Unnesting of Copatterns

Anton Setzer!, Andreas Abel?, Brigitte Pientka?, and David Thibodeau?

! Dept. of Computer Science, Swansea University, Swansea SA2 8PP, UK
a.g.setzer@swan.ac.uk
2 Computer Science and Engineering, Chalmers and Gothenburg University,
Rénnvagen 6, 41296 Goteborg, Sweden, andreas.abel@gu.se
3 School of Computer Science, McGill University, Montreal, Canada
{bpientka,dthibol}@cs.mcgill.ca

Abstract. Inductive data such as finite lists and trees can elegantly be
defined by constructors which allow programmers to analyze and manip-
ulate finite data via pattern matching. Dually, coinductive data such as
streams can be defined by observations such as head and tail and pro-
grammers can synthesize infinite data via copattern matching. This leads
to a symmetric language where finite and infinite data can be nested. In
this paper, we compile nested pattern and copattern matching into a core
language which only supports simple non-nested (co)pattern matching.
This core language may serve as an intermediate language of a com-
piler. We show that this translation is conservative, i.e., the multi-step
reduction relation in both languages coincides for terms of the original
language. Furthermore, we show that the translation preserves strong
normalisation: a term of the original language is strongly normalising in
one language if and only if it is so in the other.

Keywords: Pattern matching, copattern matching, algebraic data types,
codata, coalgebras, conservative extension, strong normalisation

1 Introduction

Finite inductive data such as lists and trees can be elegantly defined via con-
structors, and programmers are able to case-analyze and manipulate finite data
in functional languages using pattern matching. To compile functional languages
supporting pattern matching, we typically elaborate complex and nested pattern
matches into a series of simple patterns which can be easily compiled into ef-
ficient code (see for example [3]). This is typically the first step in translating
the source language to a low-level target language which can be efficiently exe-
cuted. It is also an important step towards developing a core calculus supporting
well-founded recursive functions.

Dually to finite data, coinductive data such as streams can be defined by
observations such as head and tail. This view was pioneered by Hagino [7] who
modelled finite objects via initial algebras and infinite objects via final coalgebras
in category theory. This led to the design of symML, a dialect of ML where we
can for example define the codata-type of streams via the destructors head and

tail which describe the observations we can make about streams [8]. Cockett and
Fukushima [6] continued this line of work and designed a language Charity where
one programs directly with the morphisms of category theory. Our recent work
[2] extends these ideas and introduces copattern matching for analyzing infinite
data. This novel perspective on defining infinite structures via their observations
leads to a new symmetric foundation for functional languages where inductive
and coinductive data types can be mixed.

In this paper, we elaborate our high-level functional language which supports
nested patterns and copatterns into a language of simple patterns and copatterns.
Similar to pattern compilation in Idris or Agda, our translation into simple
patterns is guided by the coverage algorithm. We show that the translation
into our core language of simple patterns is conservative, i.e., the multi-step
reduction relations of both languages coincide for terms of the original language.
Furthermore, we show that the translation preserves strong normalisation: a
term of the original language is strongly normalising in one language if and only
if it is normalising in the other.

The paper is organized as follows: We describe the core language including
pattern and copattern matching in Section 2. In Section 3, we explain the elab-
oration into simple patterns. In Section 4 we show its correctness with regard to
reduction behavior and normalization.

2 A Core Language for Copattern Matching

In this section, we summarize the basic core language with (co)recursive data
types and support for (co)pattern described in previous work [2].

2.1 Types and Terms

A language £ = (F,C, D) consists of a finite set F of constants (function sym-
bols), a finite set C of constructors, and a finite set D of destructors. We will in
the following assume one fixed language £, with pairwise disjoint F, C, and D.
We write f,c,d for elements of F,C, D, respectively.

Our type language includes 1 (unit), A x B (products), A — B (functions),
disjoint unions D (labelled sums, “data”), records R (labelled products), least
fixed points pX.D, and greatest fixed points v X.R.

Types A,B,C:=X|1|AxB|A— B|uX.D|vX.R

Variants D n=(c1 A1 | .. | en An)
Records R n={dy: Ay, ... dy s And
Variant types (¢; 4; | ... | ¢n Ay), finite maps from constructors to types, appear

only in possibly recursive data types pX.D. Records {d; : 41,...,d, : A,}, finite
maps from destructors to types, list the fields d; of a possibly recursive record
type v X.R. To illustrate, we define natural numbers Nat, lists and Nat-streams:

Nat := uX.(zero1 |suc X)
List A := pX.{nil 1 | cons (4 x X))
StrN = vX.{head : Nat, tail : X}

In our non-polymorphic calculus, type variables X only serve to construct
recursive data types and recursive record types. As usual, uX.D (vX.R, resp.)
binds type variable X in D (R, resp.). Capture-avoiding substitution of type C'
for variable X in type A is denoted by A[X := C]. A type is well-formed if it has
no free type variables; in the following, we assume that all types are well-formed.

We write ¢ € D for ¢ A being part of variant D for some A and define the type
of constructor ¢ as (uX.D). := A[X := uX.D]. Analogously, we write d € R for
d : A being part of the record R for some A and define the type of the destructor
das (vVX.R)g:= A[X =vX.R].

A signature for £ is a map X from F into the set of types. Unless stated
differently, we assume one fixed signature Y. A typed language is a pair (£, X))
where £ is a language and X is a signature for £. We sometimes write X instead

f(L£,X). We write f € X if X(f) is defined, i.e., f € F. Next, we define the
grammar of terms of a language £ = (F,C, D). Herein, f € F,c € C,and d € D.

e,r, s, t,u=f Defined constant (function) |z Variable
|) Unit (empty tuple) | (tl,t2) Pair
| ct Constructor application | t1 Application

| t.d Destructor application

Terms include identifiers (variables x and defined constants f) and intro-
duction forms: pairs (t1,t2), unit (), and constructed terms c t, for the positive
types A x B, 1, and pX.D. There are however no elimination forms for positive
types, since we define programs via rewrite rules and employ pattern matching.
On the other hand we have eliminations, application ¢ to and projection ¢ .d, of
negative types A — B and vX.R respectively, but omit introductions for these
types, since this will be handled by copattern matching.

We write term substitutions as s[zy := ti,...,2, := t,] or short s[& := f].
Contexts A are finite maps from variable to types, written as lists of pairs
x1: Ay, ..., xy Ay, or short T : A, with - denoting the empty context. We write
A — Aor A— A for n-ary curried function types 4y — --- — A, — A (but A
may still be a function type), and s t for n-ary curried application s ¢1 - - t,.

A(-T):A AFt(MXD)c ARt A1 AFta: A

Az A Al—():l A}—ct:,uX.D Al—(tl,tz):AleQ

AFt:A—B AFt:A AFt:vX.R
AF f:2(f) ARttt :B AFt.d: (vX.R)q

Fig. 1. Typing rules

The typing rules for terms (relative to a signature X') are defined in Figure 1
as a type assignment system. If we want to explicitly refer to a given typed
language (£, X) or X we write A,z 5» A or Aty A, similarly for later notions
of I-.

2.2 Patterns and copatterns

For each f € F, we will determine the rewrite rules for f as a set of pairs
(¢ —> r) where ¢ is a copattern sometimes referred to as left hand side, and r a
term, sometimes referred to as right hand side. Patterns p and copatterns g are
special terms given by the grammar below, where ¢ € C and d € D.

pu=ux Variable pattern q:=1f Head (constant)
| O Unit pattern lgp Application copattern
| (p1,p2) Pair pattern | q.d Destructor copattern
|ep Constructor pattern

In addition we require p and ¢ to be linear, i.e. each variable occurs at most
once in p or q. When later defining typed patterns A + ¢ : A as part of a
coverage complete pattern set for a constant f, we will have that this judgement
is provable as a typing judgement for terms, the variables in ¢ are exactly the
variables in A, and f is the head of ¢.

The distinction between patterns and copatterns is in this article only rele-
vant in this grammar, therefore we usually write simply “pattern” for both.

Ezample 1 (Cycling numbers). Function cyc of type Nat — StrN, when passed an
integer n, produces a streem n,n—1,..., 1,0, N, N—1,...,1,0,N,N—1,... for
some fixed N. To define this function we match on the input n and also observe
the resulting stream, highlighting the mix of pattern and copattern matching.
The rules for cyc are the following;:

cyc x .head — =z
cyc (zero ()) .tail — cyc N
cyc (sucz) .tail — cycx

Ezample 2 (Fibonacci Stream). Nested destructor copatterns appear in the fol-
lowing definition of the stream of Fibonacci numbers. It uses zipWith _+_ which
is the pointwise addition of two streams.

fib .head — 0
fib .tail .head — 1
fib .tail .tail — zipWith _+_ fib (fib .tail)

2.3 Coverage

For our purposes, the rules for a function f are complete, if every closed, well-
typed term t of positive type can be reduced with exactly one of the rules of
f. Alternatively, we could say that all cases for f are uniquely covered by the
reduction rules. Coverage implies that the execution of a program progresses,
i.e., does not get stuck, and is deterministic. Note that by restricting to positive
types, which play the role of ground types, we ensure that ¢ is not stuck because
f is underapplied. Progress has been proven in previous work [2]; in this work,
we extend coverage checking to an algorithm for pattern compilation.

We introduce the judgement f: A <| Q, called a coverage complete pattern
set for f (cc-pattern-set for f). Here Q is a set Q = (A; - q; : C;)i=1,..n (n0te
our slight abuse of vector notation). If f : A <| @ then constant f of type A
can be defined by the coverage complete patterns ¢; (depending on variables in
A;) together with rewrite rules ¢; — t; for some A; ¢, : C;.

The rules for deriving cc-pattern-sets are presented in Figure 2. In the vari-
able splitting rules, the split variable is written as the last element of the context.
Because contexts are finite maps they have no order—any variable can be split.
Note as well that patterns and copatterns are by definition required to be linear.

Result splitting:
f:A<Q|Q(AFq:B—C)

FA S (A CBead O (A Bl ga:0) PP
f:A<]Q(AFgq:vX.R)
f:A <|Q(A'—q.d:(l/X.R)d)deR

CDcst

Variable splitting:

A4 Q(Az:1Fq:C) Crr
JiAalQAFgle:=01:0) ™
f:AQQ(Az: A x Ak q:C) Co.

FiA <] Q(Aar: Az Ask glwi= (z1,32)] : C) "
f:A<]Q Az pX.DFqg:C)
f:A 4 QAT (uX.D)ebglz:=cz']:C)een

CConst

Fig. 2. Coverage rules

A coverage complete set of rules (cc-rule-set) for a constant f
f:2(f) ol (AiF g —ti: Ci)iz1,n

consists of a cc-pattern-set f: X(f) <| (A;F g; : Ci)i=1,...n (called the underly-
ing cc-pattern-set) together with terms t; for i = 1,...,n such that A; - ¢; : C;.
The corresponding term rewriting rules for f are q; — t;.

A program P over signature X' is a function mapping each constant f to a
cc-rule-set Py. We write t —p t’ for one-step reduction of term ¢ to ¢’ using
the compatible closure* of the term rewriting rules in P, and drop index P if
clear from the context of discourse. We further write —7% for its tranistive and
reflexive closure and —%1 for its transitive closure.

Ezample (Deriving a cc-pattern-set for cyc) We start with Cpgeaq
cyc : Nat — StrN < (- F cyc : Nat — StrN)

4 See e.g. Def. 2.2.4 of [11].

We apply = to the head by Capp.
cyc : Nat — StrN <« (« : Nat - cyc « : StrN)

Then we split the result by Cpest.

(z : Nat - cyc « .head : Nat)

cyc : Nat — StrN < (z : Nat - cyc z .tail : StrN)

In the second copattern, we split x using Cconst-

(z:Nat F cycz .head : Nat)
cyc: Nat — StrN <| (z:1 F cyc (zero x) .tail : StrN)
(z : Nat F cyc (suc) .tail :StrN)

We finish by applying Cypit which replaces = by () in the second clause.

(z : Nat F cycx .head : Nat)
cyc : Nat — StrN <« (- F cyc (zero ()) .tail : StrN)
(z : Nat F cyc (suc) .tail :StrN)

This concludes the derivation of the cc-pattern-set for the cyc function.

In Sect. 3 we prove a more general theorem referring to Abstract Reduction
Systems (ARS). An ARS is a pair (A, —), often just written A, such that A
is a set and — is a binary relation on 4 written infix. The notions —* and
—21 for ARS are defined as for programs above. The ARS for P in context A

and type A is (Termp ™, —p) where Terma ™ = {t | A5t : A}.

3 Reduction of Nested to Simple Pattern Matching

In the following, we describe a translation of deep (aka nested) (co)pattern
matching (i.e. pattern matching as defined before) into shallow (aka non-nested)
pattern matching, which we call simple pattern matching, as defined below. We
are certainly not the first to describe such a translation, except maybe for copat-
terns, but we have special requirements for our translation. The obvious thing
to ask for is simulation, i.e., each reduction step in the original program should
correspond to one or more reduction steps in the translated program. However,
we want the translation also to preserve and reflect normalization: A term in
the original program terminate, if and only if it terminates in the translated
program. Preservation of normalization is important for instance in dependently
typed languages such as Agda, where the translated programs are run during
type checking and need to behave exactly like the original, user-written pro-
grams.

The strong normalization property is lost by some of the popular translations.
For instance, translating rewrite rules to fixed-point and case combinators loses
normalization, simply because fixed-point combinators reduce by themselves,
allowing infinite reduction sequences immediately. But also special fixed-point

combinators that only unfold if their principal argument is a constructor term,
or dually cofixed-point combinators that only unfold if their result is observed?®
have such problems. Consider the following translation of a function f with deep
matching into a function using such a fixed-point combinator.

f@0)) —20 2() —z()
f(s(z()) — z() ~ f =fixf(z). case z of s (z()) — z()
f(s(sx)) — f(sw)) s(sx) — flsz))

While the term f (sucz) terminates for the original program simply because no
pattern matches (i.e. no rewrite rule applies), it diverges for the translated pro-
gram since the fixed-point applied to a constructor unfolds to a term containing
the original term as a subterm. A closer look reveals that this special fixed-point
combinator preserves normalization for simple pattern matching only.

A particular characteristic of term rewrite systems is that unfolding of recur-
sion is tied to reduction by pattern matching to normal forms. In the following
we develop a translation of deep patterns that maintains normalisation.

3.1 Simple patterns

al-
) |

A simple copattern gs is of one of the forms f # (no matching), f & .d (sh
low result matching) or f & ps (shallow argument matching) where ps ::= (
(x1,22) | cx is a simple pattern.

Definition 1 (Simple coverage-complete pattern sets).

(a) Simple cc-pattern-sets f: A <|s Q are defined as follows (A =2 : ff)

FiASA Qs (AFfT:A)
f:A—)VX.R ‘s Al—f;vd (VX.R)d)deR
f:A-1—-A <

f:Ag)(B1XB2)*>A
f:A— (uX.D)— A «

Y1 Bi,ya : Bo b f & (y1,12) - A)
" (uX.D)e b fZ(ca’): A)een

S

(

(
s(AFfT():A)

(A

s (4,

(b) A cc-rule-set is simple if the underlying cc-pattern-set is simple. A constant
in a program is simple, if its cc-rule-set is simple. A program is simple if all
its constants are simple.

Remark 2. If f: A <|s Q then f: A <| Q.

5 Such fixed-point combinators are used in the Calculus of Inductive Constructions,
the core language of Coq [9], but have also been studied for sized types [4,1].

3.2 The translation algorithm by example

Neither the cyc function, nor the Fibonacci stream are simple. The translation
into simple patterns requires the introduction of auxiliary constants, which are
obtained as follows. We have a function for each occurrence of a splitting rule that
is not Cead, nor Capp. We can then start from the bottom of the derivation
tree and, if the patterns are not simple, we eliminate this last derivation and
create a new function. This function takes as arguments the variables we have
not split on from the original function and this function (co)pattern matches
just like the last step of the derivation did. Let us walk through the algorithm
of transforming patterns into simple patterns for the cyc function.

(z : Nat Fcyczx .head — =z : Nat)
cyc : Nat — StrN < (F cyc (zero ()) .tail — cyc N : StrN)
(x : Nat Fcyc (sucz) .tail — cycz :StrN)

In the derivation of coverage, the last rule was Cyy; replacing pattern variable
x : 1 by pattern (). We introduce a new constant g, with simple pattern and
rule

g2:1—=StrN < (+F g2 () — cyc N : StrN).

This symbol can be interpreted back in terms of the original program by a func-
tion int (defined more formally in Sect. 4) where int(g2 s) = cyc (zero int(s)) -tail
and int is otherwise the identity. The translated program arises by replacing the
right hand side of the split clause with a call to go.

(z:NatFcycx .head — =z : Nat)
cyc: Nat — StrN «| (z:1 F cyc (zero x) .tail — gox : StrN)
(z : Nat F cyc (suc z) .tail — cycz : StrN)

The second last step in the derivation of coverage was a split of pattern variable
2 : Nat into zero z and suc = using rule Ccopst. Again, we introduce a simple
auxiliary function, g1, which performs just this split:

(x:1 F g1 (zeroz) — gox :StrN)

g1+ Nat — StrN <, (z :Nat F g (sucx) — cyca : StrN)

The interpretation of ¢g; in terms of the original program would be int(g; s) =
cyc int(s) .tail and the translated program is

(z : Nat F cyc z .head — = : Nat)

cyc: Nat — StrN <, (z : Nat F cyc x .tail — g1 x : StrN)

This program is simple, thus the translation is finished, resulting in the mutually
recursive functions cyc, g1, and go. We note the following:

(a) The translation can be performed by induction on the derivation of coverage;
or, one can do the translation while checking coverage.’

5 This is actually happening in the language Idris [5]; Agda [10] has separate phases,
but uses the split tree generated by the coverage checker to translate pattern match-
ing into case trees.

(b) The generated functions are simple upon creation and need not be processed
recursively. The right hand sides of these functions are either right hand
sides of the original program or calls to earlier generated functions applied
to exactly the pattern variables in context.

(¢c) When generating a function, it is invoked on the pattern variables in context.
We can interpret this generated function in terms of the original program
int, as a “backward-reduction”.

(d) Since we gave earlier created functions (here: g2) a higher index than later
created functions (here: g1), calls between generated functions increase the
index. There can only be finitely many calls between generated functions
before executing an original right hand side again. This fact ensures preser-
vation of normalization (see later).

(e) Calls between generated functions are undone by the back translation int,
thus the corresponding reduction steps vanish under int.

In the case of the Fibonacci stream, the translated simple program is as follows:

fib .head — 0 g -head — 1
fib .taill — g g .tail — zipWith _+_ fib (fib .tail)

3.3 The translation algorithm

Let P be the input program. Let P; be a non-simple rule of P. Consider the last
rule in the derivation of the underlying coverage. Since the rule is non-simple, it
cannot be Cyeaq. Then, Py is of the form

[:2(f) <] Q (Aikqi — ti - Cy)ier-

where in some cases I = {0}. Let the last rule in the derivation of the underlying
coverage be

[:2(f) 2l Q (A Fq: A)
[:2(f) 2l Q (Aikqi: Ci)ier

We split on rule C and obtain a program P’, in which the height of the derivation
for f is reduced by 1, and a new constant with simple pattern matching is added.
We then recursively apply the algorithm on P’. In all cases, when we speak of
a context “A”, we refer to its variables by Z. Note that we always reorder A’
such that the variable we split on appears last. Further, g always denotes a fresh
constant.

In all cases P’ is obtained from P by adding a rule for g and replacing one rule
case for f by a simpler one that invokes g. Let A’ = 7 : A. For some q} to be
determined in each case, we will define

FiE(f) A QArq—gg:iA) ifh=f
P;L: glA/—>A <1|s (AZ}_q,Z—>t7lC7l)16] lfh:g
Phr otherwise

10

Case gqx — t and C is

f:2(f) «|Q(Arq:B—=C)
f:2(f) «|Q(A,x:BFquz:C) App

Define gy = g & . Therefore,
Pi=f:3(f) q Q(AFgq—gZ:B—C)
P,=9g:A=-B—=C <s (Az:BFg@az—1t:0)
Case q .d —> tq for all d € R and C is

f:2(f) «|Q(Argq:vX.R) G
F:3(f) <l Q(AFq.d: WX-R)a)aer ="

Define ¢/, = g & .d. Therefore,

Pr=1:2(f) qd Q(AFq—gZ:vX.R)
P,=g:A—=vXR <s (AbgZ.d—ta: (VX.R)d)acr
Case g[z’ := ()] — t and C is
fi2() 4l Q(Aa':1kg:C)
F:2(f) 4| Q(AF g’ :=()]:C) "™

Define ¢}, := g & (). Therefore,

P = f:2(f) q QA2 :1kqg—gTa':0)
Pypi=g:A=1-0C <s (AFgZ()—1t:C)

Case ¢z’ := (z1,22)] — t and C is

F:2(f) €1 Q (A2 : Ay x As Fq: O)

C air
F22(f) <l Q (A z1: Ay, ag s A b= g2’ := (21, 22)] : O) :
Define ¢ = g & (z1,x2). Therefore,
Py =f:2(f) d Q Az Ay x Ay q—gZa:O)

’P; =¢: A= (A1 X As) > C q|s (A,21: A1,29: As b g & (21, 20) — t: C)
Case q[z' :=ca'] — t. for all c € D and C is

A< QA unXDEgq:C)

A< Q (A2 (uX.D).Fqlx' :=ca']:C)een Const
Define ¢, := g Z (¢ «’). Therefore,
Pi=f:2(f) q QA2 :uX.DFqg— g2z :C)

Py=9:A—pX.D—C <s (A2 : (pX.D)e g7 (ca’) —te:Ceep

Since each step of the algorithm makes the coverage derivation of one non-simple
function shorter, it terminates, returning only simple functions.

11
4 Proof of Correctness of the Translation

In our translation we extend our language by new auxiliary constants while
keeping the old ones, including their types. More formally, we define X Cg X,
pronounced X’ extends X by constants, if (1) X’ and X have the same constructor
and destructor symbols C,D, (2) the constants F of £ form a subset of the
constants of £', and (3) X and X’ assign the same types to F.

It is easy to see that a reduction in the original program P (with signature X)
corresponds to possibly multiple reductions in the translated language P’ (with
signature X’). What is more difficult to prove is that we do not get additional
reductions, i.e., if t —/ 5t then it is impossible to reduce ¢ to ¢’ using reductions
and intermediate terms in P’. We call this notion conservative extension. Even
this will not be sufficient as pointed out in Sect. 3, we need in addition preserva-
tion of normalisation. We will define the corresponding notions more generally
for ARSs.

Let (A, —) be an ARS, a € A. a is in normal form (NF) if there isnoa’ € A
such that @ — d’. a is weakly normalising (WN) if there exists an a’ € A in
NF such that a —* a’. a is strongly normalising (SN) if there exist no infinite
reduction sequence a = a9 — a3 — ag — ---. Let SN, WN, NF be the set
of elements in 4 which are SN, WN, NF respectively. For a reduction system
(A, —"), let SN’, WN', NF’ be the elements of (A’, —') which are SN, WN,
NF.

Let (A,—), (A’,—') be ARS such that A C A’. Then, we say that

A’ is a conservative extension of A iff Va,d' € A. a —*d & a—'"d
A’ is an SN-preserving extension of Aiff Va € A. a € SN < a € SN’
A’ is a WN-preserving estension of A iff Ya € A. a € WN < a € WN’

Let P, P’ be programs for signatures X, X/, respectively. P’ is an extension of
Piff ¥ Cg X' If P’ is an extension of P, then P’ is a conservative, SN-preserving,
or WN-preserving extension of P if the corresponding condition holds for the
ARSs (Termp"™ —5) and (Termp, 4, — /).

Lemma 3 (Transitivity of conservative and SN/WN-preserving exten-
sions). Assume P’ is an extension of P and P an extension of P’, both of which
are conservative, SN-preserving, and WN-preserving extensions. Then P” is a
conservative, SN-preserving, and WN-preserving extension of P. The same holds
for ARSs instead of programs.

In order to show the above properties for our translation of programs, we use
the notion of a back-translation from the translated language into the original
language. We define this notion more generally for ARS:

Let (A,—), (A’,—') be ARSs such that A C A’. Then a back-interpretation
of A’ into A is given by

— a set Good such that A C Good C A’; we say a is good if a € Good;
— a function int : Good — A such that Ya € A.int(a) = a.

12

We define 3 conditions for a back-interpretation (Good, int) where condition
(SN 2) refers to a measure m : Good — N:
(SN 1) Va,a' € Aa — o/ = a—'""d.
(SN 2) If a € Good, a’ € A" and a —' o’ then o’ € Good and we have
int(a) —=1 int(a’) or int(a) = int(a’) A m(a) > m(a’).
(WN) If a € Good N NF’ then int(a) € NF.

Lemma 4. Assume (A, —), (A", —') be ARS such that A C A’. Let (Good, int)
be a back-interpretation from A’ into A, m : Good — N. Then the following
holds:

(a) (SN 1), (SN 2) imply that A’ is a conservative extension of A preserving SN.
(b) (SN 1), (SN 2), (WN) imply that A’ is an extension of A preserving WN.

Proof: (a): Proof of Conservativity: @ —* a’ implies by (SN 1) a—""a’. If
a,a’ € A, a—'""a’ then by (SN 2) a = int(a) —* int(a’) = d’.

Proof of preservation of SN: We show the classically equivalent statement

Va € A.—(a is —-SN) < —(a is —'-SN).

For “=" assume a = ag — a3 —> as — --- is an infinite —-reduction
sequence starting with a. Then by (SN 1) a = ap—s'=ta—"lag—= s
an infinite —’-reduction sequence.

For “<” assume a = aj—'a}j —ps aly---.

Then by (SN 2) a = int(ag) = int(a}) —* int(a})) —* int(ah)—""---. If
int(aj) = int(a; ;) then m(aj) > m(aj), so by (SN 2) after finitely many steps
where int(a;) = int(aj,;) we must have one step int(a}) —s21 int(ajq). Thus,
we obtain an infinite reduction sequence starting with a in A.

(b) Assume a € A, a € WN. Then a —* o’ € NF for some a’, therefore a’ € SN,
by (a) @’ € SN', a’—""a" for some a” € NF’, therefore a—'"a’'—""a” € NF',
a € WN'. For the other direction, assume a € A, a € WN’. Then a—'"a’ € NF’
for some @, by (SN 2), (WN) a = int(a) —* int(a’) € NF, a € WN.

Our concrete back-interpretations are obtained by replacing in terms g ¢1 ... ¢,
the new constants g by a term of the original language. Due to lack of A-
abstraction, we only get a term of the original language if ¢ is applied to n
arguments. So, for our back translation, we need an arity(g) = n of new con-
stants, and an interpretation Int(g) of those terms:

Assume X' Cg X'. A concrete back-interpretation (arity, Int) of X’ into X is
given by the following:

— An arity arity(g) = n assigned to each new constant g of X’ such that
X'(g)=Ay — - — A, = Afor some types Aj,..., A,, A. Here, A (as well
as any A;) might be a function type.

— For every new constant g of X’ with X'(g9) = 41 — --- = A, — A, arity(g) =
n a term Int(g) =t of X such that x1 : Ay, ..., 2, : Ay F ¢ : A. In this case,
we write Int(g)[t] for [z := {].

Assume that (arity, Int) is a concrete back-interpretation of X/ into X, A/ A a
context and type for X.

13

— The set Good™;4 | of good terms (written briefly Good) is given by the set

arity,Int
of t € TermgkA such thateach occurrence of a new constant g of arity n in
t is applied to at least n arguments.

- Ifte Goodﬁ{t’;‘,nt, then intﬁi’t’;,nt(t)7 in short int(t), is obtained by inductively

replacing all occurrences of ¢ # for new constants g by Int(g)[int(£)].
p g g g by g

Trivially, concrete back-interpretations are back-interpretations. We now have
the definitions in place to prove SN+WN-conservativity of our translation.

Lemma 5 (Some simple facts).

(a) f f: A <] Q (AF g: A) then each variable in A occurs exactly once in g.

(b) If = is a variable occurring in pattern ¢, then ¢ is a subterm of g[x := ¢].

(c) Assume s is a maximal subterm of ¢, i.e. s is a subterm such that there is
no term s’ such that s s’ is a subterm starting at the same occurrence as s
in ¢. If ¢ is good, then s is good as well.

Theorem 6. Let P be a program for the signature Y. Then there exists a
typed language X’ which extends X and a simple program P’, such that P’ is a
conservative extension of P preserving SN and WN.

Proof: Define for a program P the height of its derivation height(P) as the sum
of the heights of the derivations of those covering patterns in P, which are not
simple covering patterns. The proof is by induction on height(P).

The case height(P) = 0 is trivial, since P is simple. Assume height(P) > 0.
We obtain a X’ D X and corresponding program P’ for X’ by applying one
step of Algorithm 3.3 to P. We show below that P’ is a conservative extension
of P preserving SN and WN. Since the derivations for the covererage complete
pattern sets in P’ are the same as for P, except for the one for 73}, which is
reduced in height by one as the algorithm takes out the last derivation of the
coverage derivation of Py, and that for P, which is simple, we have height(P’) =
height(P) — 1. By IH there exists a conservative extension P” of P’ preserving
SN and WN, which is simple, which is as well a conservative extension of P
preserving SN and WN. This extension is obtained by the recursive call made
by the algorithm.

We are going to show that P’ is a conservative extension of P preserving
SN and WN. Let f, g, 4",7,q, A, I, A;,qi,t;, C;, ¢; be as stated in Algorithm 3.3,
A =7 A;, and n be the length of A'.

We introduce a concrete back-interpretation of P’ into P defined by arity(g) :=
n and Int(g)[y] := ¢. Let m(¢) be the number of occurrences of f in ¢. Assume
AF A a context and type of X, and let (GoodA’A7 intA’A) be the corresponding
back interpretation, for which we briefly write (Good, A).

Assume P’ fulfills with the given ¢ the following conditions:

(1) int(q;) = @ —p g .

(2) If ¢[Z := 3] t = ¢;, then g §t = ¢].

Then (Good,int) fulfils (SN 1), (SN 2), and (WN), and therefore P’ is a
conservative extension of P preserving SN and WN:

14

(SN 1) holds since the only changed derivation is based on the original redex
@G =1 —p 6i[7; = 1] and ¢[7i == 1] —>pr ¢j[G; := 1] —>pr 1[G = 1.
(SN 2) holds since the new redexes are the following:

(a) q[§ :=t] —>p: g t, where [:= t] is good. Since it is good and variables
in a pattern are not applied to other terms, by Lem. 5 t is good as well,
and therefore as well g . We have int(g t) = ¢[:= int(£)] = int(q[¢ := 7]).
Furthermore, m(q[7:=t]) = m(g 1) +1 > m(g t), since pattern ¢ starts with
f, and each variable in gj’ occurs by Lem. 5 exactly once in q.

(b) ¢l = 1| —p ti]§i := t]. Since ¢}[7; = 1] is good as in (a) t is good
and therefore t;[y; : ﬂ is good Furthermore int(ql y, : t_] int(g))[7; :=
int(f)]) = qi[7; := int(t)] —p t;[7; = int(£)] = int(t = t_])

Proof of (WN): We first show that (2) implies

(3) If s € Good, int(s) = ¢; then s = ¢; Vs = ¢}

Since g; starts with f, s must start with f or g. The only occurrence of a function
symbol in g; is at the beginning, therefore s = f 7 or s = g ¥ where int(¥) = 7.
If s = f Fthenint(s) =s = ¢. f s = g 7= g 5, int(s) = ¢q[T := 3] { = g,
therefore by (2) s = g 5t = (/.

Using (3), assume s € Good, s € NF', and assume int(s) had redex ¢[% := 7]
for a pattern q of P. If ¢ # ¢;, g starts with some h # f, g, and has no occurrences
of f,g. Then s contains ¢[Z := 7] where int(7) = 7, and has therefore a redex,
contradicting s € NF’. Therefore § = ¢; for some i. Therefore s contains a
subterm §'[Z := 7] such that int(s") = ¢;, int(¥") = 7. But then by (3) [T := 7]
is a redex of s, again a contradiction.

So the proof is complete provided conditions (1), (2) are fulfilled. These follow
straightforwardly from the definition of the translation algorithm.

5 Conclusion

We have described a reduction of deep copattern matching to shallow copattern
matching. The translation preserves normalization and thus establishes a weak
bisimulation between original and translated program. The translated programs
can be used for more efficient evaluation in a checker for dependent types or can
serve as intermediate code for translation into a more low-level language that
has no concept of pattern at all.

Two more translations might be worthwhile investigating in future work:
First, a translation into a variable-free language of combinators. The challenge
here lies in the preservation of normalization as in the present translation. Sec-
ondly, a translation to a call-by-need lambda-calculus with lazy record construc-
tors. This would allow us to map definitions of infinite structures by copatterns
back to Haskell style definitions by lazy evaluation. While there seems to be no
(weak) bisimulation in this case, one still hope for preservation of normalization,
maybe established by logical relations.

15

Acknowledgments Anton Setzer acknowledges support by EPSRC (Engineering and
Physical Science Research Council, UK) grant EP/C0608917/1. Andreas Abel acknowl-
edges support by a Vetenskapsradet framework grant 254820104 (Thierry Coquand)
to the Department of Computer Science and Engineering at Gothenburg University.
Brigitte Pientka achknowledges support by NSERC (National Science and Engineer-
ing Research Council Canada). David Thibodeau acknowledges support by a graduate
scholarship of Les Fonds Québécois de Recherche Nature et Technologies (FQRNT).

References

10.

11.

Andreas Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order Types.
PhD thesis, Ludwig-Maximilians-Universitdt Miinchen, 2006.

Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copatterns:
Programming infinite structures by observations. In Proc. of the 40th ACM Symp.
on Principles of Programming Languages, POPL 2013, pages 27-38. ACM Press,
2013.

Lennart Augustsson. Compiling pattern matching. In Functional Programming
Languages and Computer Architecture (FPCA’85), volume 201 of Lect. Notes in
Comput. Sci., pages 368-381. Springer, 1985.

Gilles Barthe, Maria J. Frade, Eduardo Giménez, Luis Pinto, and Tarmo Uustalu.
Type-based termination of recursive definitions. Math. Struct. in Comput. Sci.,
14(1):97-141, 2004.

Edwin Brady. Implementation of a general purpose programming language with
dependent types. Available on the author’s homepage, 2014.

. Robin Cockett and Tom Fukushima. About Charity. Technical report, Department

of Computer Science, The University of Calgary, 1992. Yellow Series Report No.
92/480/18.

Tatsuya Hagino. A typed lambda calculus with categorical type constructors. In
Category Theory and Computer Science, volume 283 of Lect. Notes in Comput.
Sci., pages 140-157. Springer, 1987.

Tatsuya Hagino. Codatatypes in ML. J. Symb. Logic, 8(6):629-650, 1989.
INRIA. The Coq Proof Assistant Reference Manual. INRIA, version 8.4 edition,
2012.

Ulf Norell. Towards a Practical Programming Language Based on Dependent Type
Theory. PhD thesis, Dept of Comput. Sci. and Engrg., Chalmers, Goteborg, Swe-
den, 2007.

Terese. Term Rewriting Systems. Cambridge University Press Cambridge, 2003.

	Unnesting of Copatterns

