
A Predicative Strong Normalisation Proof for a
λ-calculus with Interleaving Inductive Types

Andreas Abel1 and Thorsten Altenkirch2

1 Department of Computer Science,
University of Munich

abel@informatik.uni-muenchen.de
2 School of Computer Science & Information Technology,

University of Nottingham
txa@cs.nott.ac.uk

Abstract. We present a new strong normalisation proof for a λ-calculus
with interleaving strictly positive inductive types λµ which avoids the use
of impredicative reasoning, i.e., the theorem of Knaster-Tarski. Instead
it only uses predicative, i.e., strictly positive inductive definitions on the
metalevel. To achieve this we show that every strictly positive operator
on types gives rise to an operator on saturated sets which is not only
monotone but also (deterministically) set based – a concept introduced
by Peter Aczel in the context of intuitionistic set theory. We also extend
this to coinductive types using greatest fixpoints of strictly monotone
operators on the metalevel.

1 Introduction

We shall investigate a λ-calculus with strictly positive1 inductive types. I.e.,
given a type σ(X) where X appears only strictly positive we may construct a
new type µX.σ which is generated by the constructor c : σ(µX.σ) → µX.σ.
Examples are the natural numbers Nat = µX.1 + X, lists over a given type τ :
Listτ = µX.1 + τ ×X or trees branching over τ : Treeτ = µX.1 + (τ → X). We
also allow interleaving inductive types, as an example consider arbitrarily but
finitely branching trees which can be defined by

Fin = µX.ListX = µX.µY.1 + X × Y

We call Fin interleaving because the inductive definition goes through another
inductive type – List. A type like TreeNat is nested but not interleaved. 2

1 The occurrence of a type variable is positive iff it occurs within an even number of
left hand sides of →-types, it is strictly positive iff it never occurs on the left hand
side of a→-type. We will only use strictly positive occurrences in this paper because
positive inductive types cannot be understood predicatively in general.

2 The use of the term interleaving for this situation is due to Ralph Matthes, e.g., see
[Mat98]. An alternative would be mutually.

Positivity is essential for normalisation, i.e., we do not allow recursive domain
equations like X = X → X which may be represented by the type µX.X →
X. The difference between positive and strictly positive is more subtle, i.e.,
µX.(X → Bool) → Bool is an example of a positive but not strictly positive
type. This example has been used by Reynolds to show that there are no set-
theoretical models of System F [Rey84].

We consider λµ as a simply typed programming language corresponding to
a subset of Martin-Löf’s Type Theory (MLTT) [Mar84]. For our system we
show the important property of strong normalisation, following the idea of Tait
[Tai67]. To show strong normalisation of the simply typed λ-calculus, he defined
a set-valued interpreting function [[−]] on the types. For each type σ the set [[σ]]
contains the computable terms of type σ. Later Girard extended this idea to the
impredicative System F under the name candidates of reducibility [Gir72]. Our
construction is based on a technical alternative to candidates called saturated sets
- this technique has been used by Luo [Luo90] and by the second author [Alt93].
Since in our system a type σ may contain free variables, the interpretation [[σ]]
is no longer just a saturated set but a monotone operator on saturated sets.

Now we could just adopt the normalisation proof for System F and use
Knaster’s and Tarski’s theorem, stating that every monotone operator on a
complete lattice has a least fixed point, to define the interpretation for µ-types.
But this construction would require impredicative reasoning and the full proof-
theoretical strength of System F. It could not be carried out in a predicative
meta theory like MLTT. Should it not be possible to reason about a predicative
system like λµ in a predicative3 meta theory, as for instance, MLTT?

Predicative theories allow only strictly positive inductive definitions. That
means they must be given by an operator Φ(P) where P only occurs strictly
positive, i.e., never on the left hand side of an arrow. Φ defines a set µ which is
characterized as the smallest set closed under Φ:

(intro)
Φ(µ) ⊆ µ

Φ(Q) ⊆ Q
(elim)

µ ⊆ Q

Strictly positive inductive definitions can be understood as defined by well
founded derivation trees which may be infinitely branching. Hence, when build-
ing a derivation, we only refer to subderivations which are smaller in an intuitive
sense. In this way the consistency of predicative theories can be justified, whereas
the consistency of impredicative theories is only empiric. Furthermore there are
more options to extend a weaker, i.e., predicative theory without getting into
inconsistencies.

In this paper we show that indeed the strong normalisation of λµ can be
proven by predicative means. We manage to define the interpretation [[−]] of
the types without Knaster-Tarski, just by strictly positive inductive definitions,
using the concept of (deterministically) set based operators introduced by Peter
3 We are using the term predicative in the sense of avoiding circular definitions — this

usage has been popularized by Per Martin-Löf. In the terminology of proof theory
our system would be called impredicative since its ordinal is greater than Γ0.

Aczel in the context of intuitionistic set theory [Acz97]. Intuitively, a set based
operator can be understood as a monotone operator Φ which comes with a
urelement relation U . We require that if y ∈ Φ(P) and x U y (read x is an
urelement of y) then x ∈ P . We also require that the urelements can be used to
reconstruct the whole, i.e., y ∈ Φ({x | x U y}) for reasonable y ∈ Φ(True). For
any monotone operator Φ which satisfies the conditions given above the predicate
x ∈ Φ(P) can be replaced by the conditions x ∈ Φ(True) and ∀y U x → y ∈ P
which is strictly positive in P (see proposition 1). We have used this technique
in [AA99] to construct a value semantics for the types of the foetus system
predicatively.

As an example consider ΦList which can be defined inductively (writing [] for
the empty list and :: for cons):

[] ∈ ΦList(P)
a ∈ P l ∈ ΦList(P)

a :: l ∈ ΦList(P)

The appropriate relation UList can be defined inductively as well:

a UList a :: l

a UList l

a UList b :: l

It is now straightforward to verify that ΦList is set based by rule induction.
We show that every strictly positive type can be interpreted by a set based

operator and that fixpoints of set based operators can be constructed by strictly
positive inductive definitions on the meta level. Unsurprisingly, we need addi-
tional power on the metalevel which is given by one level of reflection correspond-
ing to the introduction of a Martin-Löf universe. Specifically, this is required
when defining the interpretation of types [[σ]].

We also extend the construction to coinductive or lazy types (like the type
of Streams over τ which is given by Streamτ = νX.τ ×X). To do so we consider
strictly positive definitions of greatest fixpoints as predicatively acceptable. This
assumption is based on the work on coinductive types in Type Theory [Coq94].
Intuitively, greatest fixpoints correspond to arbitrary trees, i.e., not necessarily
well founded ones.

To be precise: We assume that given a propositional expression Φ(P) s.t. P
appears strictly positive, it is possible to construct the greatest fixpoint ν of Φ,
s.t.

(co-intro)
ν ⊆ Φ(ν)

Q ⊆ Φ(Q)
(co-elim)

Q ⊆ ν

1.1 Related work

Lambda calculi with inductive types have been considered by a number of au-
thors, e.g., see [Hag87,Men88,Dyb91,CM89,Geu92,Loa97,Alt98]. Loader notes
that strong normalisation can be shown by using the techniques from System
F. This is carried out for monotone inductive types with primitive recursion

by Ralph Matthes [Mat98], using an impredicative meta theory. Benl presents
a predicative strong normalisation proof for non-interleaving inductive types
[Ben98], but this has not been extended to interleaving inductive types or coin-
ductive types.

Jouannaud and Okada [JO97], later with Blanqui [BJO99], also do not treat
interleaving inductive types, which they call mutually inductive. Furthermore
their normalisation proof is not predicative from our perspective, since they use
the theorem of Knaster and Tarski to construct the computability predicates.
This requires quantification over all such predicates, which can only be carried
out in an impredicative meta theory.

The system we are investigating here is closely related to the proof-theoretical
system IDi

<ω. However, we differ in allowing interleaving inductive definitions
which correspond to simultaneously defined sets. It is not clear in the moment
whether Buchholz’ reduction from IDc

α to IDi
α [Buc81], which also justifies posi-

tive inductive definitions, can be extended to our system.

1.2 Acknowledgments

Thierry Coquand has pointed out to us that one should use set based operators to
prove normalisation predicatively. We would also like to acknowledge discussions
with Peter Aczel on set based operators. Helmut Schwichtenberg allowed us to
present this work to his group, where we got interesting feedback from him and
his colleagues. Ralph Matthes gave a lot of very helpful comments on the draft.
We would also like to thank the anonymous referees who invested a lot of time
and effort to write reports which helped us to improve the paper.

1.3 Notational conventions

We are using a vector notation to simplify our notation. If we have a family
of expressions e1, e2, . . . , en we write e for the whole sequence. We denote the
length n of the sequence by |e|. Given a fixed e we write ee for e1e, e2e, . . . , ene.
Given a sequence of sets S where |S| = n we write ΠS for S1 × S2 × · · · × Sn.

We use set notation to define predicates, i.e., we write x ∈ P for P (x) and
we define new predicates by the notation for set comprehension. However, sets
are not first order citizens in our meta theory, i.e., we do not quantify over sets
and we do not use power sets. We write relations infix, i.e., we write x R y for
(x, y) ∈ R. We write projections as partial applications, i.e., R(y) = {x | x R y}.

We will annotate term families by types but to increase readability we will
often omit these annotations. We use the convention that all arrow symbols
associate to the right. We consider types and terms upto alpha-equivalence and
use ≡ to denote this.

2 The Calculus λµ

We already presented this calculus in [Alt98] also allowing positive inductive
types. We shall simplify the presentation here by exploiting the fact that we are

only interested in strictly positive types, following [Loa97,Abe99]. The choice of
type formers presented here is quite canonical and corresponds to bicartesian
closed categories which have also initial algebras for all definable endofunctors.

We assume a set of type variables X , we denote elements of X by X, Y, Z
and finite sequences of type variables by X,Y ,Z. The extension of X by Y is
denoted by X, Y . We define the set of types in which the variables X occur at
most strictly positive Ty(X) inductively by the following rules:

(Const)
0, 1 ∈ Ty(X)

(Var)
Xi ∈ Ty(X)

σ ∈ Ty() τ ∈ Ty(X)
(Arr)

σ → τ ∈ Ty(X)

σ, τ ∈ Ty(X)
(Sum),(Prod)

σ + τ, σ × τ ∈ Ty(X)

σ ∈ Ty(X, Y)
(Mu)

µY.σ ∈ Ty(X)

Closed types are denoted by Ty = Ty(). If σ ∈ Ty(X) and τi ∈ Ty for 1 ≤ i ≤ |X|
we write σ(τ) ∈ Ty for the result of substituting Xi in σ by τi in a capture
avoiding way.

Different to System F, we can restrict the typing rules to closed types because
we have no term forming rules which introduce new type variables (like Λ in the
case of System F). A type context Γ is a finite sequence of assumptions of the
form x : σ where x ∈ V is a term variable and σ ∈ Ty. We require that all
the variables in a context are different. We introduce the judgment Γ ` t : σ
meaning that t has the type σ in context Γ , where σ ∈ Ty. Γ ` t : σ is given by
the usual rules for simply typed λ calculus:

var
Γ, x : σ,∆ ` x : σ

Γ, x : σ ` t : τ
lam

Γ ` λxσ.t : σ → τ

Γ ` t : σ → τ Γ ` u : σ

Γ ` tu : τ
app

Additionally we assume a set of constants C and a signature given by Σ ⊆ C×Ty
which is decidable. We introduce the rule

c : σ ∈ Σ
const

Γ ` c : σ

For λµ we consider the following signature Σµ

unit : 1
pairσ1,σ2 : σ1 → σ2 → (σ1 × σ2)

πσ1,σ2
i : (σ1 × σ2) → σi i ∈ {1, 2}
caseσ

0 : 0 → σ

inσ1,σ2
i : σi → (σ1 + σ2) i ∈ {1, 2}

caseσ1,σ2,ρ : (σ1 → ρ) → (σ2 → ρ) → (σ1 + σ2) → ρ

c X.τ : τ(µX.τ) → µX.τ

ItX.τ,σ : (τ(σ) → σ) → (µX.τ) → σ

where σ, σi, ρ ∈ Ty and τ ∈ Ty(X). We will often omit type annotations when
they are clear from the context.

We write Tmσ for the set of terms of type σ:

Tmσ = {t|∃Γ.Γ ` t : σ}

Since we only allow strictly positive occurrences of type variables every type
gives rise to a functor in the sense of category theory. We exploit this by defining
the functorial strength of a type ρ ∈ Ty(X): Given fi ∈ σi → τi for 1 ≤ i ≤ n,
where n = |X| we define

ρ(f) : ρ(σ) → ρ(τ)

by induction over the structure of ρ: 4

C(f) = λxC .x C ∈ {0, 1}
Xi(f) = fi 1 ≤ i ≤ n

(ρ1 → ρ2)(f) = λgρ1→ρ2(σ).λxρ1 .ρ2(f)(gx)

(ρ1 × ρ2)(f) = λpρ1(σ)×ρ2(σ). pairρ1(τ)×ρ2(τ)(ρ1(f)(π1p))(ρ2(f)(π2p))

(ρ1 + ρ2)(f) = caseρ1(σ),ρ2(σ),ρ1(τ)+ρ2(τ)

(λxρ1(σ). in1(ρ1(f)x))(λyρ2(σ). in2(ρ2(f)y))

(µX.ρ)(f) = ItX.ρ(σ,X),µα(λxρ(σ,µα). c α(ρ(f , λyµα.y)x))
where α abbreviates X.ρ(τ , X)

This operation is motivated by the fact that each ρ gives rise to a (strong) func-
tor. We allow a partial instantiation of ρ which can be defined by instantiating
all other places with the identity function λxσ.x. The strength is needed in the
definition of the β-rule for µ types, which, read as an equation, corresponds to
weak initiality of the appropriate ρ(−)-algebra.

We are now ready to define the reduction relation �1 ⊆ Tm× Tm. We first
define top level β-reduction by the following axioms

(λx.t)u �β u[x := t]
πi(pair t1t2) �β ti i ∈ {1, 2}

case t1t2(ini u) �β tiu i ∈ {1, 2}
ItX.ρ t(c u) �β t(ρ(ItX.ρ t)u)

and then define �1 ⊆ Tm× Tm as the congruence closure:

t �β u

t �1 u

t �1 t′

tu �1 t′u

u �1 u′

tu �1 tu′

t �1 t′

λx.t �1 λx.t′

We define the set of strongly normalizing terms SNσ of type σ inductively by
the rule:

t ∈ Tmσ ∀t′ ∈ Tmσ.(t �1 t′) =⇒ t′ ∈ SNσ

t ∈ SNσ

Our goal is to give a predicative proof of the strong normalization theorem:
4 The case for → works only because ρ1 is closed by definition.

Theorem 1.
t ∈ Tmσ

t ∈ SNσ

3 Proving Strong Normalisation using Saturated Sets

Even for the simply typed lambda calculus strong normalisation cannot be
proven by a mere induction over the term structure, since an application (λx.t) s
can beta-reduce to a term t[x := s] that neither is a subterm of t nor of s. To
strengthen the induction hypothesis, Tait [Tai67] introduced the set of com-
putable terms [[σ]] ⊆ SNσ of type σ. E.g., given P ⊆ SNσ, Q ⊆ SNτ we define

P ⇒ Q := {t ∈ SNσ→τ | ∀u ∈ P. t u ∈ Q}
[[σ → τ]] := [[σ]] ⇒ [[τ]]

The new obligation Tmσ ⊆ [[σ]] can be proven by induction over the terms (cf.
Prop. 11) and the application case now is trivial.

But how does one extend this to other types, like the type of natural num-
bers? In [GLT89] it is suggested to interpret Nat by all strongly normalizing
terms of this type. However, one has to pay a high price for this when showing
the soundness of the eliminator and it is not clear how this technique can be
extended to systems like the one presented here. Here we follow a different way
and construct the interpretation of all other types introduction based, i.e.,

0 ∈ [[Nat]]
t ∈ [[Nat]]

S t ∈ [[Nat]]

However, there are a lot of strongly normalizing terms which are not included
in this definition. The basic idea is that the computable terms are the ones
such that all computation paths end up in [[Nat]], i.e., we may want to add the
following rule

t ∈ TmNat ∀u.t �1 u =⇒ u ∈ [[Nat]]
(comp)

t ∈ [[Nat]]

But this is just the definition of SNNat! The key technical insight we use is to
restrict attention to (strongly normalizing) terms whose canonical computation,
which we call weak head reduction (�whd), ends up in [[Nat]] or which are canon-
ically irreducible, such terms we call void (Void). Sets of strongly normalizing
terms which are closed under canonical computations and which include all void
terms we call saturated (SAT). In the example we would replace the rule (comp)
by the two rules

t ∈ VoidNat

(sat1)
t ∈ [[Nat]]

t ∈ SNNat t �whd t′ t′ ∈ [[Nat]]
(sat2)

t ∈ [[Nat]]

We are now going to define the notions Void and �whd for our calculus.5 We
define evaluation contexts as eliminator terms with a hole in the key position

E[X] ::= X t1 | πj X | case t1 t2 X | It t1 X

Weak head reduction �whd ⊆ �1 is defined as the least relation closed under the
β-axioms and under evaluation contexts.

t �β u

t �1 u

t �whd u

E[t] �whd E[u]

Note that �whd is deterministic. Furthermore we define the set Void as the least
set which includes variables and which is closed under evaluation contexts:

x ∈ V

x ∈ Void

t ∈ Void E[x] ∈ SN

E[t] ∈ Void

We write Voidσ for Void ∩ Tmσ. We verify the syntactic properties which are
needed in the proof and which motivate the definition of �whd:

Lemma 1.

1.
t �whd u t � t′

u ≡ t′ ∨ ∃u′.t′ �whd u′ ∧ u �∗ u′

2.
t ∈ Void E[x] ∈ SN

E[t] ∈ SN

3.
t �whd t′ E[t′] ∈ SN

E[t] ∈ SN

4.
E[t] �whd t′ t, t′, E[x] ∈ SN

E[t] ∈ SN

We omit the proof here. Note that the first property is a weak form of standard-
isation, expressing that weak head reduction can only be postponed but not
avoided. This property is needed to show some of the other properties, which
in general can be verified by rule induction over the definition of SN. A simple
corollary of 2. is that Void ⊆ SN.

Given a set of strongly normalizing terms P ⊆ SNσ we define its saturation
P ∗ ⊆ SNσ as the least set closed under

t ∈ P
(emb)

t ∈ P ∗

t ∈ Voidσ

(sat1)
t ∈ P ∗

t ∈ SNσ t �whd t′ t′ ∈ P ∗

(sat2)
t ∈ P ∗

We say that a set P ⊆ SNσ is saturated iff P ∗ ⊆ P and write P ∈ SATσ.
Obviously, P ∗ ∈ SATσ.

4 A Predicative Interpretation of Types

Following Tait, the interpretations [[σ]] of all closed types σ ∈ Ty will be satu-
rated sets. But how about the types with free type variables? We use Girard’s
5 Note that the type Nat can be represented as µX.1 + X, then define 0 =

c X.1+X(in1 unit) : Nat, S = λxNat.c X.1+X(in2 x) : Nat→ Nat

approach, who extended Tait’s method to System F [Gir72]: Open types are op-
erators on saturated sets (Girard actually used his candidate sets, which are more
restrictive than saturated sets). Transferred to our notation and terminology, he
defined the semantics of second-order quantified types as

[[ΠY.σ(X)]](P) :=
⋂

Q∈SAT

[[σ(X, Y)]](P , Q)

making splendid use of impredicativity: He quantifies over all saturated sets
while defining one. Since we do not quantify over types but use open types only
to define recursive types, we can give the interpretation by inductive definitions
(i.e., predicatively). Technically, this requires the “urelement” relation U to be
defined simultaneously with the interpretations. Given σ ∈ Ty(X) and closed
types τi ∈ Ty for 1 ≤ i ≤ n = |X|, we will define

[[σ]](P) ⊆ SNσ(τ) Pi ⊆ SNτi for 1 ≤ i ≤ n

Uσ
i ⊆ Tmτi × Tmσ(τ) 1 ≤ i ≤ n

such that the following properties hold:

Saturated If all Pi ∈ SATτi then [[σ]](P) ∈ SATσ(τ)

Monotone [[σ]] is monotone in all arguments, i.e.,

∀1 ≤ i ≤ n. Pi ⊆ Qi
(mon)

[[σ]](P) ⊆ [[σ]](Q)

Set based [[σ]] is set based by Uσ. For all 1 ≤ i ≤ n, t ∈ SNσ(τ) and u ∈ SNτi

the interpretation [[σ]] satisfies

t ∈ [[σ]](P) u Uσ
i t

(sb1)
u ∈ Pi

t ∈ [[σ]](SNτ)
(sb2)

t ∈ [[σ]](Uσ(t))

Note that (sb1) can be read as t ∈ [[σ]](P) =⇒ Uσ
i (t) ⊆ Pi. Informally, this

states that the ith component urelements of t must be in the original set of
urelements Pi. Likewise, (sb2) states that t must be reconstructible out of the
urelements extracted from t.

We require the operators to be set based for the following reason: The inter-
pretation M := [[µX.σ]](P) of an inductive type is defined by

t ∈ [[σ]](P ,M)
(cons′)

c t ∈ M

However, this cannot be a rule of an inductive definition since M , which we want
to define, does not appear strictly positive in the premise. Although X appears
strictly positive in the type σ, M cannot be said to appear strictly positive, since
it is argument of [[σ]], not of σ, and we do not know “what the operator is doing
with M”. Monotonicity is not strong enough for our purposes, and this is where
set-basedness comes in:

Proposition 1. Every [[σ]](P) is equivalent to a predicate which is strictly pos-
itive in P - that is for t ∈ SNσ(τ):

t ∈ [[σ]](P) ⇐⇒ t ∈ [[σ]](SNτ) ∧ ∀i. Uσ
i (t) ⊆ Pi

Proof.

⇒ Assuming t ∈ [[σ]](P), we obtain t ∈ [[σ]](SNτ) by (mon) and Uσ
i (t) ⊆ Pi for

all i by (sb1).
⇐ Using (sb2), t ∈ [[σ]](SNτ) entails

t ∈ [[σ]](Uσ(t))

Since by assumption Uσ(t) ⊆ P (component wise), we can derive t ∈ [[σ]](P)
by (mon). ut

In the following we give definitions for [[σ]] and Uσ.

(Const),(Var),(Arr) Let σ ∈ Ty and Xi, τ ∈ Ty(X)

[[0]](P) = {}∗ u U0
i t ⇐⇒ False

[[1]](P) = {unit}∗ u U1
i t ⇐⇒ False

[[Xi]](P) = Pi u UXi
j t ⇐⇒ i = j ∧ u ≡ t

[[σ → τ]](P) = [[σ]] ⇒ ([[τ]](P)) u Uσ→τ
i t ⇐⇒ ∃t′ ∈ [[σ]]. u Uτ

i t t′

The following lemma is standard, e.g. see [Alt93] for a proof:

Lemma 2. Given P ⊆ SNσ and Q ∈ SATτ we have that P ⇒ Q ∈ SATσ→τ .

Proposition 2. The interpretations [[0]], [[1]], [[Xi]], [[σ → τ]] are saturated, mono-
tone and set based.

Proof. We verify here the (only interesting) case that [[σ → τ]] is set based:

(sb1) Given t ∈ [[σ → τ]](P) and u Uσ→τ
i t we know that there is a t′ ∈ [[σ]] s.t.

u Uσ→τ
i tt′. Since tt′ ∈ [[τ]](P) we can use (sb1) for τ to conclude u ∈ Pi.

(sb2) Given t ∈ [[σ → τ]](SNτ) we have to show that t ∈ [[σ → τ]](Uσ→τ (t)):
Assume u ∈ [[σ]] we can use the hypothesis to show that tu ∈ SN and hence
by (sb2) for τ tu ∈ [[τ]](Uτ (tu)). Clearly Uτ

i (tu) ⊆ Uσ→τ
i t and hence using

mon of [[τ]] we have tu ∈ [[τ]](Uσ→τ (t)) as required. ut

(Prod) Given σ1, σ2 ∈ Ty(X) we define

[[σ1 × σ2]](P) = {pair t1t2 | ∀j ∈ {1, 2}. tj ∈ [[σj]](P)}∗ (1)

We define Uσ1×σ2
i inductively by the following rules

j ∈ {1, 2} u Uσj

i tj
(pair)

u Uσ1×σ2
i pair t1t2

t ∈ SN t �whd t′ u Uσ1×σ2
i t′

(clos×)
u Uσ1×σ2

i t

Proposition 3. The interpretation [[σ1 × σ2]] of the product is monotone and
set based.

Proof. Since (mon) is obvious in this and all subsequent cases we concentrate
on set based:

(sb1) Given t ∈ [[σ1 × σ2]](P) to show

u Uσ1×σ2
i t =⇒ u ∈ Pi

we exploit that the closure (1) is defined inductively and analyze the cases:
(emb) t ≡ pair t1 t2 where tj ∈ [[σj]](P). Hence u Uσ1×σ2

i t can only have
been derived from u Uσj

i tj . Then (sb1) for σj implies u ∈ Pi.
(sat1) For t ∈ Void the precondition u Uσ1×σ2

i t is never derivable.
(sat2) We have t ∈ SN and t�whd t′ and assume u Uσ1×σ2

i t to show u ∈ Pi.
Since t has a weak head reduct, it cannot be of the form pair t1t2. Thus
u Uσ1×σ2

i t can only have been derived by (clos×) and since �whd is
deterministic we have u Uσ1×σ2

i t′. Now, the ind.hyp. for t′ entails u ∈ Pi.
(sb2) Given t ∈ [[σ1 × σ2]](SN) we show

t ∈ [[σ1 × σ2]](Uσ1×σ2(t))

by induction over the closure rules:
(emb) t ≡ pair t1 t2 where tj ∈ [[σj]](SN). We apply the ind.hyp. to de-

rive tj ∈ [[σj]](Uσj (tj)). Since Uσj

i (tj) ⊆ Uσ1×σ2
i (pair t1 t2) by (pair)

we use (mon) to derive tj ∈ [[σj]](Uσ1×σ2(pair t1t2)) and hence t ∈
[[σ1 × σ2]](Uσ1×σ2(t)).

(sat1) Since [[σ1 × σ2]] is defined as a closure it contains all t ∈ Void.
(sat2) We have t ∈ SN, t�whdt

′, and the ind.hyp. t′ ∈ [[σ1 × σ2]](Uσ1×σ2(t′)).
(clos×) implies that Uσ1×σ2(t′) ⊆ Uσ1×σ2(t) and hence using (mon) we
know t′ ∈ [[σ1 × σ2]](Uσ1×σ2(t)). We use the premises again and apply
(sat2) for [[σ1 × σ2]] to derive t ∈ [[σ1 × σ2]](Uσ1×σ2(t))

ut

Since we have not used ×-specific properties in the case that the last step was
(clos×) we can transfer these parts of the proof to sum and inductive types.

(Sum) Given σ1, σ2 ∈ Ty(X) we define

[[σ1 + σ2]](P) = {inj t | j ∈ {1, 2} ∧ t ∈ [[σj]](P)}∗

We define Uσ1+σ2
i inductively by the following rules (j ∈ {1, 2})

u Uσj

i t
(inj)

u Uσ1+σ2
i inj t

t ∈ SN t �whd t′ u Uσ1+σ2
i t′

(clos+)
u Uσ1+σ2

i t

Proposition 4. The interpretation [[σ1 + σ2]] of the disjoint union is monotone
and set based.

Proof.

(sb1) By induction on t ∈ [[σ1 + σ2]](P):
(emb) t ≡ inj s and s ∈ [[σj]](P). Since u Uσ1+σ2

i t must have been derived
from u Uσj

i s, we may apply the ind.hyp. to conclude u ∈ Pi.
(sat1),(sat2) As before for ×.

(sb2) By induction on t ∈ [[σ1 + σ2]](SN):
(emb) t ≡ inj s and s ∈ [[σj]](SN). By ind.hyp. we have s ∈ [[σj]](Uσj (s)).

Since Uσj

i (s) ⊆ Uσ1+σ2
i (inj s) we can show s ∈ [[σj]](Uσ1+σ2(inj s)) using

(mon) and hence t ∈ [[σ1 + σ2]](Uσ1+σ2(t)).
(sat1),(sat2) As before for ×. ut

(Mu) Given σ ∈ Ty(X, X) where n = |X| we define [[µX.σ]](P) inductively by
(sat1), (sat2) and:

t ∈ [[σ]](P ,SNµX.σ) ∀u. u Uσ
n+1 t =⇒ u ∈ [[µX.σ]](P)

(cons)
c t ∈ [[µX.σ]](P)

We could not have used the saturation operator ∗ here instead of (sat1) and
(sat2), since saturation and (cons) may have to be interleaved.

Note that [[µX.σ]] appears only strictly positively in the premises! By Prop. 1
(cons) is equivalent to the rule (cons’) given on page 9. We could not have used
cons’ for the definition because [[µX.σ]] appears non-positively as an argument
to [[σ]].

We also define UµX.σ
i inductively:

1 ≤ i ≤ n u Uσ
i t

(non-rec)
u UµX.σ

i c t

u UµX.σ
i t′ t′ Uσ

n+1 t
(rec)

u UµX.σ
i c t

t ∈ SN t �whd t′ u UµX.σ
i t′

(closµ)
u UµX.σ

i t

Proposition 5. The interpretation [[µX.σ]] of inductive types is monotone and
set based.

Proof. We omit (mon) since this follows from the fact that least fixpoints pre-
serve monotonicity:

(sb1) We define a family of relations R by

u Ri t ⇐⇒ (t ∈ [[µX.σ]](P) =⇒ u ∈ Pi)

and show that Ri is closed under the rules defining UµX.σ
i

(non-rec) Given u Uσ
i t and c t ∈ [[µX.σ]](P) we show u ∈ Pi. Since from

the second assumption we can infer t ∈ [[σ]](P , [[µX.σ]](P)), our goal
follows by (sb1) for σ, using the first assumption.

(rec) As before we have t ∈ [[σ]](P , [[µX.σ]](P)). Hence, using (sb1) for σ,
the premise t′ Uσ

n+1 t implies t′ ∈ [[µX.σ]](P). Now we use the ind.hyp.
u Ri t′ to conclude u ∈ Pi.

(closµ) Assuming t ∈ SN and t �whd t′ we exploit (sat2) for [[µX.σ]](P).

(sb2) We show that the set

Q = {t | t ∈ [[µX.σ]](UµX.σ(t))}

is closed under the rules defining [[µX.σ]](SNτ).

(cons) We assume

t ∈ [[σ]](SNτ , Q) (2)

which by using (sb2) for σ (and Q ⊆ SN) entails

t ∈ [[σ]](Uσ(t)) (3)

Using (cons’), to show that c t ∈ Q it suffices to show

t ∈ [[σ]](UµX.σ(c t), [[µX.σ]](UµX.σ(c t)))

We derive this from 3 using (mon), which leaves us two subgoals

1. For 1 ≤ i ≤ n prove that Uσ
i (t) ⊆ UµX.σ

i (c t), which is an immediate
consequence from (non-rec).

2. To show Uσ
n+1(t) ⊆ [[µX.σ]](UµX.σ(c t)) assume

t′ Uσ
n+1 t (4)

Under this assumption we have that UµX.σ
i (t′) ⊆ UµX.σ

i (c t) by (rec).
Using (sb1) for σ on 2 and 4 we have that t′ ∈ Q, i.e.,

t′ ∈ [[µX.σ]](UµX.σ(t′))

and hence using (mon) t′ ∈ [[µX.σ]](UµX.σ(c t)).
(sat1),(sat2) As for ×. ut

Having defined the interpretation for all types we show that the interpretation
is compatible with substitution:

Proposition 6. Given τ ∈ Ty(X) and σi ∈ Ty for 1 ≤ i ≤ |X| we have

[[τ]]([[σ]]) = [[τ(σ)]]

Proof. Straightforward induction on τ ∈ Ty(X). ut

5 Strong Normalisation

We have to show that all constructions are sound wrt. our semantics. The verifi-
cation for simple types is standard (see [Alt93]) and summarized by the following
proposition:

Proposition 7. Given σ, τ ∈ Ty the following implications hold

t ∈ [[σ → τ]] u ∈ [[σ]]
(sem-app)

tu ∈ [[τ]]

∀u ∈ [[σ]].t[x := u] ∈ [[τ]]
(sem-lam)

λx.t ∈ [[σ → τ]]

The difficult case is (sem-lam), since ⇒ is defined elimination based. In contrast,
the semantics for all other type constructors introduced so far is constructor
based, hence the soundness of constructors is trivial:

Proposition 8.

unit ∈ [[1]]
pairσ1,σ2 ∈ [[σ1 → σ2 → (σ1 × σ2)]]

inσ1,σ2
i ∈ [[σi → (σ1 + σ2)]] i ∈ {1, 2}
c X.τ ∈ [[τ(µX.τ) → µX.τ]]

To show the soundness of eliminators we have to exploit the saturatedness. We
postpone the case for It since its soundness has to be shown mutually with the
soundness of strength.

Proposition 9.

πσ1,σ2
i ∈ [[(σ1 × σ2) → σi]] i ∈ {1, 2}
caseσ

0 ∈ [[0 → σ]]
caseσ1,σ2,ρ ∈ [[(σ1 → ρ) → (σ2 → ρ) → (σ1 + σ2) → ρ]]

Proof. We show soundness for the binary case to illustrate the idea: Given ti ∈
[[σi → ρ]] and

u ∈ [[σ1 + σ2]] (5)

we prove t ≡ case t1t2u ∈ [[ρ]] by induction over the rules used to derive (5):

(sat1) If u ∈ Void then case t1t2u ∈ Void ⊆ [[ρ]], using (sat1) for ρ.
(sat2) Given u ∈ SN, u �whd u′ with u′ ∈ [[σ1 + σ2]]. Now by ind.hyp. we have

that case t1t2u
′ ∈ [[ρ]] and we observe that t�whd case t1t2u

′. Using Lemma 1
we can show t ∈ SN and hence by (sat2) t ∈ [[ρ]].

(emb) u ≡ ini u′ with u′ ∈ [[σi]]. Using Lemma 1 we derive that t ∈ SN. We
have t �whd tiu

′ and from the premises we know tiu
′ ∈ [[ρ]]. Hence by (sat2)

t ∈ [[ρ]]. ut

We are now ready to establish the soundness of It and strength:

Proposition 10. Given ρ ∈ Ty(X), let n = |X|:

1. Assume σi, τi ∈ Ty, Pi ∈ SATσi , Qi ∈ SATτi and fi ∈ Pi ⇒ Qi for 1 ≤ i ≤ n,
we have that

ρ(f) ∈ [[ρ]](P) ⇒ [[ρ]](Q)

2. If n > 1 assume τi ∈ Ty and Pi ∈ SATτi for 1 ≤ i < n. Let σ ∈ Ty and
Q ∈ SATσ, it holds that

ItX.ρ(τ ,X),σ ∈ ([[ρ]](P , Q) ⇒ Q) ⇒ [[µX.ρ]](P) ⇒ Q

Proof. We show both properties by mutual induction on ρ ∈ Ty(X):

1. For all cases but (Mu) the property follows from the ind.hyp. 1. and Prop. 7,
8 and 9. For (Mu) we also have to use the 2nd part of the ind.hyp.

2. Assume f ∈ [[ρ]](P , Q) ⇒ Q we define

S = {t | It ft ∈ Q}

Note that It f ∈ S ⇒ Q by definition. We show that S is closed under the
rules defining [[µX.ρ]]:
(sat1) If t ∈ Void then It ft ∈ Void ⊆ Q using (sat1) for Q.
(sat2) We have t ∈ SN, t �whd t′ and t′ ∈ S, i.e., It ft′ ∈ Q. From these

assumptions we infer It ft�whd It ft′. Using Lemma 1 we can show It ft ∈
SN and hence, exploiting the saturatedness of Q, by (sat2) It ft ∈ Q, that
is t ∈ S. As a byproduct we have shown S ∈ SAT.

(cons) For this rule from the assumption t ∈ [[ρ]](P , S) we have to show
c t ∈ S, or, by definition of S, It f(c t) ∈ Q. Using the first part of the
ind.hyp. and the saturatedness of S shown above, we establish6

ρ(τ , It f) ∈ [[ρ]](P , S) ⇒ [[ρ]](P , Q)

Now using our assumptions we can further establish

f(ρ(It f) t) ∈ Q

We observe that It f(c t) �whd f(ρ(It f) t) and using Lemma 1 we can
show It f(c t) ∈ SN. Hence by (sat2) It f(c t) ∈ Q.

By minimality of [[µX.ρ]] we have that [[µX.ρ]](P) ⊆ S and hence

It f ∈ [[µX.ρ]](P) ⇒ Q
ut

Proposition 11 (Soundness). Given Γ = x1 : σ1, . . . , xn : σn and ui ∈ [[σi]]
for 1 ≤ i ≤ n it follows that

Γ ` t : τ =⇒ t[x := u] ∈ [[τ]]

Proof. By induction over the derivation of Γ ` t : τ using Prop. 7–10. ut

Theorem 1 is now a simple corollary:

Proof. Given Γ ` t : τ by (sat1) we know xi ∈ [[σn]] and hence by Prop. 11
t[x = x] ∈ [[τ]] ⊆ SNτ . ut
6 ρ(It f) is an abbreviation of ρ(λxτ .x, It f), cf. the definition of strength in Sect. 2.

6 Coinductive Types

We shall sketch in this section how to extend our construction to coinductive
types, i.e., introduce a type constructor ν to introduce terminal coalgebras. We
will use greatest fixpoints of strictly positive operators.

6.1 Extending the Calculus

The calculus λµν is given by the following extensions of λµ:

Type constructor:
ρ ∈ Ty(X, Y)

(Nu)
νY.ρ ∈ Ty(X)

Constants: dX.ρ : (νX.ρ) → ρ(νX.ρ)

CoX.ρ,σ : (σ → ρ(σ)) → σ → νX.ρ

Strength: (νX.ρ)(f) = CoX.ρ(τ ,X),να(λxνα. ρ(f , λyνα.y)(dα x))
where α stands for X.ρ(σ, X)

β axiom: d(CoX.ρ,σ ft) � ρ(Co f)(ft)

Evaluation context: E[X] ::= · · · | dX

We interpret �whd and Void wrt. to the extended definition of E[X]. We
note that Lemma 1 remains true under this extension and we now understand
Theorem 1 wrt. the extended calculus.

6.2 Extending the Interpretation

Given ρ ∈ Ty(X, X) where n = |X| we define [[νX.ρ]](P) (predicatively) as the
greatest fixpoint of the following rules:

t ∈ [[νX.ρ]](P)
(destr1)

dt ∈ [[ρ]](P ,SNνX.ρ)

t ∈ [[νX.ρ]](P) u Uρ
n+1 dt

(destr2)
u ∈ [[νX.ρ]](P)

Note that, dually to the inductive case, the rules are supposed to match the
(co-ind) scheme, i.e., we define the greatest fixpoint of the operator

Φ(Q) = {t | dt ∈ [[ρ]](P ,SNνX.ρ) ∧ ∀u.(u Uρ
n+1 dt) → u ∈ Q}

Using Prop. 1 we can show that (destr1) and (destr2) are equivalent to

t ∈ [[νX.ρ]](P)
(destr′)

dt ∈ [[ρ]](P , [[νX.ρ]](P))

We define UνX.ρ
i inductively (!), i.e., as a least not a greatest fixpoint:

1 ≤ i ≤ n u Uρ
i dt

(non-rec)
u UµX.ρ

i t

u UνX.ρ
i t′ t′ Uρ

n+1 dt

u UνX.ρ
i t

(rec)

Note that different to the µ types we have not explicitely closed the interpretation
under (sat1) and (sat2). However, we can show:

Proposition 12. The interpretation [[νX.ρ]] of coinductive types is saturated.

Proof. We show that
[[νX.ρ]](P)∗ ⊆ [[νX.ρ]](P)

by verifying that [[νX.ρ]](P)∗ is closed under (destr’) (and hence equivalently
under (destr1) and (destr2)) by induction over t ∈ [[νX.ρ]](P)∗:

(sat1) If t ∈ Void then dt ∈ Void ⊆ [[ρ]](P , [[νX.ρ]](P)∗) by (sat1) for ρ.
(sat2) Given t ∈ SN, t �whd t′, by ind.hyp we assume that

dt′ ∈ [[ρ]](P , [[νX.ρ]](P)∗).

Since dt ∈ SN by Lemma 1 and dt �whd dt′ we can use (sat2) for ρ.
(emb) Given t ∈ [[νX.ρ]](P) we know that

dt ∈[[ρ]](P , [[νX.ρ]](P))
⊆[[ρ]](P , [[νX.ρ]](P)∗)

using (mon) and [[νX.ρ]](P) ⊆ [[νX.ρ]](P)∗

To show (sb2) we need an auxiliary relation ≤ ⊆ Tm(νX.ρ)(τ) × Tm(νX.ρ)(τ)

which is inductively defined by

t ∈ [[νX.ρ]](SNτ)
(refl)

t ≤ t

t′′ ≤ t′ t′ Uρ
n+1 dt

(trans)
t′′ ≤ t

Intuitively, ≤ is a generalization of the prefix relation on streams.

Lemma 3.
t′ ≤ t

t′ ∈ [[νX.ρ]](UνX.ρ(t))

Proof. Given a fixed t ∈ [[νX.ρ]](SNτ) we show that the set ≤(t) is closed under
(destr’) for [[νX.ρ]](UνX.ρ(t)) and hence by (co-elim)7 the rule holds.

We have to show s ≤ t (i.e., s ∈ ≤(t)) implies

ds ∈ [[ρ]](UνX.ρ(t),≤(t))

We show this by induction over s ≤ t:

(refl) We have to show
dt ∈ [[ρ]](UνX.ρ(t),≤(t))

By (sb2) for ρ we know dt ∈ [[ρ]](Uρ(dt)). For 1 ≤ i ≤ n (non-rec) implies
that Uρ

i (dt) ⊆ UνX.ρ
i (t), and using (trans) and (refl) it is easy to see that

Uρ
n+1(dt) ⊆ ≤(t). Hence by (mon) for [[ρ]] we have dt ∈ [[ρ]](UνX.ρ(t),≤(t)).

7 See introduction, page 3.

(trans) Given
t′ Uρ

n+1 dt (6)

and as ind.hyp. dt′′ ∈ [[ρ]](UνX.ρ(t′),≤(t′)) we have to show

dt′′ ∈ [[ρ]](UνX.ρ(t),≤(t))

Using (rec) and (6) we know that UνX.ρ
i (t′) ⊆ UνX.ρ

i (t). Using (trans) and (6)
we know ≤(t′) ⊆ ≤(t) and hence by applying (mon) for [[ρ]] for the ind.hyp.
we have dt′′ ∈ [[ρ]](UνX.ρ(t),≤(t)).

Proposition 13. [[νX.ρ]] is monotone and set based.

Proof.

(sb1) We show that

u Ri t : ⇐⇒ t ∈ [[νX.ρ]](P) =⇒ u ∈ Pi

is closed under the rules defining UνX.ρ
i

(non-rec) We have dt ∈ [[ρ]](P , [[µX.ρ]](P)) and hence by (sb1) for ρ the
premise u Uρ

i t implies u ∈ Pi.
(rec) As before we have dt ∈ [[ρ]](P , [[νX.ρ]](P)). Hence, using (sb1) for ρ,

the first premise t′ Uρ
n+1 dt implies t′ ∈ [[νX.ρ]](P). Now we use the

second premise t′ Ri u to conclude u ∈ Pi.
(sb2) Follows from Lemma 3 for t ≤ t.

6.3 Extending Soundness

The soundness of d follows directly from the definition of ν:

Proposition 14.

dX.ρ ∈ [[(νX.ρ) → ρ(νX.ρ)]]

We have to extend Prop. 10 by a case for Co:

Proposition 15. Prop. 10 extended by:

3. If n > 1 assume τi ∈ Ty and Pi ∈ SATτi for 1 ≤ i < n. Let σ ∈ Ty and
Q ∈ SATσ; it holds that

CoX.ρ(τ ,X),σ ∈ (Q ⇒ [[ρ]](P , Q)) ⇒ Q ⇒ [[νX.ρ]](P)

Proof. We have to extend 1. by the case for ν but the reasoning is the same as
for µ. Let us consider 3.: Assuming f ∈ Q ⇒ [[ρ]](P , Q) we show that

S = {CoX.ρ(τ ,X) ft | t ∈ Q}

is closed under (destr’).

This entails S ⊆ [[νX.ρ]](P), since [[νX.ρ]](P) is defined as the greatest fix-
point of the rule (destr’), and thus our claim follows.

The definition of S implies that Co f ∈ Q ⇒ S (writing Co for CoX.ρ(τ ,X)).
Assuming t ∈ Q we have to show that d(Co ft) ∈ [[ρ]](P , Q). We use (sat2)
since d(Co ft) �whd ρ(Co f)(ft). By ind.hyp. we know that ρ(Co f) ∈ ρ(P , Q) ⇒
ρ(P , S), which suffices to show that the reduct is in ρ(P , S). We finish by ob-
serving that an application of Lemma 1 shows that d(Co ft) ∈ SN. ut

Prop. 11 can be extended to the new cases using Prop. 14 and 15 and hence
Theorem 1 can be extended to λµν .

7 Conclusions and Further Work

It is straightforward to extend the construction presented here to primitive re-
cursion

ReX.τ,σ : (τ((µX.τ)× σ) → σ) → (µX.τ) → σ

and corecursion

CRX.τ,σ : (σ → τ((νX.τ) + σ)) → σ → νX.τ,

which we have to omit here due to lack of space.
It may be argued that a syntactic approach to strong normalisation a la

Benl [Ben98] may also be extended to a system as general as ours. However, we
believe that the semantic approach using set based operators will allow further
generalizations such as a functorial calculus (e.g., see [JBM98]) and heterogenous
datatypes as discussed in [AR99].

References

[AA99] Andreas Abel and Thorsten Altenkirch. A predicative analysis of structural
recursion. Submitted to the Journal of Functional Programming, December
1999.

[Abe99] Andreas Abel. A semantic analysis of structural recursion. Master’s thesis,
Ludwig-Maximilians-University Munich, 1999. http://www.informatik.uni-
muenchen.de/˜abel/publications/.

[Acz97] Peter Aczel. Notes on constructive set theory. Available from the WWW,
1997.

[Alt93] Thorsten Altenkirch. Constructions, Inductive Types and Strong Normaliza-
tion. PhD thesis, University of Edinburgh, November 1993.

[Alt98] Thorsten Altenkirch. Logical relations and inductive/coinductive types. 1998.
[AR99] Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda

terms using generalized inductive types. In Computer Science Logic 99, 1999.
[Ben98] Holger Benl. Starke Normalisierung für die Heyting-Arithmetik mit induktiven

Typen. Master’s thesis, Ludwig-Maximillians-Universität, München, 1998.
[BJO99] Frédéric Blanqui, Jean-Pierre Jouannaud, and Mitsuhiro Okada. Inductive

data type systems. To appear in Theoretical Computer Science, 1999.

[Buc81] Wilfried Buchholz. The ωµ+1-rule. In Iterated Inductive Definitions and Sub-
systems of Analysis: Recent Proof-Theoretical Studies, volume 897 of Lecture
Notes in Mathematics, pages 188–233. 1981.

[CM89] Thierry Coquand and Christine Mohring. Inductively defined types. In P. Löf
and G. Mints, editors, LNCS 389, volume 417 of Lecture Notes in Computer
Science, pages 50–66. Springer-Verlag, 1989.

[Coq94] Infinite objects in type theory. LNCS, pages 62–78, Berlin, 1994. Springer-
Verlag.

[Dyb91] Peter Dybjer. Inductive sets and families in Martin-Löf’s type theory and their
set-theoretic semantics. Technical Report Report 62, Programming Method-
ology Group, Chalmers University, 1991.

[Geu92] Herman Geuvers. Inductive and coinductive types with iteration and recur-
sion. In Workshop on Types for Proofs and Programs, B̊astad, pages 193–217,
1992.

[Gir72] J. Y. Girard. Interprétation fonctionelle et élimination des coupures dans
l’arithétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Uni-
versity Press, 1989.

[Hag87] Tatsuya Hagino. A Categorical Programming Language. PhD thesis, Univer-
sity of Edinburgh, September 1987.

[JBM98] C.B. Jay, G. Bellè, and E. Moggi. Functorial ML. Journal of Functional
Programming, 8(6):573–619, 1998.

[JO97] J. P. Jouannaud and M. Okada. Abstract data type systems. Theoretical
Computer Science, 173, 1997.

[Loa97] Ralph Loader. Equational theories for inductive types. Annals of Pure and
Applied Logic, 84:175–217, 1997.

[Luo90] Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis, University
of Edinburgh, 1990.

[Mar84] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
[Mat98] Ralph Matthes. Extensions of System F by Iteration And Primitive Recursion

on Monotone Inductive Types. PhD thesis, University of Munich, 1998.
[Men88] Nax P. Mendler. Inductive Definition in Type Theory. PhD thesis, Cornell

University, 1988.
[Rey84] John C. Reynolds. Polymorphism is not set-theoretic. In Gilles Kahn, David B.

MacQueen, and Gordon D. Plotkin, editors, Semantics of Data Types, vol-
ume 173 of Lecture Notes in Computer Science, pages 145–156, Berlin, 1984.
Springer-Verlag.

[Tai67] W. W. Tait. Intensional interpretations of functionals of finite type I. Journal
of Symbolic Logic, 32(2):198–212, June 1967.

