thorized users only [22].

Although end-to-end encryption has provided a lot of benefits, there are disadvan-
tages associated with the use of it such as non-recoverability of the lost credentials
(username/password). This is caused because the service providers have no access
to the encryption keys or password. Another challenge is the failure in detecting
spam and phishing files over encrypted files. This can occur because the third party
which is the cloud server can not perform spam filter on the stored files due to lack
of access to the clear text [8].

3.4 Relational and NoSQL Database
Due to the scalability issues in the traditional database that degrade performance
as the data size increases, new systems have been designed to provide good hori-
zontal scalability (ability to distribute both data and load of simple operations over
many servers) for the simple read/write database operations. Rick Cattell [2] exam-
ined a number of Structured Query Language (SQL) and Not Only SQL (NoSQL)
data stores. The NoSQL systems use the CAP theorem which states that a sys-
tem can have two out of the following three properties: Consistency, Availability,

10

3.4. Relational and NoSQL Database Chapter 3. Related Work

and Partition-tolerance. The SQL systems provide horizontal scalability without
abandoning SQL and ACID (Atomicity, Consistency, Isolation, and Durability) of
transactions. The data stores were then categorized into:
(i) Key-value stores for storing values and indices to find those values, e.g., Riak

and Scalaris.
(ii) Document stores for storing documents (“pointerless objects”), e.g., SimpleDB

and MongoDB.
(iii) Extensible record stores for storing extensible records that can be partitioned

horizontally or vertically across different nodes, e.g., HyperTable and Cassan-
dra.

(iv) Relational database for storing tuples, e.g., MySQL Cluster and VoltDB.
When concluding, Cattell argued that document stores have the ability to query
collections (a grouping of documents) based on multiple attributes value constraints,
unlike key-value stores. In addition, some of the systems use RAM for storage which
proved to have very poor performance when overflow occurs compared to those
designed for disk storage.

11

Chapter 3. Related Work 3.4. Relational and NoSQL Database

12

4
System Architecture and Design

4.1 System Architecture
In describing the architecture of our system, we will use both physical view and
information flow. The physical view, also known as deployment view, shall depict
the topology of the software components on the physical layer with the connections
between those components while information flow will show how raw information is
being processed when transferred from customer’s site to Ascom R&D as explained
below.

4.1.1 Physical View
The general overview of this thesis work shall involve collection of Unite communi-
cations (log data) from Unite CM at the customer’s site using Ascom’s capturing
tool which is a special R&D tool. The collected log files can be from different As-
com systems such as patient monitoring system, paging system or Ascom’s mobile

Figure 4.1: Physical view

devices which are intended to alert the nurses of the events that require their imme-
diate attention e.g., potential patient problems. After being collected, the log files
will then be transferred from customer’s site to Ascom R&D over the Internet as
shown in Figure 4.1. The internet can either be a cloud storage service in which the
uploaded files are stored in the remote servers for other users to access them or an

13

Chapter 4. System Architecture and Design 4.1. System Architecture

FTP application where files are uploaded to an FTP server and can be downloaded
through an FTP client.

The Graphical User Interfaces (GUI) at the customer’s and Ascom’s side allow
users to interact with different applications e.g., Buslogger, where they can perform
different operations such as viewing the log files, store them locally or process them in
the database. Lastly, when the log files reach Ascom R&D, they can either be saved
locally or being processed in the database where different types of communication
information i.e. paging or alarms, are identified. The log files can also be used to
perform further analysis in which different evaluations will be performed e.g., nurse’s
stress level or travel time between patients.

4.1.2 Information Flow
Figure 4.2 shows how collected log data is processed from the customer’s site to
Ascom R&D. The log data is first processed by removing or hiding the patient’s
personal information in order to keep its track without revealing the patient’s iden-
tities. It is further encrypted before it is sent to Ascom’s R&D. The collected log
file can then be saved locally at the customer’s site. Afterward, the log files shall
be compressed and encrypted; then, their integrity is checked before they are sent
to Ascom. When sending, the encrypted log file shall either be physically delivered
to Ascom R&D or transferred over a secure transmission channel either through a
cloud service or FTP application. Once received, the encrypted log file shall have
their integrity checked, decrypted, decompressed then saved locally at Ascom R&D.
Lastly, the log files will be pre-processed i.e. saved in an appropriate format before
stored in the database.

Log Data

Collecting Tool

 Cloud, Physical Delivery
 Compression
 Transmission Encryption
 Checksum
 Secure Channel

Sending

 Checksum
 Transmission Decryption
 Decompression
 Save locally

Receiving

 Pre-processing
 Storage in the database

Storing

 Remove Patient Information
 Encryption
 Save Locally

Proccessing

Figure 4.2: Information flow

14

4.2. System Design Chapter 4. System Architecture and Design

4.2 System Design
In designing our system, we will consider using solutions or applications that support
the use of either client-server architecture or an embedded PC when capturing,
transferring, and processing of Unite communications as detailed below.

4.2.1 Client-Server Architecture
Client-Server architecture is a network architecture in which each computer or pro-
cess on the network is either a client or a server. This architecture is based on both
hardware and software components that are designed to communicate across the
network [7]. Often servers and clients communicate on separate hardware but may
also reside on the same system. Additionally, the client-server architecture brings
out a logical perspective of distributed cooperative processing where a client sends
requests while a server handles and processes them. A client also known as front-end
application can be a single-user workstation while a server also known as back-end
application can be one or more multi-user processors with high capacity of shared
memory and ability to support multiple and simultaneous clients requests as shown
in Figure 4.3.

Figure 4.3: Client-Server architecture

If properly implemented, the client-server architecture can provide advantages such
as improvement in data sharing, shared resources regardless of hardware platforms,
and data processing capability despite the location. Another advantage is the pro-
vision of better security since servers have control access to ensure only authorized
clients can access it [16]. However, there is a disadvantage associated with the use
of client-server architecture such as criticality to failure for the centralized servers
which is caused by overloading them with frequent simultaneous requests from the
clients.

4.2.2 Embedded PC
Embedded PC is a dedicated computer-based system that can either be part of a
larger system, independent or part of a heterogeneous system. Most of the modern
embedded control systems have high demanding functions such as real-time machine
sensors, visions and motion controls as well as Graphical User Interface (GUI). This

15

Chapter 4. System Architecture and Design 4.3. File Transfer Protocol

complexity of the embedded systems and fast growth of the PC hardware and soft-
ware support has led to the adoption of embedded PC technology [4].

Most of the embedded PCs e.g., Next Unit of Computing (NUC), are fully com-
patible with a standard PC and virtually all desktop and real-time PC Operating
Systems (OS) e.g., Windows and Linux. So it is possible to use the general purpose
Windows as an embedded OS. Also, these embedded PCs have portable size and
ease of installation which make it easy to add devices and scale up rapidly. Further-
more, they consume a small amount compared to a full-sized PC which results in
reducing the cost of operating them.

4.3 File Transfer Protocol
In the early days of computing, one had to learn complex sets of commands in order
to use the Internet. File Transfer Protocol (FTP) was then invented in the early
1970s as a protocol that transfers files between an FTP host/server and an FTP
client computer on the Internet [11]. FTP can either be used to download files from
the World Wide Web, upload files to the FTP servers, transfer large files among
two parties or distribute the latest versions of programs by software developers.
Examples of FTP client programs available for transferring files are Filezilla client,
WinSCP, and SmartFTP. For communication to take place between a server and a
user, FTP must connect using two TCP ports: command and data port. Command
port e.g., Port 21 or 990, is the main TCP port that is created upon a session for
passing commands and replies. Data port is used to establish data connections for
transferring files or directories between server and client, and once the transfer is
complete, the connection is closed.

Figure 4.4: Passive FTP: Client sets both port connections to server

FTP transfers files between systems using one of the two active/passive connection
modes: binary which transfers images, zip files or executable files in binary form
and ASCII for transferring text and HTML. When the connection mode is passive,
FTP client initiates a connection to the command or data port to the host server
as in Figure 4.4. But in active mode, the FTP client initiates the connection by
connecting to the server’s command port (port 21) then opens a listening data port
and sends the number of its own command port to the server, Figure 4.5.

Additionally, FTP connections are usually not encrypted, but some FTP servers
may offer or require encrypted connection to secure the data when it is being trans-
ferred between systems. The types of encryption in FTP include implicit SSL,

16

4.4. Cloud Storage Services Chapter 4. System Architecture and Design

Figure 4.5: Active FTP: Client sets command port, Server sets data port

explicit SSL and Secure FTP (SFTP). In implicit SSL, secure communication is set
up at the beginning of the connection where SSL supported clients are allowed ac-
cess. When using explicit SSL encrypted connection, unencrypted FTP connection
is established and can be upgraded to a secure connection when sensitive data is
requested to be sent. In this encryption, both secure and non-secure clients are al-
lowed access. Furthermore, when using SFTP encryption, secure shell connection is
used for transferring data between computers and encrypted public key is required
for authentication.

4.4 Cloud Storage Services
The cloud concept has roots dating back to the 1950s and 1960s, but it was not able
to take off due to technological limitations such as internet data speed and computer
hardware which could not support the amount of data to be sent and received [15].
Cloud Storage is a service in which data can be remotely maintained, managed,
backed up, and made available to users from any location via the internet. Many of
the cloud storage services upload files to the external servers which give users ease
and convenience but can be costly. Most of these services are free up to a certain
number of gigabytes (GB), but one can request additional storage for a monthly
fee. All cloud services provide synchronization of folders and files, drag-and-drop
accessing, and collaboration of users on documents. Examples of these cloud storage
service providers are Dropbox, Google Drive, Box, and Microsoft OneDrive [5].

Furthermore, cloud storage has an architecture that is based on delivery of storage
on demand in a multi-tenant and highly scalable way. This architecture consists
of the front-end layer that exports an Application Programming Interface (API) to
access the storage e.g., at the client system. Behind the front end is the middleware
layer (storage logic) which implements features such as replication and data reduc-
tion e.g., at a web server. Lastly, there is a back-end layer that implements physical
storage of data e.g., database as shown in Figure 4.6.

Moreover, cloud storage providers offer cloud encryption services that transform
text or data to ciphertext by using encryption algorithms before being placed on a
storage cloud. The encryption capability offered by providers must match the level
of sensitivity of the data being hosted because it consumes more processor overhead
and become expensive for the customers. To overcome that, providers have offered
an alternative technique which includes redacting or obfuscating data where vendors

17

Chapter 4. System Architecture and Design 4.4. Cloud Storage Services

Figure 4.6: Cloud storage architecture

use their proprietary encryption algorithms on their data before sending to the cloud.

There are some advantages associated with the use of cloud storage services such
as easy accessibility of the stored files despite the location and disaster recovery
since it can be used as backup storage for the important files. However, there are
also disadvantages of cloud storage such as the need of Internet connection in order
to access the files. Another disadvantage is the limitation in bandwidth as some
cloud storage services have a specific bandwidth allowance. In addition, there are
concerns about the safety and privacy of importance data due to the possibility of
intermixing private data with other organizations.

18

5
Specifications

In this chapter, we specify all the requirements necessary for implementing our
system. This will involve the use of use case diagrams and their descriptions for
both the customer’s site and Ascom R&D as explained below:

Actor Use case
Nurse Message

• Alert/Paging
• Text message
• Text message

Alarm
Call

• Normal call
• Assistance call
• Emergency call

Nurse login
• Activity logging

Buslogger Send subscription
Retrieve subscription
Store retrieved data

• Encrypted format
• Plaintext (limited information)

Open saved log file
• Real time view
• Analyse view
• Real time snapshot

Select what to log
System administrator Login

• Perform updates
• Performing configurations

– Basic configurations
– Advanced configurations

Table 5.1: Actors and use cases involved in Unite System

19

Chapter 5. Specifications 5.1. Use Case Diagrams

5.1 Use Case Diagrams
The use case diagrams will portray different types of users of the Unite System and
the various ways that they interact with the Unite CM. The Unite CM contains
different actors who interact with each other through use cases as shown in Table
5.1.

5.1.1 Nurse
The nurse interacts with other staff members using their carrier devices e.g. Ascom
smartphones and IP-DECT handsets, as shown in Figure 5.1. The following opera-
tions can be performed by the nurse through the Unite CM at the customer’s site:

Figure 5.1: Nurse - Use case diagram

20

5.1. Use Case Diagrams Chapter 5. Specifications

(i) Message - The Unite System allows the nurse to send or receive messages from
other staff members through the Unite CM to the carrier systems. The message
can be one of the following:

• Paging - A paging is a message sent and displayed immediately and it is
usually displayed in the nurse’s paging system.

• Alert - An alert is an indication notifying the nurse about something that
has happened and it requests his/her action. It is sent by applications
e.g., patient monitoring system.

• Text message - This is the message with the user (nurse) as a sender or
can be a continuous dialog between two users e.g., Interactive Message
(IM).

• User data - Information about the data sent from a handset e.g., VoW-
iFi or DECT handset, by the user (nurse) within the system. The most
common fields in the user data block include handset address and input
data.

(ii) Alarm - The Unite System should also allow the nurse to receive alarms gen-
erated by medical equipment through the Unite CM.

(iii) Call - The Unite System allows the nurse to make calls to other staff members
using their unique call ID or receive calls from patients that are distributed by
the nurse call system. The calls can be:

• Normal call - Example being when a patient presses a red button on pa-
tient handset (bedside handsets) requesting the nurse’s presence.

• Assistance call.

• Emergency call - Example being when a patient has fallen or has not
moved for a longer period and it’s usually automatically triggered by a
moving sensor or angle detection device.

(iv) Activity logging - Activities such as duty assignment e.g., work shifts for nurses
with their respective assigned day of the week and time is mostly performed by
the head nurse. For different activities to be logged, it requires the head nurse
to log into the system. Additionally, the head nurse can also make changes to
the existing shifts.

21

Chapter 5. Specifications 5.1. Use Case Diagrams

5.1.2 Buslogger
The Buslogger is a Windows-based troubleshooting tool developed by Ascom to
collect and store Unite communications from the Unite CM at the customer’s site.
The Unite System also allows the Buslogger to send a subscription to the Unite CM
in order to access the Unite communication. As shown in Figure 2, for the Buslogger
to retrieve collected logs from the Unite CM, it has to send the subscription in order
to get the specified logs. Additionally, after logs are retrieved from the Unite CM,
they can be stored by the Buslogger either in encrypted format, where the messages
are presented in XML format, or in plaintext where only limited information is saved.
Once stored, the log files can be opened in the Buslogger at which the display can
be in real time view in which different fields of the message are displayed e.g., source
address or status of the message. Also, the log files can either be opened in real-time
snapshot where the XML format of the messages is shown or analyze view in which
the analysis of different parts of the block message is displayed e.g., USD sender or
receiver.

Figure 5.2: Buslogger - Use case diagram

22

5.2. Requirements Chapter 5. Specifications

5.1.3 System Administrator
The Unite System allows the system administrator to perform the following actions
that require him/her to log into the system as described in Figure 5.3:

Figure 5.3: System administrator - Use case diagram

• Performing updates - This involves correction and improvement of existing
functionalities in the system which also includes documentation of the addi-
tional information.

• Performing configurations - The system administrator performs a number of
configurations in the Unite CM. This includes basic configurations such as
adding users to enable messaging between the added users through their hand-
sets and group management for broadcasting and multicasting. There are also
advanced configurations e.g., event handling, remote management configura-
tions or server setting.

5.2 Requirements
The requirements for a system are the descriptions of what the system is supposed
to do and services it should provide. The following are the functional and non-
functional requirements of our system at both customer’s site and Ascom R&D.

5.2.1 Functional Requirements
R1.1 It shall be possible to install an application for collection of log

data.
R1.2 The installation shall be according to normal Windows installation

packages.

23

Chapter 5. Specifications 5.2. Requirements

R1.3 If the installed application has to be removed, it should be possible
to uninstall it without leaving traces (the application shall be as
nonintrusive as possible).

R1.4 No certain skills shall be required to the customers when in-
stalling/uninstalling the application.

R2.1 When collecting Unite communications, it shall be possible to limit
the size of log data that is to be retrieved from customer’s site using
a selected tool.

R2.2 Prior to collecting Unite communication from customers, it shall be
possible to initiates logging activity through sending a subscription
to the Unite CM using selected tools.

R2.3 After logging, it shall be possible to stop logging through retrieving
log data from Unite CM using a selected tool.

R2.3.1 Also, it shall be possible to check the progress of the retrieved logs
(in presence of errors, restart activity logging).

R2.4 After log files have been retrieved, it shall be possible to save them
locally.

R2.4.1 Patients’ personal information shall be replaced/removed e.g.,
through hashing algorithm.

R2.4.2 The log data retrieved from customer’s site shall be saved in en-
crypted format with its contents in XML format.

R2.4.3 It shall be possible to save retrieved log data as log files (text for-
mat) which have limited information about the collected logs.

R3.1 It shall be possible to select a tool that will be used for transferring
log data to Ascom R&D.

R3.1.1 The selected transfer application or service shall be able to secure
the captured log files during transmission.

R3.2 The selected transfer tool shall be able to be installed either on an
embedded PC or on the client’s server.

R3.3 After installation of transfer tool, it should be possible to transfer
collected log files to Ascom R&D.

R3.3.1 When the transfer is complete, the status of transfer and integrity
of log files shall be checked.

R4.1 After successful transmission, it shall be possible to download them.
R4.2 After log files have been made available at Ascom R&D, it shall

be possible to perform decryption of the files which can be through
the use of the Buslogger.

R4.2.1 After a successful decryption, the decrypted files shall be saved
locally at Ascom R&D.

R4.3 Once log files have been made available for storage, select a storage
solution i.e. relational or non relational database.

R4.4 Install the selected storage solution at Ascom R&D.
R4.5 After installation of storage solution, import decrypted files for stor-

age in the database.
R4.6 After log files have been stored, present analysis of the stored files

to describe the nature and relation of data to be analyzed.

24

5.2. Requirements Chapter 5. Specifications

5.2.2 Non-Functional Requirements
R1.1 The implemented solution should not affect the operations of other

systems at the customer’s site.
R1.2 The transfer application or storage solution selected shall not intro-

duce complexities, vulnerabilities or delays to the existing systems.
R2.1 The selected applications or solutions shall be compatible with the

existing operating system.
R3.1 The capturing, transferring and storage solutions shall be available

when needed i.e. they should perform their operations in a timely
manner.

R4.1 The implemented solution should be easy and fast to use.

25

Chapter 5. Specifications 5.2. Requirements

26

6
Implementation

6.1 Data Capturing from Unite CM by Buslogger

In capturing Unite communication from Unite CM at customers side, we plan on
either performing configurations of the Buslogger tool on an embedded Windows PC,
e.g., Next Unit of Computing (NUC), at Ascom R&D or have the Buslogger installed
on client’s server. If we use an embedded PC, it shall be located at customer’s site
so that at run time the embedded application program (Buslogger) can capture all
Unite communications. After being captured, the log files will be encrypted by the
Buslogger then saved locally.

6.2 Transmission of Unite Communications

After capturing the Unite Communications, we need to send it to Ascom R&D. We
will investigate three different ways to transfer the Unite Communication to Ascom
Cloud, FTP, and Physical Delivery.

6.2.1 Online Cloud Services

Online cloud services are the services that offer storage of files in the cloud server.
These services can be accessed by using the web service application programming
interface (API) or applications that utilize API. The following are the online cloud
services that we tested:

6.2.1.1 Globus

Globus moves data between two GridFTP servers or between a GridFTP server and
a user’s machine. It can use either web interface or command line interface (CLI) to
transfer files. It also offers a feature called Globus Connect Personal which enables
users to move files to or from a laptop or desktop computer or other endpoints.
Endpoints are set up on the Globus system for transferring files to and from the
Globally Accessible Data Environment (GLADE) disk storage system. GLADE file
spaces are intended to be used as work areas for day-to-day tasks. These storage
spaces are available by default except for project space as shown in Table 6.1.

27

Chapter 6. Implementation 6.2. Transmission of Unite Communications

File space Limitation Backup Description
Home:
/glade/u/home/username

10GB Yes User home directory

Scratch:
/glade/scratch/username

10TB No Temporary computational
space

Work:
/glade/p/work/username

512GB No User work space

Project:
/glade/p/project_code

N/A No Project space allocations
(via allocation request)

Table 6.1: Globus globally accessible data environment (GLADE)

• Storage Capacity & Cost: ranging from 10s of GBs to 10s of TBs. It
needs an institutional subscription; however, the cost is not mentioned on
their website.

• Maximum file size: No limitation on file size.
• Operating system: Windows, Mac OS X, and Linux.
• Security: Data encryption during Globus file transfer (but sometimes en-

cryption may fail to be supported by an endpoint).
• Other features: performance monitoring, retrying failed transfers, recover-

ing from faults (whenever possible), and transmission status reporting.

Limitation: We were not able to move date between two personal computer or
to store the data at GLADE disk storage system because it requires Globus Plus
subscription, which in turn requires Ascom to have an institutional subscription
with Globus. Additionally, we could not connect Globus Connect server to GridFTP
Server, because it requires a GridFTP server running on a Unix platform [14], and
that is out of the thesis scope.

6.2.1.2 Tresorit

Most of the cloud storage services use server-side encryption and users have no con-
trol over how the encryption is performed and who can access the decryption keys.
This limitation led to the use of cloud services that employs client-side encryption
in which users encrypt their files then upload them to the cloud. Tresorit is an
online cloud service that stores and shares files and uses an end-to-end encryption
(client-side encryption) to guarantee security of the uploaded file.

• Storage Capacity & Cost: It required a minimum of two users and cost
e 20 / user / month with 1,000GB of storage for each user.

• Maximum file size: file size can be up to 10GB.
• Operating system: Windows, Mac OS X, and Linux.
• Security: Tresorit encrypts files using AES-256 client-side encryption before

uploading, and they remain encrypted till they reach the recipient. In au-

28

6.2. Transmission of Unite Communications Chapter 6. Implementation

thenticating the user, it uses HMAC (SHA-512) to authenticate the password
by comparing it with the stored salted password. Also, it supports two-step
verification which is a login authentication feature that enables the addition
of another layer of security to the account.

Tresorit had an acceptable upload speed up to 11Mb/s when we tried it on a 100Mbs
Internet connection. The unique feature is the end-to-end encryption and decryption
support.

Cleartext

Document

AES Encryption
256-bit symmetric key

Client-Side

HMAC-SHA-512

for Integrity Protection

Authentication Using

Digital Signature

TLS-protected

channel for Uploading

Insertion into the Cloud

File System

Encrypted Document

Stored Securely

Figure 6.1: Tresorit security of file uploading.

Tresorit Secure Cloud Model: as shown in Figure 6.1, when a user uploads a
file using the Tresorit client application, the file will be encrypted using AES en-
cryption algorithm in CFB mode using a new 256-bit symmetric key chosen by the
client application. The integrity of the file is guaranteed by using HMAC-SHA-512.
After that, a TLS tunnel will be established to the cloud server for uploading the
encrypted file. This adds an additional layer of protection to protect the file against
eavesdropping and tampering during the upload process. Finally, a digital signature
is used to authenticate each upload [22].

29

Chapter 6. Implementation 6.2. Transmission of Unite Communications

Tresorit End-to-end Encryption: Tresorit provides a secure cloud storage by
using end-to-end encryption in which encryption and decryption process is done on
the client-side [22]. In this type of encryption, no one can access the stored data
except for the owner and authorized users only. Figure 6.2 shows the traditional
cloud storage security in which encryption and decryption process is performed in
the cloud while Tresorit end-to-end encryption shown in Figure 6.3 is performed at
the client’s side (Alice encrypt the file and Dave, Carol, and Bob decrypt it).

White Paper www.tresorit.com

Figure 1 When using traditional cloud storage middleware, documents are visible in plaintext.

Tresorit provides a novel approach to secure cloud storage. The software allows you to share

files and collaborate with your friends and colleagues with guaranteed cryptographic end-to-

end security, without sacrificing the ease of use and performance of unsecure cloud storage

services. With Tresorit, you encrypt files on your computer and the only people able to see the

content are the ones you expressly give permission to. Contrary to other solutions, no storage

provider or network administrator, no unauthorized hacker, not even Tresorit can read your files.

TRESORIT: COMPLETELY SECURE CLOUD COLLABORATION

ADMIN

ALICE

SERVER-SIDE
ENCRYPTION

apply server-side encryption and the user has no control over how the encryption is done and

who has access to the decryption keys. In other words, the user has to trust the cloud storage

provider for being honest and not revealing her private data. This trust, however, simply cannot

be underpinned [1,2,3].

Without the blind trust in the cloud storage provider, the user could choose to encrypt her

files one-by-one and only upload these secure files to the cloud. This works well for things like

backup, but only as long as the user does not want to share her files. As the amount of data

and the number of people involved in the sharing rises, this approach becomes intractable.

The overhead with group management, invitation of new group members, and revocation of

expired permissions quickly becomes a burden. This approach is just not flexible enough for

collaborative use.

3

Figure 6.2: Traditional cloud storage security [22].

White Paper www.tresorit.com

ADMIN

ALICE

CLIENT-SIDE
ENCRYPTION

BOB

CLIENT-SIDE
DECRYPTION

CAROL

CLIENT-SIDE
DECRYPTION

DAVE

CLIENT-SIDE
DECRYPTION

Figure 2 With Tresorit, encryption and decryption are done at the client side.

End-to-end Encrypted: Encryption and decryption are done on the client side. No entity is able

to recover the data, except for the owner herself and users authorized by the owner. No trust

in the cloud storage provider is required. Your data stays as safe as if it was stored securely on

your own system.

Shareable: The owner can invite anyone with ease to collaborate and share files with. Only an e-

mail address is required to send the invitation. Shared files and folders can be jointly modified,

synchronization is performed automatically. Any number of files and directories can be shared

among any number of users.

Shared files are encrypted: Files shared between users are still encrypted in the cloud at any

time. Security and collaboration go hand in hand.

Everything can be ‘tresored’: Any directory can be directly turned into an encrypted ‘tresor’

that is securely stored in the cloud. Similarly, a tresor can be mounted to any convenient loca-

tion on the hard disk.

4

Figure 6.3: Tresorit end to end encryption and decryption [22].

The encryption algorithm is AES256 in Cipher Feedback mode (CFB). CFB is a

30

6.2. Transmission of Unite Communications Chapter 6. Implementation

block cipher deterministic algorithm which works with fixed length block of bits. It
needs an initial input block to operate called Initialization Vector (IV). Each file
and each file version get a new random 128-bit IV to ensure a different encryption
output even if the same data encrypted several times with the same key [6] [12] [21].

Client-side integrity protection: Message Authentication Code (MAC) is ap-
plied by Tresorit client to each file’s content using a key known only by the owner
and by the others who have access to the file, however, the key is not known by the
server. A variation of MAC (keyed-Hashing for Message Authentication) HMAC-
SHA512 is used in combination with a new random key for each file to ensure its
integrity [21].

Zero-knowledge authentication: Users passwords are stored only as a salted
hash format at the server. When a new user registers, a 160-bit cryptographic
random salt is generated by the Tresorit client. The combination of the user pass-
word and the salt is iterated with the Password-Based Key Derivation Function 2
(PBKDF2) ten thousand times. PBKDF2 executes the input inside a pseudoran-
dom function for a fixed number of times x to derive a key, and it is considered as
one of the most used algorithm to manage users passwords [1]. The result of the
iteration with the salt is sent to the server when the user clicks the sign-up button
and stored there. When the user sign in, a challenge-response protocol is used as
following: First, The server sends to the client, the stored salt, and a challenge
request. Second, the client, using the received salt, calculates the derived key with
PBKDF2. The HMAC of the salt and the challenge with the key calculated from
user password are sent back as a response to the server. Third, The response is
compared to the key stored in the database at the server [21].

Compliance with HIPAA: Tresorit security is compliant with the Health In-
surance Portability and Accountability Act (HIPAA) standards because it runs in
Microsoft Azure datacenters, which in turn meets the HIPAA standard [18] [21].

Advantage: When testing Tresorit, it was possible to share files between comput-
ers through uploading files to the shared folder that can be accessed by others.

Limitation: One limitation of using Tresorit is that it requires an account that is
part of a business account of an organization. So, users can not use their personal
account to register.

6.2.1.3 Google Drive

Google Drive is a file storage and synchronization service that offers storage of files
in the cloud, sharing of files and allowing collaborative editing of documents and
files between users. It assigns online storage space to its users that are accessed
across different devices, e.g., smartphones and laptops.

• Storage Capacity & Cost: 15GB of storage for free but more storage needs
monthly subscription as shown in Table 6.2.

31

Chapter 6. Implementation 6.2. Transmission of Unite Communications

Storage Price
15GB Free
100GB $1.99 per month
1TB $9.99 per month
10TB $99.99 per month
20TB $199.99 per month
30TB $299.99 per month

Table 6.2: Google drive storage capacity & cost

• Maximum file size: file size can be up to 5TB.
• Operating system: Windows, Mac OS X.
• Security: It uses secure socket layer communication (HTTPS, SSL) by default

to prevent man-in-the-middle attacks. It is not so secure since it does not
provide end-to-end encryption also known as client-side encryption. That
leaves user’s information unsecured and could be accessed by Google or by
unauthorized users.

• Other features: Require a Google client software to be running on the user’s
computer (at both customer’s site and Ascom R&D)

Google Drive worked smoothly and continuously without any problem. It had an
outstanding upload speed up to 50Mbs when we tried it on a 100Mbs Internet con-
nection.

Advantage: It was possible to automatically upload new files with a high speed.
Furthermore, it was easy to install and set it up to work on port 433 which is open
on most firewalls.

Limitation: It performs encryption and decryption process at the cloud with the
encryption key is owned by Google which imposes security threats to the stored
confidential files when someone manages to gain access to the systems. Also, it does
not support the recovery of deleted files.

6.2.1.4 Dropbox

Dropbox is a cloud storage service also known as online backup service that offers
file sharing, cloud storage, file synchronization, and personal cloud. Dropbox has
a client program (Dropbox desktop application) that enables users to drop any file
in a designated folder and automatically upload it to Dropbox’s cloud-based service
(Dropbox server).

• Storage Capacity & Cost: It is free up to 2GB storage capacity, a Pro
account with 1TB of storage space for e 9.99 / month, or a Business account
with 2TB of storage for e 12 / user / month.

• Maximum file size: file size can be up to 20GB.

32

6.2. Transmission of Unite Communications Chapter 6. Implementation

• Operating system: Windows, Mac OS X, and Linux.

• Security: Dropbox uses SSL/TLS to protect data during transit between
Dropbox client and server (secure tunnel) and store data using AES-256 en-
cryption in which Dropbox’s own encryption keys are used. Additionally, it
supports two-step verification which is a login authentication feature that en-
ables addition of another layer of security to the account.

• Other features: Keep deleted files for 30 days.

Dropbox worked smoothly and continuously without any problem. It had a good
upload speed up to 25Mbs when we tried it on a 100Mbs Internet connection.

Advantage: It was possible to automatically upload new files with good speed as
well as keeping deleted files for 30 days. Also, it was easy to install, setup, and
operate on both port 80 and 433 which are open on most firewalls.

Limitation: Same as Google Drive, Dropbox supports encryption and decryption
of files at the cloud with the encryption key owned by Dropbox which impose security
threats to the confidential files stored in the cloud.

6.2.2 FTP

FTP is a network protocol used to transfer files between clients and servers on a
network. In this section, we will look into FTP solutions i.e. Filezilla and WinSCP.
In testing both solutions, files were transferred between FTP clients (Filezilla client
and WinSCP) and a Filezilla server as described below:

6.2.2.1 FileZilla

Filezilla a cross-platform FTP application that allows users to transfer files from the
local computer to the remote computer. Filezilla is available as a client and server
version with the following features:

• Cost: Open source.

• Size: Supports transfer of large files with no limitation.

• Language: C++.

• Operating System: Windows, Linux, BSD, and Mac OS X.

• Security: Supports FTP, FTP over SSL/TLS (FTPS and FTPES), and SSH
File Transfer Protocol (SFTP).

• Other features: FileZilla supports resume when transferring files, allows re-
mote file search on the remote server, and supports configurable transfer speed
limit. Other features are support keep-alive to check connection status, IPv6,
and performs compression with DEFLATE.

33

Chapter 6. Implementation 6.2. Transmission of Unite Communications

Limitation: One limitation of using Filezilla is it requires manual restarting if
the automatic file uploading crashed during file transfer. Another limitation is that
Filezilla does not support automatic file upload.

6.2.2.2 WinSCP

Window Secure Copy (WinSCP) is a free and open source SFTP client, FTP client,
SCP client, and WebDAV client for Windows which are used to securely transfer files
between a local and a remote computer [23]. WinSCP has the following features:

• Cost: Open source.

• Size: Supports transfer of large files with no limitation.

• Language: C++.

• Operating System: Windows, Linux, BSD, and Mac OS X.

• Security: It supports the following transfer protocols: FTP, FTP over SS-
L/TLS (FTPS), Secure Copy Protocol (SCP), Web Distributed Authoring and
Versioning (WebDAV), and SSH File Transfer Protocol (SFTP). These proto-
cols use either Secure Socket Shell (SSH) or TLS/SSL which provide a secure
way to access a remote computer that results in guaranteeing the integrity of
the data being transferred.

• Other features: WinSCP supports the use command-line interface when
transferring files, automatic upload of new files in a specified folder, and re-
sume when transferring files over FTP and SFTP.

When testing WinSCP to transfer log files between two computers, it was possible to
establish FTP over TLS (FTPS) connection from WinSCP client to FileZilla Server
using 4096 bit key.

Advantage: WinSCP supports automatic file uploading which worked successfully
when tested with WinSCP watching a local directory on the local machine and up-
loaded any changes to the server.

Limitation: One limitation of using WinSCP is it requires manual restarting if the
automatic file uploading crashed during file transfer.

6.2.3 Physical Delivery

Some customers do not allow any Internet connection to their system. To overcome
that problem, we need to use the Embedded PC solution. In this solution, we will
save the captured Unite Communications to the Embedded PC’s hard drive. The
customer will send back the Embedded PC later to Ascom R&D, which in turn will
extract the saved captured data from the hard drive.

34

6.3. Storage of Communication Information Chapter 6. Implementation

6.3 Storage of Communication Information
In this section, we describe and explain different solutions that were deployed in
transforming and storing collected data. The collected log data can be saved locally
to the hard disk, but for our solutions, we used database due to its ability to protect
its contents through the use of access control on its users. A database can be defined
as an organized information that can easily be accessed, managed, and updated
by a computer program. In testing database solutions, we tested both relational
database, e.g., Microsoft SQL Server 2014 and PostgreSQL, and NoSQL database,
e.g., Neo4j that we might use to show some analysis of the collected log files.

6.3.1 Relational Database

6.3.1.1 Oracle Database

Oracle database is a collection of data that is treated as a unit. The database has
both logical and physical structures that can be managed separately. The logical
structures include data blocks, extends and segments while physical structures in-
clude datafiles, redo log files and control files. Oracle database has the following
features:

• Query language: The supported query languages are SQL, PL/SQL, Java,
and C.

• Operating system: It can run on either Windows, Linux, or Solaris SPARC.

• Security: Oracle database resource security is based on Access Control List
(ACL) mechanism that restricts access to information based on privileges.
This restriction helps in preventing unauthorized database access and unau-
thorized access to schema objects.

In testing this solution, we used Oracle Database 11g Release 2, Enterprise Edition
to store information and Oracle SQL Developer which is an Integrated Development
Environment for performing database tasks. In the end, we managed to get XML
data into the database as XMLType datatype, but we had the following advantage
and limitation:

Advantage: It provides native XML support by encompassing SQL and XML data
models (XMLTYPE) in interoperable manner. This helped in processing the col-
lected log data which is in XML format.

Limitation: When testing this solution, we found out that Oracle does not provide
direct support for importing data from XML file. So, in order to get XML data into
the Oracle database, one has to create an XML column in the created table. Create
the XML tags for the XML column then load the values of the tags from the existing
table. After that modify the contents of the XML column (by loading the existing
XML data into that column).

35

Chapter 6. Implementation 6.3. Storage of Communication Information

6.3.1.2 Microsoft SQL Server 2014

SQL server is a relational database management system (RDBMS) from Microsoft
that is designed for managing and storing information. Microsoft SQL Server sup-
ports the following features:

• Query language: Transact-SQL (T-SQL).
• Size: SQL Express 2014 has a database size limit of 10GB and requires 4.2GB

of disk space.
• Operating system: It is supported on Windows only.
• Security

Data encryption: It supports the use of symmetric key algorithms and keys
such as DES, 3DES, RC2, RC4, 128-bit RC4, DESX, 128-bit AES, and 256-bit
256.
Authentication: It supports Windows authentication mode: Using Windows
user and group accounts to log in to SQL Server. Also, it supports mixed
mode authentication through username and password pairs which are main-
tained within SQL Server.

When testing our solutions, we used Microsoft SQL Server 2014, Express Edition
for storing imported log files. Also, we used SQL Server Management Studio as
an integrated environment for accessing, configuring, managing, administering, and
developing all components of SQL server. Additionally, It was possible to import
the XML file into SQL database and store them in tables or as XML links but with
limiting the XML tags in each message. However, there was pros and limitation
associated with the use of SQL Server as detailed below.

Advantage: It supports Native XML feature which helped in preserving xml con-
tent of the log data.

Limitation: Microsoft SQL Server Express required large storage space as it sup-
ports one physical processor (Intel compatible), 1 GB memory, and 10 GB storage.
Also, the log data collected was in XML format with a different number of tags, so
SQL server 2014 did not support messages with a different number of XML tags.

6.3.1.3 PostgreSQL

PostgreSQL is an Object-Relational, fully featured and free to use Database Man-
agement System. It can be used in a client/server environment [13]. Its client
program cannot access data directly even if they are running on the same computer
as the server process. A network can be used to separate clients from the server,
e.g., a client program can run on Windows while the database on UNIX as shown
in Figure 6.4.

When using the PostgreSQL database to process log files, we ran both the client
and the server on the same Windows computer. The PostgreSQL Version 9.5.3 was

36

6.3. Storage of Communication Information Chapter 6. Implementation

Figure 6.4: PostGreSQL Architecture

tested in which Command Line Interface (CLI) was used to create the database and
run the queries. The following are the features of PostgreSQL:

• Query language: Structured Query Language (SQL).

• Size: Some general PostGreSQL limits are included in Table 6.3:

Limit Value
Maximum database size Unlimited
Maximum table size 32TB
Maximum row size 1.6TB
Maximum field size 1GB
Maximum rows per table Unlimited
Maximum columns per table 250-1600 depending on column types
Maximum indexes per table Unlimited

Table 6.3: PostGreSQL size limit

• Operating system: It runs on both Windows and on any UNIX-like platform
including UNIX-like systems such as Linux, FreeBSD, and Mac OS X.

• Security: It supports data encryption and Kerberos V5 authentication.

Advantage: One advantage of using PostgreSQL is there is no associated licensing
cost for the software which makes it more profitable for the business models with
wide-scale deployment.

Limitation: Limited XML support - PostGreSQL does not provide comparison
operators for XML data type, so we could not search and find rows by comparing
an XML column against a specific search value.

37

Chapter 6. Implementation 6.3. Storage of Communication Information

6.3.2 Non Relational Database
6.3.2.1 Neo4j

Neo4j an open-source NoSQL and ACID-compliant (Atomicity, Consistency, Isola-
tion, Durability) transactional database with native graph storage and processing
[20]. It is an embedded and disk-based engine that stores data structured in graphs
rather than tables. This database stores everything in the form of either an edge,
node or attribute. The version of the Neo4j that was tested was 3.0, Community
Edition and had the following features:

• Query language: Cypher Query Language.
• Size: Data size is limited by the address space of the primary keys for nodes,

relationships, properties and relationship types.
• Operating system: It runs on both Windows and Linux.
• Security

Authentication and authorization: We had to supply authentication credentials
(username/password) when accessing Neo4j database.
Encryption: Neo4j supports SSL encrypted communication over HTTPS. When
the server starts, it automatically generates a self-signed certificate and a pri-
vate key, or the client can provide their own key and certificate for the server
to use.

It was possible to show the relationship between nodes and their properties through
the comma separated values files (CSV files) that were imported into Neo4j database.

Advantage: It supported schema-free database and was easy to present the con-
nected data.

Limitation: It was not possible to view all the nodes, relationship and properties
from the created graph at the same time.

38

6.4. Proof Of Concept (POC) Chapter 6. Implementation

6.4 Proof Of Concept (POC)
In demonstrating the feasibility of the selected solutions, we used a combination
of both embedded and client-server solutions. This assisted in the having a client
program running on an embedded PC which resulted in minimizing customer’s in-
volvement and avoid affecting the functionality of other systems at the client’s server.
During the implementation the following applications or solutions were selected:

BusloggerTool

-KeyLicense: String

+SetKeyLicense ()

-FileSize: Integer

+SetLogFileSize ()
+SetBaseDirectory ()
+StartCommunication ()
+StartLog ()

ExecutableFile

-ExecutableFile: Binary

+Running ()
+Startcommunication ()
+Logging ()
+StopCommunication ()

TaskScheduler

-TaskName: String

+CreateTask ()

-ExecutableFile: Binary

+SetTriggers ()
+SetActions ()
+SetConditions ()
+Settings ()

AutoItScriptEditor

-AutoIt: String

+Execute ()
+Compile ()

Executes

Schedules

Automates

LogFiles

Produces

Autostarts

Trigger

+NewTrigger ()
+SetTrigger ()
+SetDelay ()
+SetActivationTime ()
+SetExpirationDate ()

Action

+SetAction ()
+SetProgramPath ()

CustomerLocalFolder

-LogFiles: Binary

+Saving ()

Saved to

ZipFiles

-CompressedFiles: Binary

Compressed to

TresoritFolder

-ZipFiles: Binary

+CreateDirectory ()
+Encryption ()

NetBeansIDE

-JavaProgram: String

+Compression ()

Saved to Using

CloudServer

-EncryptedZipFiles: Binary

+Storing ()

Uploaded to
Downloaded to

OracleDatabase

-LogFiles: Binary

+Storing ()

+DeleteSourceFile ()

+FindFirstModifiedFile ()

+DeleteSourceFolder ()

+FindFirstModifiedFolder ()TresoritFolder

-DecryptedZipFiles: Binary

+Saving ()
+Decryption ()

UnZippedFiles

Decompressed to

AscomLocalFolder

-UnzippedFiles: Binary

+Saving ()
+CreateDirectory ()

Saved to

NetBeandIDE

-JavaProgram: String

+SelectFirstModifiedFolder ()
+SelectfirstModifiedFile ()
+Decompression ()
+DeleteTresoritFile ()
+DeleteTresoritFolder ()

Using

Saved to

+Exit ()

+StopCommunication ()
+Exit ()

+Checksum ()+Checksum ()

+CreateTLS ()

+Saving ()

Figure 6.5: Class diagram showing implementation of proof of concept

39

Chapter 6. Implementation 6.4. Proof Of Concept (POC)

File transfer service: In presenting Ascom with captured log files, we used a
cloud-based storage service and not an FTP application since FTP imposes security
concerns to Ascom. Among the tested cloud storage services, Tresorit proved to
be the best solution for transferring Unite communications from customer’s site to
Ascom R&D. This is caused by its ability to use end-to-end encryption while Drop-
box and Google Drive use server-side encryption. Also, Globus could not be used
because we failed to meet its requirement for allocation of shared space.

Database solution: Among the tested database solutions i.e. relational and non
relational, Oracle database proved to be the best storage solution because it supports
the use of XML data types and searching within XML tags. Additionally, Microsoft
SQL Server 2014 could not be used because it does not support messages (logs) with
a different number of XML tags. However, Neo4j graph database could be used to
show analysis for the collected log data.

Hardware devices: The following hardware devices were used during implemen-
tation:

• Embedded PC - Intel NUC (Next Unit of Computing) Broadwell Wifi - NUC5i3RYK
.

• Hard Drive - Intel 540S Series 120GB m.2 - SATA SSD.
• RAM - Kingston 8GB SO – DIMM 1600MHz DDR3I CL11 1.35V.

Software platforms: The following software platforms were used during imple-
mentation:

• Operating System - Windows.
• Windows Task Scheduler.
• Automation language - AutoIt.
• Transfer service - Tresorit.
• Software development platform - NetBeans IDE 8.1.
• Database solution - Oracle Database Enterprise Edition 11g Release 2.

PC Configuration: We performed configurations on a normal PC due to delay
in the delivery of the embedded PC. But, this did not affect our implementation
since the same configurations would be performed on an embedded PC once it
arrived. Windows was installed as an Operating System to run on the PC. The
PC was then configured with a dedicated IP address, subnet mask, and the default
gateway to facilitate connection to the network at the customer’s site. The network
information used was obtained from the customer. Afterward, the Buslogger was
configured with the IP address of customer’s Unite CM, license key, and size of log
files to be captured. Later on, the selected cloud service i.e. client-side Tresorit
application was installed to run on the PC.

6.4.1 PoC Description
When implementing the proof of concept, we created scripts for auto starting and
stopping Buslogger, and java programs for compressing, decompressing, and storing

40

6.4. Proof Of Concept (POC) Chapter 6. Implementation

log files. In creating java programs, we used NetBeans IDE to run and compile
them into executable files. Once the programs were created, we used Windows Task
Scheduler to launch them for their specified time intervals. The implementation of
proof of concept described in Figure 6.5 is as explained below:

Auto-start and control Buslogger with AutoIt: To eliminate the need for
customer’s involvement at the client’s side, we automated the process of running
the Buslogger, which involved starting the Buslogger, capturing Unite traffic, and
saving the captured data. We used a freeware scripting language called AutoIt,
which is designed to automate the Windows GUI. As described on AutoIt website:
“It uses a combination of simulated keystrokes, mouse movement, and window/con-
trol manipulation in order to automate tasks in a way not possible or reliable with
other languages (e.g. VBScript and SendKeys)” [17]. AutoIt compiles scripts into
an executable file (.exe). “Windows Task Schedule” runs the executable file on Win-
dows startup, which starts the Buslogger application. When Buslogger is running,
AutoIt executable file calls the communication function of Buslogger which enable
capturing of the Unite traffic. Afterward, it calls “Start log” function which saves
the captured data to the local hard disk.

After running the Buslogger for a specified period, “Windows Task Schedule” starts
another AutoIt executable file to stop Buslogger’s communication function and then
exits the application.

We disabled Windows “Sleep” and “Hibernate” functions to prevent interrupting
the Buslogger. We also configured Auto-login feature for Windows, since Windows
locks when Buslogger is running and login is required to run AutoIt script.

Transmission of log files: Once the log files were captured from the Unite CM,
they were first saved into customer’s local folder, then later compressed and up-
loaded to the cloud. After the upload, they were downloaded, decompressed then
stored in the database at Ascom R&D. The operations involved at the customer’s
site as described in Figure 6.5 are explained below:

• Compression: In order to increase transmission speed and save storage space
on the cloud, the captured log files were compressed before being uploaded to
the cloud. In compressing log files, we used a java program which compressed
log files from the source directory i.e. customer’s local folder to the destination
directory that was created at Tresorit shared folder also known as Tresor.

This java program compressed one log file after the other starting from the
first modified one. It did this by selecting the first modified folder if there was
more than one folder produced by Buslogger then selecting the first modified
file if there was more than one file in a selected folder.

In case there was only one folder created by the Buslogger, the program com-
pressed all files with an exception to the latest modified file. When only one

41

Chapter 6. Implementation 6.4. Proof Of Concept (POC)

file was left in that folder, the program checked if the Buslogger was still run-
ning in order to avoid deadlock i.e. more than one process using the same
resource. If the Buslogger was still running, the program did not do anything
until the Buslogger finished running or there were more files created. More-
over, to avoid congesting customer’s hard drive, the compression java program
deleted all the files with their folders from the source directory after zipping
them.

• Uploading files to cloud: After compressing log files, they were uploaded
to the cloud using client-side Tresorit application. The client-side application
chose a symmetric key to encrypts zipped files before uploading them to the
cloud. After encryption, Tresorit ensured the integrity and authenticity of the
encrypted zipped files by applying Message Authentication Code (MAC) to
each content of a file using a random key that was only known by the client
and other users who shared the files.

Furthermore, before uploading the encrypted zipped files to the cloud, Tresorit
establishes a TLS channel i.e. a secure channel between the client machine
and the cloud so as to protect the data against tampering and eavesdropping
while being uploaded [22]. Once The TLS channel was created, the encrypted
files were uploaded to the remote directory at the cloud that was the same as
the one created at the client-side.

When the encrypted zipped files were made available for download and storage at
Ascom’s side, the following operations were performed:

• Downloading files from cloud: Before decrypting log files, Tresorit checks
the integrity of the transferred files so as to detect any modifications that
might have been done in transit. When the integrity checking was successful,
the encrypted zipped files were decrypted using the key that was shared by
the sender.

• Decompression: Once the files were decrypted, we used a java program
which decompressed the decrypted log files from the source directory i.e. Tre-
sorit shared folder, to the destination directory which was Ascom local folder.
The decompression java program started by selecting the first modified folder
if there was more than one folder created by the Buslogger. Then, it decom-
pressed all files from all the folders starting from the first modified to the least
modified one.

To avoid congesting Tresorit shared space, the decompression program deleted
all the zipped files from the source directory after decompressing them. Also,
all the created directories at Tresorit shared folder were deleted with an ex-
ception to the latest modified which might still be used by the Buslogger at
the customer’s site.

42

6.4. Proof Of Concept (POC) Chapter 6. Implementation

Storage of files in the database: After log files were decrypted then decom-
pressed into Ascom’s Local folder, they were stored into Oracle database for easy
access. For storage, we used a java program which included SQL queries for com-
municating with the database.

The storage java program did this by first establishing a connection to the Oracle
database. Once the connection was established, the program checked if the needed
table existed in the database. If the table did not exist in the database, the program
created it using SQL queries. The created table contained the following columns: the
date when the file was inserted into the database, name of the log file, its directory,
and the Binary Large OBject (BLOB) column for storing files. After the table was
created, the program moved all the files with their needed fields from Ascom’s local
folder into the Oracle database. To avoid repetition of the same file in the database,
the program checked if the name of the file and its directory existed in the database
before moving it.

6.4.2 Testing PoC
The Proof of Concept was extremely successful with all the system’s requirements
met. Also, the created programs were able to run at both customer’s and Ascom’s
side without affecting each other’s functionalities. These programs could run and
stop at their predefined time-interval and provided results in a reliable and timely
manner. Additionally, the implemented solutions can also be used to log Unite
communications despite the configuration and usage of Unite system.

43

Chapter 6. Implementation 6.4. Proof Of Concept (POC)

44

7
Discussion

In this chapter, we will discuss our findings towards addressing the challenge facing
Ascom in understanding their Unite System which is being used differently by dif-
ferent customers. We managed to address this challenge by first understanding how
the Unite System works while using hospitals as a case study. This involved un-
derstanding how Unite communications were being logged, from what systems were
this information obtained, and what tools were used in capturing it. As a result,
we managed to obtain information that was captured from the customer’s site and
presenting it to Ascom R&D for storage in the database.

In doing so, we evaluated then tested different approaches for both capturing, trans-
ferring, and storing Unite communications. When capturing log data, we used the
Buslogger which proved to be the best tool in capturing Unite communications from
the Unite CM located at customer’s site. It did not only manage to capture Unite
communications from Unite CM but also ensuring security and privacy of the cap-
tured files through encrypting them before storing locally at the customer’s site.
Additionally, the Buslogger enabled us to view the contents of the log messages in
XML format which helped us in determining the type and structure of messages
being logged. Also, it gave us access to save the log files in different format and be
able to configure their size.

Once log data was captured, we transferred the files using both FTP applications
and cloud storage services. The FTP applications i.e. Filezilla and WinSCP, have
successfully presented Ascom R&D with the collected log files but they imposed
security concerns to Ascom’s network. For that reason, we selected cloud storage
services which managed to present Ascom with the captured log files with an excep-
tion to Globus in which we failed to meet its requirements for allocation of shared
storage space.

Among the tested cloud storage services, we decided to use Tresorit since it supports
the use of end-to-end encryption while the rest use server-side encryption. Accord-
ing to the related work [21], end-to-end encryption proves to provide security for
the transferred data i.e. captured log files, both at rest (at the cloud) and in transit
and most important it complies with HIPAA regulations.

When collected files were presented to Ascom R&D, we stored them in the database
for improving data access to users, its security, and integrity. To accomplish this,
we tested both relational and non relational database solutions in which Oracle

45

Chapter 7. Discussion

database proved to be the best solution for storing the collected log files. We also
could not use Microsoft SQL Server 2014 to store the files because it did not sup-
port the format of the messages collected from Unite CM i.e. messages with different
numbers of XML tags. Additionally, PostgreSQL failed to be used due to its inabil-
ity to support searching within XML tags. However, we managed to test a non
relational graph database called Neo4j which was found to be useful in performing
further analysis for the collected log data although it requires pre-processing.

There are limitations associated with the implementation of this thesis work such as
the transfer service used i.e. Tresorit does not keep a backup of the login credentials
on the server. So, users have to remember their credentials or else they will not be
able to access their stored files. Also, when capturing Unite communication at the
customer’s side, the Buslogger runs when after logging into the PC, so the user has
to login for the Buslogger to operate successfully. Furthermore, our implementation
was limited to only one client and one server with a maximum of 1 Terabyte of
collected data.

46

8
Conclusion and Future Work

The understanding of Ascom’s Unite System was done successfully and we were
able to present Ascom with the captured information that could be used in further
system development such as performing troubleshooting and analysis. The used ap-
proaches i.e. Tresorit and Oracle database, have their benefits and some limitations
during implementation. However, most of these limitations can be addressed by the
users at Ascom.

Although Oracle database provided enough storage for the captured log files, other
NoSQL database solutions such as MongoDB and InfiniteGraph can also be used to
store and analyze captured log data. These NoSQL database solutions support the
storage of large files and virtually unlimited scalability. Also, another tool known
as Wireshark’s plugin, which is currently in the development phase at Ascom can
also be used in capturing Unite communications from customer’s site.

Even though we automated the process of running the Buslogger, Ascom can have
the auto-start functionality built within it. Furthermore, Ascom can use captured
logs to evaluate its customers’ workload e.g. nurses stress levels as it was done by
the previous thesis student.

47

Chapter 8. Conclusion and Future Work

48

9
Bibliographic Notes

Reference [1] It shows how Field Programmable Gate Arrays (FPGA)
technology was used to attack cryptographic applications
using a password dictionary.

Reference [2] It examines a number of SQL and NoSQL data stores
that are designed to scale Online Transaction Processing
(OLTP) application loads i.e data stores that support a
large number of simple read/write operations per second,
over many servers.

Reference [3] It describes different efficient and secure ways of transfer-
ring, synchronizing, and sharing big data using an online
cloud service "Globus".

Reference [4] It introduces an embedded personal computing (PC) tech-
nology and how it allows desktop computer applications to
adapt into a real-time control world.

Reference [5] It emphasize on cloud storage providers, its architecture,
security challenges facing it, and encryption methodologies
offered by cloud storage services.

Reference [6] It describes a software which encrypt and decrypt files and
text in BlackBerry using cipher block encryption with Ci-
pher Feedback (CFB) 8-bit mode.

Reference [7] It introduces the client-server system, its architecture, and
components both hardware and software components.

Reference [8] It explains the challenges caused by the use of end-to-end
encryption in email service.

Reference [9] It describes the characterization study of big data trans-
fer protocols on long-haul network by analyzing the per-
formance and fairness of three open-source protocols:
GridFTP, FDT, and UDT.

Reference [10] It introduces big data, causes for its growth, and the re-
quirements for its storage.

Reference [11] It introduces FTP, its history, connections types, transfer
modes, and types of encryption it supports.

49

Chapter 9. Bibliographic Notes

Reference [12] It describes four modes of operation for Data Encryption
Standard (DES).

Reference [13] It documents about PostGreSQL including its background,
features, and advantages of using it.

Reference [14] It is a technical manual for Globus Toolkit.
Reference [15] It gives an overview of cloud storage, its background, how

it works, its benefits, and disadvantages of using it.
Reference [16] It introduces client-server computing, its purpose, charac-

teristics of a client and a server, advantages, and disadvan-
tages of using it.

Reference [17] It documents about AutoIt including its features.
Reference [18] It documents about Microsoft Azure including its security,

privacy, transparency, and compliance.
Reference [19] It introduces big data, its evolution (causes for its growth),

characteristics, and sources of big data.
Reference [20] It is a technical manual for Neo4j graph database.
Reference [21] It documents about the security implementation in Tre-

sorit.
Reference [22] It explains why cloud is not trusted by its users then de-

scribe the security of an online cloud service "Tresorit" and
why it is considered secure to use.

Reference [23] It is a technical manual for WinSCP.

50

Bibliography

Books and Articles
[1] A. Abbas et al. “An efficient implementation of PBKDF2 with RIPEMD-

160 on multiple FPGAs”. In: 2014 20th IEEE International Conference on
Parallel and Distributed Systems (ICPADS). Dec. 2014, pp. 454–461. doi:
10.1109/PADSW.2014.7097841.

[2] Rick Cattell. “Scalable SQL and NoSQL data stores”. In: ACM SIGMOD
Record 39.4 (2011), pp. 12–27.

[3] Kyle Chard, Steven Tuecke, and Ian Foster. “Efficient and secure transfer,
synchronization, and sharing of big data”. In: Cloud Computing, IEEE 1.3
(2014), pp. 46–55.

[4] Xin Feng, Steven A Velinsky, and Daehie Hong. “Integrating embedded PC
and Internet technologies for real-time control and imaging”. In: IEEE/ASME
transactions on mechatronics 7.1 (2002), pp. 52–60.

[5] Okeke Stephen. “The Study of the Application of Data Encryption Techniques
in Cloud Storage to Ensure Stored Data Integrity and Availability”. In: Inter-
national Journal of Scientific and Research Publications (2014), p. 259.

[6] M. Wangsadiredja and R. Munir. “Text and file encryption application for
blackberry using cipher feedback 8-bit mode”. In: Electrical Engineering and
Informatics (ICEEI), 2011 International Conference on. July 2011, pp. 1–6.
doi: 10.1109/ICEEI.2011.6021761.

[7] Subhash Chandra Yadav and Sanjay Kumar Singh. Architectures of Clien-
t/Server Systems. New Delhi: New Age International (P) Ltd., Publishers,
2009, pp. 41–62.

[8] Jiangshan Yu, Vincent Cheval, and Mark Ryan. “Challenges with End-to-End
Email Encryption”. In: Springer Reference (2014).

[9] Se-young Yu, Nevil Brownlee, and Aniket Mahanti. “Characterizing perfor-
mance and fairness of big data transfer protocols on long-haul networks”. In:
Local Computer Networks (LCN), 2015 IEEE 40th Conference on. IEEE. 2015,
pp. 213–216.

51

http://dx.doi.org/10.1109/PADSW.2014.7097841
http://dx.doi.org/10.1109/ICEEI.2011.6021761

Chapter Bibliography Electronic Resources

Electronic Resources
[10] A Adshead. Big Data storage: Defining Big Data and the type of storage it

needs. 2013. url: http://www.computerweekly.com/podcast/Big-data-
storage-Defining-big-data-and-the-type-of-storage-it-needs.

[11] C Chung. An Introduction to FTP. 2014. url: http://www.2brightsparks.
com/resources/articles/an-introduction-to-ftp.pdf.

[12] Federal Information Processing Standards Publication 81. Announcing the Stan-
dard for DES MODES OF OPERATION. 1980. url: http://csrc.nist.
gov/publications/fips/fips81/fips81.htm.

[13] The PostgreSQL Global Development Group. PostGreSQL. 1996-2016. url:
https://www.postgresql.org/about/.

[14] GT 4.0 Component Fact Sheet: GridFTP. url: http://toolkit.globus.
org/toolkit/docs/4.0/data/gridftp/gridftpfacts.html#s-gridftp-
facts-testedplatforms.

[15] Kieu Le and Mark Singh Mark Singh. Cloud Storage. 2011. url: http://
public.csusm.edu/fangfang/Teaching/HTMmaterial/StudentProjectFall2011/
Team3.pdf.

[16] ND Liyanage. Client/Server Architecture. 2013. url: http://clientserverarch.
blogspot.co.uk/2013/03/introduction-to-clientserver-computing.
html.

[17] AutoIt Consulting Ltd. AutoIt. 2015. url: https://www.autoitscript.com/
site/autoit/.

[18] Microsoft Azure Trust Center. 2016. url: https://azure.microsoft.com/
en-us/support/trust-center/.

[19] D Sindol. Big Data Basics–Part 1–Introduction to Big Data. 2013. url: https:
//www.mssqltips.com/sqlservertip/3132/big-data-basics--part-1--
introduction-to-big-data/.

[20] The Neo4j Manual v2.3.2 - Introduction. 2016. url: https://www.neo4j.
com/docs/snapshot/introduction.html.

[21] Tresorit Cloud Storage + End-to-end Encryption. 2016. url: https://tresorit.
com/security/end-to-end-encryption.

[22] Tresorit Security Whitepaper. url: https://tresorit.com/files/tresoritwhitepaper.
pdf.

[23] WinSCP Free SFTP, SCP and FTP client for Windows. 2000-2016. url:
https://www.winscp.net/eng/docs/start.

52

http://www.computerweekly.com/podcast/Big-data-storage-Defining-big-data-and-the-type-of-storage-it-needs
http://www.computerweekly.com/podcast/Big-data-storage-Defining-big-data-and-the-type-of-storage-it-needs
http://www.2brightsparks.com/resources/articles/an-introduction-to-ftp.pdf
http://www.2brightsparks.com/resources/articles/an-introduction-to-ftp.pdf
http://csrc.nist.gov/publications/fips/fips81/fips81.htm
http://csrc.nist.gov/publications/fips/fips81/fips81.htm
https://www.postgresql.org/about/
http://toolkit.globus.org/toolkit/docs/4.0/data/gridftp/gridftpfacts.html#s-gridftp-facts-testedplatforms
http://toolkit.globus.org/toolkit/docs/4.0/data/gridftp/gridftpfacts.html#s-gridftp-facts-testedplatforms
http://toolkit.globus.org/toolkit/docs/4.0/data/gridftp/gridftpfacts.html#s-gridftp-facts-testedplatforms
http://public.csusm.edu/fangfang/Teaching/HTMmaterial/StudentProjectFall2011/Team3.pdf
http://public.csusm.edu/fangfang/Teaching/HTMmaterial/StudentProjectFall2011/Team3.pdf
http://public.csusm.edu/fangfang/Teaching/HTMmaterial/StudentProjectFall2011/Team3.pdf
http://clientserverarch.blogspot.co.uk/2013/03/introduction-to-clientserver-computing.html
http://clientserverarch.blogspot.co.uk/2013/03/introduction-to-clientserver-computing.html
http://clientserverarch.blogspot.co.uk/2013/03/introduction-to-clientserver-computing.html
https://www.autoitscript.com/site/autoit/
https://www.autoitscript.com/site/autoit/
https://azure.microsoft.com/en-us/support/trust-center/
https://azure.microsoft.com/en-us/support/trust-center/
https://www.mssqltips.com/sqlservertip/3132/big-data-basics--part-1--introduction-to-big-data/
https://www.mssqltips.com/sqlservertip/3132/big-data-basics--part-1--introduction-to-big-data/
https://www.mssqltips.com/sqlservertip/3132/big-data-basics--part-1--introduction-to-big-data/
https://www.neo4j.com/docs/snapshot/introduction.html
https://www.neo4j.com/docs/snapshot/introduction.html
https://tresorit.com/security/end-to-end-encryption
https://tresorit.com/security/end-to-end-encryption
https://tresorit.com/files/tresoritwhitepaper.pdf
https://tresorit.com/files/tresoritwhitepaper.pdf
https://www.winscp.net/eng/docs/start

A
Appendix 1

A.1 AutoIt: Script

A.1.1 Script for Starting Buslogger

1 #include <FileConstants.au3>
2 #include <MsgBoxConstants.au3>
3 #include <WinAPIFiles.au3>
4 #region --- Internal functions ---
5 Func _Au3RecordSetup()
6 Opt(’WinWaitDelay’,100)
7 Opt(’WinDetectHiddenText’,1)
8 Opt(’MouseCoordMode’,0)
9

10 EndFunc
11 ; Function to check if Buslogger is the active window
12 Func _WinWaitActivate($title,$text,$timeout=0)
13 WinWait($title,$text,$timeout)
14 If Not WinActive($title,$text) Then WinActivate($title,$text)
15 WinWaitActive($title,$text,$timeout)
16 EndFunc
17

18 _AU3RecordSetup()
19 #endregion --- Internal functions End ---
20 ; The address of the Properties file that contain the address of Buslogger
21 Local Const $sFilePath = @ScriptDir & ’\Launch.Properties’
22 ; Open the Properties file to read
23 Local $hFileOpen = FileOpen($sFilePath, $FO_READ)
24 If $hFileOpen = -1 Then ; If the Properties file is not exist
25 MsgBox($MB_SYSTEMMODAL, "", "An error occurred when reading the

Launch.Properties file.")↪→

26 Exit
27 EndIf
28 ; Read the first line of the file
29 Local $sFileRead = FileReadLine($hFileOpen, 1)
30 FileClose($hFileOpen)
31

32 Run($sFileRead) ; run Buslogger
33 ; Activate the Buslogger window
34 _WinWaitActivate("BusLogger","")
35 ; Send keyboard keystorke to Buslogger
36 Send("{ALTDOWN}{ALTUP}fs{ALTDOWN}{ALTUP}os")

53

Chapter A. Appendix 1 A.2. Compression Java Program

A.1.2 Script for Stopping Buslogger

1 #region --- Internal functions ---
2 Func _Au3RecordSetup()
3 Opt(’WinWaitDelay’,100)
4 Opt(’WinDetectHiddenText’,1)
5 Opt(’MouseCoordMode’,0)
6

7 EndFunc
8

9 Func _WinWaitActivate($title,$text,$timeout=0)
10 WinWait($title,$text,$timeout)
11 If Not WinActive($title,$text) Then
12 WinActivate($title,$text)
13 WinWaitActive($title,$text,$timeout)
14 EndFunc
15

16 _AU3RecordSetup()
17 #endregion --- Internal functions ---
18 _WinWaitActivate("BusLogger","")
19 Send("{ALTDOWN}{ALTUP}fs{ALTDOWN}{ALTUP}fx")

A.2 Compression Java Program

1 /∗
2 ∗ This java program performs the f o l l o w i n g f u n c t i o n s :
3 ∗ 1 . Compresses l og f i l e s from the l o c a l f o l d e r to T r e s o r i t f o l d e r
4 ∗ 2 . De l e t e s the source f i l e s and f o l d e r s a f t e r compress ion at the
5 ∗ l o c a l d i r e c t o r y (g iven that the Buslogger i s not running) .
6 ∗ 3 . Checking i f the Buslogger i s running , i f not then compress the
7 ∗ f i r s t f i l e in the source d i r e c t o r y then d e l e t e the f o l d e r . I f
8 ∗ the Buslogger i s s t i l l running , then do nothing .
9 ∗/

10

11 package compress ion ;
12

13 import java . i o . F i l e ;
14 import java . i o . Fi le InputStream ;
15 import java . i o . FileOutputStream ;
16 import java . u t i l . z ip . ZipEntry ;
17 import java . u t i l . z ip . ZipOutputStream ;
18 import java . i o . BufferedReader ;
19 import java . i o . InputStreamReader ;
20 import java . i o . Fi leReader ;
21 import java . u t i l . P rope r t i e s ;
22

23 pub l i c c l a s s Compression {
24

25 pub l i c s t a t i c void main (St r ing [] a rgs) {
26

27 whi le (t rue) {
28 t ry {
29 // Gett ing the cur rent working d i r e c t o r y

54

A.2. Compression Java Program Chapter A. Appendix 1

30 St r ing work ingDirectory = System . getProperty (" user . d i r ") ;
31

32 // Loading java p r o p e r t i e s f i l e
33 Prope r t i e s p r o p e r t i e s F i l e s = new Prope r t i e s () ;
34 Fi leReader reader = new Fi leReader (work ingDirectory + " \\ " +
35 " Customer . p r o p e r t i e s ") ;
36 p r o p e r t i e s F i l e s . load (reader) ;
37

38 byte [] b u f f e r = new byte [1 0 2 4] ;
39

40 // Gett ing the d e s t i n a t i o n d i r e c t o r y
41 St r ing d e s t i n a t i o n D i r e c t o r y = p r o p e r t i e s F i l e s . getProperty
42 (" de s t i na t i onpath ") ;
43

44 // Gett ing the source d i r e c t o r y
45 St r ing dirPath = p r o p e r t i e s F i l e s . getProperty (" sourcepath ") ;
46 F i l e d i r = new F i l e (dirPath) ;
47

48 //Get a l i s t o f s u b d i r e c t o r i e s in that d i r e c t o r y
49 F i l e l i s t D i r e c t o r y [] = d i r . l i s t F i l e s () ;
50

51

52 /∗ Checking the f i r s t modi f i ed subd i r e c t o ry
53 ∗ I f the l i s t o f s u b d i r e c t o r i e s i s more than one ∗/
54 i f (l i s t D i r e c t o r y . l ength > 1) {
55 F i l e F i r s tMod i f i edFo lde r = l i s t D i r e c t o r y [0] ;
56 f o r (i n t j = 0 ; j < l i s t D i r e c t o r y . l ength ; j++){
57 i f (F i r s tMod i f i edFo lde r . l a s tMod i f i ed () >
58 l i s t D i r e c t o r y [j] . l a s tMod i f i ed ()) {
59 Fi r s tMod i f i edFo lde r = l i s t D i r e c t o r y [j] ;
60 }
61 }
62

63 /∗ Creat ing a new subd i r e c t o ry path and a s s i gn i t
64 ∗ to SubdirPath ∗/
65 St r ing SubdirPath = dirPath + Fi r s tMod i f i edFo lde r . getName ()
66 + " \\ " ;
67 F i l e SubDirectory = new F i l e (SubdirPath) ;
68 St r ing [] NumberofFiles = Fi r s tMod i f i edFo lde r . l i s t () ;
69

70 /∗ For loop f o r i t e r a t i n g the number o f f i l e s to
71 ∗ be compressed in the f i r s t modi f i ed f o l d e r ∗/
72 f o r (i n t k = 0 ; k < NumberofFiles . l ength ; k++){
73

74 // Gett ing array o f f i l e s in the subd i r e c t o ry
75 St r ing [] empty = Fi r s tMod i f i edFo lde r . l i s t () ;
76

77 /∗ Checking i f the number o f f i l e s in the f i r s t
78 ∗ modi f i ed f o l d e r i s >= 1 ∗/
79 i f (empty . l ength > 0) {
80 //Get a l l the f i r s t modi f i ed f i l e s from the subd i r e c to ry
81 F i l e [] f i l e s = SubDirectory . l i s t F i l e s () ;
82 F i l e F i r s t M o d i f i e d F i l e = f i l e s [0] ;
83

84 /∗ Getting the name o f the f i r s t modi f i ed f i l e
85 ∗ without the path ∗/

55

Chapter A. Appendix 1 A.2. Compression Java Program

86 St r ing f i l ename = F i r s t M o d i f i e d F i l e . getName () ;
87

88 //Removing the extens i on from f i l ename
89 St r ing name = f i l ename . sub s t r i ng (0 ,
90 f i l ename . la s t IndexOf (’ . ’)) ;
91

92 //The Zip extens i on
93 St r ing FILE_EXTENSION = " . Zip " ;
94

95 /∗ Creat ing a d i r e c t o r y in T r e s o r i t shared f o l d e r with
96 ∗ the same name as the source f o l d e r in l o c a l
97 ∗ d i r e c t o r y ∗/
98 St r ing New_dest inat ionDirectory = d e s t i n a t i o n D i r e c t o r y +
99 Fi r s tMod i f i edFo lde r . getName () + " \\ " ;

100 F i l e newDirectory = new F i l e (New_dest inat ionDirectory) ;
101 newDirectory . mkdirs () ;
102

103 // Create a f i l e p a t h f o r the z ip f i l e
104 St r ing f i l e p a t h = newDirectory + " \\ " + name +
105 FILE_EXTENSION;
106

107 /∗ Getting the f i r s t modi f i ed f i l e from the
108 ∗ f i r s t M o d i i e d F o l d e r ∗/
109 f o r (i n t i = 0 ; i < f i l e s . l ength ; i++){
110 i f (F i r s t M o d i f i e d F i l e . l a s tMod i f i ed () >
111 f i l e s [i] . l a s tMod i f i ed ()) {
112 F i r s t M o d i f i e d F i l e = f i l e s [i] ;
113 }
114 }
115

116 FileOutputStream f i l e_output = new FileOutputStream
117 (f i l e p a t h) ;
118 ZipOutputStream zip_output = new ZipOutputStream
119 (f i l e_output) ;
120

121 //Adding a f i l e to a z ip entry
122 ZipEntry zip_entry = new ZipEntry (f i l ename) ;
123 zip_output . putNextEntry (zip_entry) ;
124

125 //Read the f i l e from the given path
126 Fi leInputStream input = new Fi leInputStream
127 (F i r s t M o d i f i e d F i l e) ;
128

129 i n t l en ;
130 whi le ((l en = input . read (b u f f e r)) > 0) {
131 zip_output . wr i t e (bu f f e r , 0 , l en) ;
132 }
133

134 input . c l o s e () ;
135 zip_output . c l o seEntry () ;
136 zip_output . c l o s e () ;
137

138 // Delete the compressed f i l e from source
139 F i r s t M o d i f i e d F i l e . d e l e t e () ;
140 }
141 }

56

A.2. Compression Java Program Chapter A. Appendix 1

142

143 // Checking i f the f o l d e r i s empty then d e l e t e i t
144 St r ing [] empty = Fi r s tMod i f i edFo lde r . l i s t () ;
145 i f (empty . l ength == 0) {
146 Fi r s tMod i f i edFo lde r . d e l e t e () ;
147 }
148 }
149

150 e l s e i f (l i s t D i r e c t o r y . l ength == 1) {
151 F i l e F i r s tMod i f i edFo lde r = l i s t D i r e c t o r y [0] ;
152

153 // Create a new subd i r e c to ry path
154 St r ing SubdirPath = dirPath + Fi r s tMod i f i edFo lde r . getName () +
155 " \\ " ;
156 F i l e SubDirectory = new F i l e (SubdirPath) ;
157 St r ing [] NumberofFiles1 = Fi r s tMod i f i edFo lde r . l i s t () ;
158

159 /∗ Creat ing a f o l d e r at T r e s o r i t that has the same name as
160 ∗ the source f o l d e r at l o c a l f o l d e r and move i t s
161 ∗ compressed f i l e s in i t ∗/
162 St r ing New_dest inat ionDirectory = d e s t i n a t i o n D i r e c t o r y +
163 Fi r s tMod i f i edFo lde r . getName () + " \\ " ;
164 F i l e newDirectory = new F i l e (New_dest inat ionDirectory) ;
165 newDirectory . mkdirs () ;
166

167 i f (NumberofFiles1 . l ength > 1) {
168

169 f o r (i n t h = 1 ; h < NumberofFiles1 . l ength ; h++){
170 //Get a l l the f i l e from the subd i r e c to ry
171 F i l e [] f i l e s = SubDirectory . l i s t F i l e s () ;
172

173 F i l e F i r s t M o d i f i e d F i l e = f i l e s [0] ;
174

175 /∗ Getting the name o f the f i r s t modi f i ed f i l e
176 ∗ without the path ∗/
177 St r ing f i l ename = F i r s t M o d i f i e d F i l e . getName () ;
178

179 //Removing the extens i on from f i l ename
180 St r ing name1 = f i l ename . sub s t r i ng (0 ,
181 f i l ename . la s t IndexOf (’ . ’)) ;
182

183 //The Zip extens i on
184 St r ing FILE_EXTENSION1 = " . Zip " ;
185

186 // Create a f i l e p a t h f o r the z ip f i l e
187 St r ing f i l e p a t h = newDirectory + " \\ " + name1 +
188 FILE_EXTENSION1;
189

190 //For loop f o r g e t t i n g the f i r s t modi f i ed f i l e
191 f o r (i n t g = 1 ; g < f i l e s . l ength ; g++){
192 i f (F i r s t M o d i f i e d F i l e . l a s tMod i f i ed () >
193 f i l e s [g] . l a s tMod i f i ed ()) {
194 F i r s t M o d i f i e d F i l e = f i l e s [g] ;
195 }
196 }
197

57

Chapter A. Appendix 1 A.2. Compression Java Program

198 FileOutputStream f i l e_output = new FileOutputStream
199 (f i l e p a t h) ;
200 ZipOutputStream zip_output = new ZipOutputStream
201 (f i l e_output) ;
202

203 //Adding a f i l e to z ip entry
204 ZipEntry zip_entry = new ZipEntry (f i l ename) ;
205 zip_output . putNextEntry (zip_entry) ;
206

207 //Read the f i l e from the given path
208 Fi leInputStream input = new Fi leInputStream
209 (F i r s t M o d i f i e d F i l e) ;
210

211 i n t l en ;
212 whi le ((l en = input . read (b u f f e r)) > 0) {
213 zip_output . wr i t e (bu f f e r , 0 , l en) ;
214 }
215

216 input . c l o s e () ;
217 zip_output . c l o seEntry () ;
218 zip_output . c l o s e () ;
219

220 // Delete the compressed f i l e from source
221 F i r s t M o d i f i e d F i l e . d e l e t e () ;
222 }
223 }
224

225 e l s e i f (NumberofFiles1 . l ength == 1) {
226

227 St r ing p r o c e s s I d I n f o =" " ;
228 St r ing l i n e ;
229

230 // Gett ing d i r e c t o r y to task l i s t
231 St r ing Task_l i s t ing = p r o p e r t i e s F i l e s . getProperty
232 ("TASK_LIST") ;
233

234 //Get proce s s name
235 St r ing App_name = p r o p e r t i e s F i l e s . getProperty
236 (" Application_Name ") ;
237

238 Process p = Runtime . getRuntime () . exec (Task_l i s t ing) ;
239

240 BufferedReader input = new BufferedReader (new
241 InputStreamReader (p . getInputStream ())) ;
242

243 // Gett ing the id o f the running proce s s
244 whi le ((l i n e = input . readLine ()) != n u l l) {
245 p r o c e s s I d I n f o+=l i n e ;
246 }
247

248 input . c l o s e () ;
249

250 // Checking i f bus logger i s running on windows
251 i f (! p r o c e s s I d I n f o . conta in s (App_name)) {
252

253 //Get a l l the f i l e from the subd i r e c to ry

58

A.2. Compression Java Program Chapter A. Appendix 1

254 F i l e [] f i l e s = SubDirectory . l i s t F i l e s () ;
255

256 F i l e New_FirstModif iedFi le = f i l e s [0] ;
257

258 /∗ Getting the name o f the f i r s t modi f i ed f i l e
259 ∗ without the path ∗/
260 St r ing New_Filename =
261 New_FirstModif iedFi le . getName () ;
262

263 //Removing the extens i on from f i l ename
264 St r ing New_Name = New_Filename . sub s t r i ng (0 ,
265 New_Filename . la s t IndexOf (’ . ’)) ;
266

267 //The Zip extens i on
268 St r ing FILE_EXTENSION2 = " . Zip " ;
269

270 // Create a f i l e p a t h f o r the z ip f i l e
271 St r ing f i l e p a t h = newDirectory + " \\ " + New_Name +
272 FILE_EXTENSION2;
273

274 FileOutputStream newf i le_output = new
275 FileOutputStream (f i l e p a t h) ;
276 ZipOutputStream Newzip_output = new
277 ZipOutputStream (newf i le_output) ;
278

279 //Adding a f i l e to z ip entry
280 ZipEntry zip_entry = new ZipEntry (New_Filename) ;
281

282 Newzip_output . putNextEntry (zip_entry) ;
283

284 //Read the f i l e from the given path
285 Fi leInputStream input1 = new Fi leInputStream
286 (New_FirstModif iedFi le) ;
287

288 i n t l en ;
289 whi le ((l en = input1 . read (b u f f e r)) > 0) {
290 Newzip_output . wr i t e (bu f f e r , 0 , l en) ;
291 }
292

293 input1 . c l o s e () ;
294 Newzip_output . c lo seEntry () ;
295 Newzip_output . c l o s e () ;
296

297 // Delete the compressed f i l e from source
298 New_FirstModif iedFi le . d e l e t e () ;
299 Fi r s tMod i f i edFo lde r . d e l e t e () ;
300

301 }
302 }
303 }
304 }
305 catch (Exception e) {
306 }
307 }
308 }
309 }

59

Chapter A. Appendix 1 A.3. Decompression Java Program

A.3 Decompression Java Program
1 /∗
2 ∗ This java program performs the f o l l o w i n g f u n c t i o n s :
3 ∗ 1 . Check the f i r s t modi f i ed f o l d e r i f the re i s more than one
4 ∗ f o l d e r , i f yes then decompresses a l l the l og f i l e s from T r e s o r i t
5 ∗ f i r s t modi f i ed f o l d e r to Ascom ’ s l o c a l f o l d e r .
6 ∗ 2 . Then d e l e t e s the decompressed f i l e s from T r e s o r i t f o l d e r and the
7 ∗ source f o l d e r .
8 ∗ 3 . I f the r e i s only one f o l d e r in the T r e s o r i t d i r e c to ry ,
9 ∗ decompress a l l the z ip f i l e s but do not d e l e t e the source f o l d e r .

10 ∗/
11 package decompress ion ;
12

13 import java . i o . F i l e ;
14 import java . i o . Fi le InputStream ;
15 import java . i o . FileOutputStream ;
16 import java . i o . IOException ;
17 import java . u t i l . z ip . ZipEntry ;
18 import java . u t i l . z ip . ZipInputStream ;
19 import java . i o . Fi leReader ;
20 import java . u t i l . P rope r t i e s ;
21

22 pub l i c c l a s s Decompression {
23

24 pub l i c s t a t i c void main (St r ing [] a rgs) {
25 whi le (t rue) {
26 t ry {
27 // Gett ing the cur rent working d i r e c t o r y
28 St r ing work ingDirectory = System . getProperty (" user . d i r ") ;
29

30 // Loading java p r o p e r t i e s f i l e
31 Prope r t i e s prop = new Prope r t i e s () ;
32 Fi leReader reader = new Fi leReader
33 (work ingDirectory + " \\ " + "Ascom . p r o p e r t i e s ") ;
34 prop . load (reader) ;
35

36 byte [] b u f f e r = new byte [1 0 2 4] ;
37

38 // Se t t i ng the source d i r e c t o r y
39 St r ing sourceD i r e c to ry = prop . getProperty (" Sourcepath ") ;
40 F i l e s o u r c e d i r = new F i l e (sourc eD i r e c to ry) ;
41

42 //Get a l i s t o f s u b d i r e c t o r i e s in that source path
43 F i l e l i s t D i r [] = s o u r c e d i r . l i s t F i l e s () ;
44

45 // Gett ing the d e s t i n a t i o n d i r e c t o r y
46 St r ing de s tD i r e c to ry = prop . getProperty (" Dest inat ionpath ") ;
47

48 /∗ Checking i f the re i s unwanted f i l e c a l l e d " desktop . i n i "
49 ∗ then d e l e t e i t i f p re sent ∗/
50 St r ing Unwantedpath = prop . getProperty (" UnwantedPath ") ;

60

A.3. Decompression Java Program Chapter A. Appendix 1

51 i f (new F i l e (Unwantedpath) . e x i s t s ()) {
52 new F i l e (Unwantedpath) . d e l e t e () ;
53 }
54

55 /∗ Checking the f i r s t modi f i ed subd i r e c t o ry i f the l i s t o f
56 ∗ s u b d i r e c t o r i e s i s more than one ∗/
57 i f (l i s t D i r . l ength > 1) {
58 F i l e f i r s t M o d i f i e d F o l d e r = l i s t D i r [0] ;
59 f o r (i n t j = 0 ; j < l i s t D i r . l ength ; j++) {
60 i f ((f i r s t M o d i f i e d F o l d e r . l a s tMod i f i ed () >
61 l i s t D i r [j] . l a s tMod i f i ed ())) {
62 f i r s t M o d i f i e d F o l d e r = l i s t D i r [j] ;
63 }
64 }
65

66 /∗ Creat ing a new subd i r e c t o ry path f o r the s e l e c t e d f i r s t
67 ∗ modi f i ed f o l d e r at the source and a s s i gn i t to Subdir ∗/
68 St r ing SubdirPath = sourceD i r e c to ry +
69 f i r s t M o d i f i e d F o l d e r . getName () + " \\ " ;
70 F i l e Subdir = new F i l e (SubdirPath) ;
71

72 // Gett ing an array o f f i l e s in that subd i r e c t o ry
73 St r ing [] NumberofFiles = f i r s t M o d i f i e d F o l d e r . l i s t () ;
74

75 //Removing unwanted f i l e s
76 St r ing Unwantedpath1 = prop . getProperty (" UnwantedPath ") ;
77 i f (new F i l e (Unwantedpath1) . e x i s t s ()) {
78 new F i l e (Unwantedpath1) . d e l e t e () ;
79 }
80

81 /∗ For loop f o r i t e r a t i n g the number o f f i l e s to be
82 ∗ compressed in the f i r s t modi f i ed f o l d e r ∗/
83 f o r (i n t k = 0 ; k < NumberofFiles . l ength ; k++) {
84 St r ing [] empty = f i r s t M o d i f i e d F o l d e r . l i s t () ;
85

86 /∗ Checking i f the number o f f i l e s in the f i r s t modi f i ed
87 ∗ f o l d e r i s g r e a t e r than 0 ∗/
88 i f (empty . l ength > 0) {
89 //Get a l l the f i r s t modi f i ed f i l e from the subd i r e c to ry
90 F i l e [] f i l e s = Subdir . l i s t F i l e s () ;
91 F i l e f i r s t M o d i f i e d F i l e = f i l e s [0] ;
92

93 /∗ Getting the name o f the f i r s t modi f i ed f i l e without
94 ∗ the path ∗/
95 St r ing f i l ename = f i r s t M o d i f i e d F i l e . getName () ;
96

97 /∗ Creat ing a d i r e c t o r y that has the same name as the
98 ∗ source f o l d e r at l o c a l f o l d e r and move i t s compressed
99 ∗ f i l e s in i t ∗/

100 St r ing newdestDirectory1 = des tD i r e c to ry +
101 f i r s t M o d i f i e d F o l d e r . getName () + " \\ " ;
102 F i l e newDirectory1 = new F i l e (newdestDirectory1) ;
103 newDirectory1 . mkdirs () ;
104

105 /∗ Getting the f i r s t modi f i ed f i l e from the
106 ∗ f i r s t M o d i f i e d F o l d e r ∗/

61

Chapter A. Appendix 1 A.3. Decompression Java Program

107 f o r (i n t i = 0 ; i < f i l e s . l ength ; i++) {
108 i f (f i r s t M o d i f i e d F i l e . l a s tMod i f i ed () > f i l e s
109 [i] . l a s tMod i f i ed ()) {
110 f i r s t M o d i f i e d F i l e = f i l e s [i] ;
111 }
112 }
113

114 //Read the z i p f i l e from the g iven path
115 ZipInputStream z i s = new ZipInputStream
116 (new Fi leInputStream (f i r s t M o d i f i e d F i l e)) ;
117

118 //Adding a f i l e entry to zipEntry
119 ZipEntry ze = z i s . getNextEntry () ;
120

121 //When the zipEntry i s not empty (has a z ip f i l e)
122 whi le (ze != n u l l) {
123 /∗ Get the name o f the s e l e c t e d f i l e b e f o r e
124 ∗ compress ion e . g . 141202 094318. l og ∗/
125 St r ing f i leName = ze . getName () ;
126

127 // Create a d e s t i n a t i o n path f o r the f i l e
128 St r ing f i l e P a t h = newDirectory1 + " // " + fi leName ;
129 F i l e newFile = new F i l e (f i l e P a t h) ;
130

131 /∗ c r e a t e a l l non e x i s t s f o l d e r s to avoid
132 ∗ FileNotFoundException f o r compressed f o l d e r ∗/
133 new F i l e (newFile . getParent ()) . mkdirs () ;
134

135 FileOutputStream f o s = new FileOutputStream (newFile) ;
136

137 i n t l en ;
138 whi le ((l en = z i s . read (b u f f e r)) > 0) {
139 f o s . wr i t e (bu f f e r , 0 , l en) ;
140 }
141

142 f o s . c l o s e () ;
143 ze = z i s . getNextEntry () ;
144 }
145

146 z i s . c l o seEntry () ;
147 z i s . c l o s e () ;
148

149 // Delete the compressed f i l e from source
150 f i r s t M o d i f i e d F i l e . d e l e t e () ;
151 }
152 }
153 // Checking i f the f o l d e r i s empty then d e l e t e i t
154 St r ing [] empty = f i r s t M o d i f i e d F o l d e r . l i s t () ;
155 i f (empty . l ength == 0) {
156 f i r s t M o d i f i e d F o l d e r . d e l e t e () ;
157 }
158 }
159 e l s e i f (l i s t D i r . l ength == 1) {
160 // Gett ing the f i r s t modi f i ed f o l d e r
161 F i l e f i r s t M o d i f i e d F o l d e r = l i s t D i r [0] ;
162

62

A.3. Decompression Java Program Chapter A. Appendix 1

163 // Create a new subd i r e c to ry path
164 St r ing SubdirPath1 = sourceD i r e c to ry +
165 f i r s t M o d i f i e d F o l d e r . getName () + " \\ " ;
166 F i l e Subdir1 = new F i l e (SubdirPath1) ;
167 St r ing [] NumberofFiles1 = f i r s t M o d i f i e d F o l d e r . l i s t () ;
168

169 /∗ Creat ing a f o l d e r at T r e s o r i t that has the same name as
170 ∗ the source f o l d e r at l o c a l f o l d e r and move i t s compressed
171 ∗ f i l e s in i t ∗/
172 St r ing newdestDirectory2 = des tD i r e c to ry +
173 f i r s t M o d i f i e d F o l d e r . getName () + " \\ " ;
174 F i l e newDirectory2 = new F i l e (newdestDirectory2) ;
175 newDirectory2 . mkdirs () ;
176

177 // Checking i f the number o f f i l e s in the f i r s t f o l d e r i s >=1
178 i f (NumberofFiles1 . l ength >= 1) {
179

180 //For a l l the number o f f i l e s in the f i r s t f o l d e r
181 f o r (i n t h = 0 ; h < NumberofFiles1 . l ength ; h++) {
182 F i l e [] f i l e s = Subdir1 . l i s t F i l e s () ;
183

184 F i l e f i r s t M o d i f i e d F i l e 1 = f i l e s [0] ;
185

186 /∗ Getting the name o f the f i r s t modi f i ed f i l e without
187 ∗ the path ∗/
188 St r ing f i l ename1 = f i r s t M o d i f i e d F i l e 1 . getName () ;
189

190 //For loop f o r g e t t i n g the f i r s t modi f i ed f i l e
191 f o r (i n t g = 1 ; g < f i l e s . l ength ; g++) {
192 i f (f i r s t M o d i f i e d F i l e 1 . l a s tMod i f i ed () >
193 f i l e s [g] . l a s tMod i f i ed ()) {
194 f i r s t M o d i f i e d F i l e 1 = f i l e s [g] ;
195 }
196 }
197

198 //Read the z i p f i l e from the g iven path
199 ZipInputStream z i s = new ZipInputStream
200 (new Fi leInputStream (f i r s t M o d i f i e d F i l e 1)) ;
201

202 //Adding a f i l e entry to zipEntry
203 ZipEntry ze = z i s . getNextEntry () ;
204

205 //When the zipEntry i s not empty
206 whi le (ze != n u l l) {
207 /∗ Get the name o f the s e l e c t e d f i l e b e f o r e
208 ∗ compress ion e . g . 141202 094318. l og ∗/
209 St r ing f i leName1 = ze . getName () ;
210

211 // Create a d e s t i n a t i o n path f o r the f i l e
212 St r ing f i l e P a t h 1 = newDirectory2 + " // " + fi leName1 ;
213 F i l e newFile1 = new F i l e (f i l e P a t h 1) ;
214

215 /∗ c r e a t e a l l non e x i s t s f o l d e r s to avoid
216 ∗ FileNotFoundException f o r compressed f o l d e r ∗/
217 new F i l e (newFile1 . getParent ()) . mkdirs () ;
218

63

Chapter A. Appendix 1 A.4. Storage Java Program

219 FileOutputStream f o s = new FileOutputStream (newFile1) ;
220

221 i n t l en ;
222 whi le ((l en = z i s . read (b u f f e r)) > 0) {
223 f o s . wr i t e (bu f f e r , 0 , l en) ;
224 }
225

226 f o s . c l o s e () ;
227 ze = z i s . getNextEntry () ;
228 }
229

230 z i s . c l o seEntry () ;
231 z i s . c l o s e () ;
232

233 // Delete the compressed f i l e from source
234 f i r s t M o d i f i e d F i l e 1 . d e l e t e () ;
235 }
236 }
237 }
238 }
239 catch (IOException e) {
240 }
241 }
242 }
243 }

A.4 Storage Java Program

1 /∗
2 ∗ This java program performs the f o l l o w i n g f u n c t i o n s :
3 ∗ 1 . Es tab l i sh the connect ion with the Oracle database
4 ∗ 2 . Creates a t ab l e in the Oracle database us ing SQL q u e r i e s .
5 ∗ 3 . Copy captured log f i l e s from Ascom ’ s l o c a l f o l d e r to s t o r e them
6 ∗ in a t ab l e c r ea ted in Oracle database
7 ∗/
8

9 package proces sdatabase ;
10

11 import java . i o . F i l e ;
12 import java . i o . Fi le InputStream ;
13 import java . i o . Fi leReader ;
14 import java . i o . InputStream ;
15 import java . n io . f i l e . Path ;
16 import java . n io . f i l e . Paths ;
17 import java . s q l . Connection ;
18 import java . s q l . DatabaseMetaData ;
19 import java . s q l . DriverManager ;
20 import java . s q l . PreparedStatement ;
21 import java . s q l . Resu l tSet ;
22 import java . s q l . Statement ;
23 import java . u t i l . Calendar ;
24 import java . u t i l . P rope r t i e s ;
25

64

A.4. Storage Java Program Chapter A. Appendix 1

26 pub l i c c l a s s ProcessDatabase {
27

28 pub l i c s t a t i c Connection getConnect ion () throws Exception {
29 // Gett ing the cur rent working d i r e c t o r y
30 St r ing work ingDirectory = System . getProperty (" user . d i r ") ;
31

32 // Loading java p r o p e r t i e s f i l e
33 Prope r t i e s p r o p e r t i e s F i l e s = new Prope r t i e s () ;
34 Fi leReader reader = new Fi leReader (work ingDirectory + " \\ " +
35 " DatabaseInputs . p r o p e r t i e s ") ;
36 p r o p e r t i e s F i l e s . load (reader) ;
37

38 /∗ S p e c i f y i n g the database URL with the f o l l o w i n g p r o p e r t i e s
39 ∗ user , password , host , port number and SID ∗/
40 St r ing u r l = p r o p e r t i e s F i l e s . getProperty ("CONNECT_URL") ;
41 St r ing login_username = p r o p e r t i e s F i l e s . getProperty ("USERNAME") ;
42 St r ing login_password = p r o p e r t i e s F i l e s . getProperty ("PASSWORD") ;
43

44 // Loading the d r i v e r c l a s s then e s t a b l i s h the connect ion
45 Class . forName (p r o p e r t i e s F i l e s . getProperty ("DRIVER_CLASS")) ;
46

47 Connection con = DriverManager . getConnect ion (ur l , login_username ,
48 login_password) ;
49

50 re turn con ;
51 }
52

53 pub l i c s t a t i c void main (St r ing [] a rgs) {
54

55 whi le (t rue) {
56 Connection con = n u l l ;
57

58 t ry {
59 // Gett ing the cur rent working d i r e c t o r y
60 St r ing work ingDirectory = System . getProperty (" user . d i r ") ;
61

62 // Loading java p r o p e r t i e s f i l e
63 Prope r t i e s p r o p e r t i e s F i l e s = new Prope r t i e s () ;
64 Fi leReader reader = new Fi leReader (work ingDirectory + " \\ " +
65 " DatabaseInputs . p r o p e r t i e s ") ;
66 p r o p e r t i e s F i l e s . load (reader) ;
67

68 byte [] b u f f e r = new byte [1 0 2 4] ;
69

70 St r ing Fi lePath = p r o p e r t i e s F i l e s . getProperty ("SOURCE_PATH") ;
71

72 F i l e d i r = new F i l e (Fi lePath) ;
73

74 //Get a l i s t o f s u b d i r e c t o r i e s in that d i r e c t o r y
75 F i l e l i s t D i r [] = d i r . l i s t F i l e s () ;
76

77 f o r (i n t c = 0 ; c < l i s t D i r . l ength ; c++){
78

79 /∗ Creat ing a new subd i r e c t o ry path and a s s i gn i t to
80 ∗ SubdirPath ∗/
81 St r ing SubdirPath = Fi lePath + l i s t D i r [c] . getName () + " \\ " ;

65

Chapter A. Appendix 1 A.4. Storage Java Program

82 F i l e Subdir = new F i l e (SubdirPath) ;
83 St r ing [] NumberofFiles = l i s t D i r [c] . l i s t () ;
84

85 // Gett ing array o f f i l e s in the subd i r e c t o ry
86 St r ing [] empty = l i s t D i r [c] . l i s t () ;
87

88 // Gett ing the subd i r e c to ry path as a s t r i n g
89 St r ing SubDirectory_Path1 = l i s t D i r [c] . getAbsolutePath () ;
90

91 // Es tab l i sh a connect ion
92 con = getConnect ion () ;
93

94 Statement s t = con . createStatement () ;
95

96 //Check i f the t ab l e e x i s t i f not c r e a t e a tab l e
97 St r ing c r ea t e1 = p r o p e r t i e s F i l e s . getProperty
98 ("CREATING_TABLE") ;
99 St r ing table_naming = p r o p e r t i e s F i l e s . getProperty

100 ("TABLE_NAME") ;
101 DatabaseMetaData dbm = con . getMetaData () ;
102 Resu l tSet r s = dbm. getTables (nu l l , nu l l , table_naming , n u l l) ;
103 i f (r s . next ()) {
104

105 }
106 e l s e {
107 s t . execute (c r ea t e1) ;
108 }
109

110 i f (empty . l ength > 0) {
111

112 //Get a l l the f i r s t modi f i ed f i l e from the subd i r e c to ry
113 F i l e [] f i l e s = Subdir . l i s t F i l e s () ;
114 F i l e f i r s t M o d i f i e d F i l e = f i l e s [0] ;
115

116 /∗ Getting the f i r s t modi f i ed f i l e from the
117 ∗ f i r s t M o d i f i e d F o l d e r ∗/
118 f o r (i n t i = 0 ; i < f i l e s . l ength ; i++){
119

120 f i r s t M o d i f i e d F i l e = f i l e s [i] ;
121

122 // Converting a f i l e d i r e c t o r y
123 St r ing Modif iedFile_Path =
124 f i r s t M o d i f i e d F i l e . getAbsolutePath () ;
125

126 // Gett ing the File_Name
127 Path p = Paths . get (Modif iedFile_Path) ;
128 St r ing File_Name1 = p . getFileName () . t oS t r i ng () ;
129

130 InputStream inputStream = new Fi leInputStream (new
131 F i l e (Modif iedFile_Path)) ;
132

133 // Checking i f the path o f the l og f i l e e x i s t
134 St r ing s e l e c t i n g = p r o p e r t i e s F i l e s . getProperty
135 ("SELECT_STATEMENT") ;
136 PreparedStatement psy = con . prepareStatement (s e l e c t i n g) ;
137 psy . s e t S t r i n g (1 , Modif iedFile_Path) ;

66

A.4. Storage Java Program Chapter A. Appendix 1

138

139 Resu l tSet r sy = psy . executeQuery () ;
140

141 i f (! r sy . next ()) {
142

143 // Gett ing the cur rent time from Calender
144 Calendar ca l endar = Calendar . g e t In s tance () ;
145 java . s q l . Timestamp ourJavaDateObject = new
146 java . s q l . Timestamp (ca l endar . getTime () . getTime ()) ;
147

148 // I n s e r t i n g va lue s in to a tab l e
149 St r ing inse r t ing_statement =
150 p r o p e r t i e s F i l e s . getProperty ("INSERT_STATEMENT") ;
151 St r ing in s e r t i ng_va lu e s =
152 p r o p e r t i e s F i l e s . getProperty ("INSERT_VALUES") ;
153 PreparedStatement ps = con . prepareStatement
154 (in se r t ing_statement + in s e r t i ng_va lu e s) ;
155

156 ps . setTimestamp (1 , ourJavaDateObject) ;
157 ps . s e t S t r i n g (2 , SubDirectory_Path1) ;
158 ps . s e t S t r i n g (3 , File_Name1) ;
159 ps . s e t S t r i n g (4 , Modif iedFile_Path) ;
160 ps . setBlob (5 , inputStream) ;
161 ps . executeUpdate () ;
162 }
163 }
164 }
165 }
166 }
167 catch (Exception e) {
168 }
169 }
170 }
171 }

67

	List of Figures
	List of Tables
	Introduction
	Background
	Project Objectives
	Report Structure

	The Unite System
	Unite Protocol
	Unite Connectivity Manager

	Related Work
	Big Data Transfer Protocols
	Big Data Security in Globus
	Cryptographic Cloud Storage
	Relational and NoSQL Database

	System Architecture and Design
	System Architecture
	Physical View
	Information Flow

	System Design
	Client-Server Architecture
	Embedded PC

	File Transfer Protocol
	Cloud Storage Services

	Specifications
	Use Case Diagrams
	Nurse
	Buslogger
	System Administrator

	Requirements
	Functional Requirements
	Non-Functional Requirements

	Implementation
	Data Capturing from Unite CM by Buslogger
	Transmission of Unite Communications
	Online Cloud Services
	Globus
	Tresorit
	Google Drive
	Dropbox

	FTP
	FileZilla
	WinSCP

	Physical Delivery

	Storage of Communication Information
	Relational Database
	Oracle Database
	Microsoft SQL Server 2014
	PostgreSQL

	Non Relational Database
	Neo4j

	Proof Of Concept (POC)
	PoC Description
	Testing PoC

	Discussion
	Conclusion and Future Work
	Bibliographic Notes
	Appendix 1
	AutoIt: Script
	Script for Starting Buslogger
	Script for Stopping Buslogger

	Compression Java Program
	Decompression Java Program
	Storage Java Program

